
§1 HAM HAMILTONIAN CYCLES 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Hamiltonian cycles. This program finds all Hamiltonian cycles of an undirected graph. [It’s a slight
revision of the program published in my paper “Mini-indexes for literate programs,” Software—Concepts
and Tools 15 (1994), 2–11.] The input graph should be in Stanford GraphBase format, and should be named
on the command line as, for example, foo.gb. An optional second command-line parameter is a modulus
m, which causes every mth solution to be printed.

We use a utility field to record the vertex degrees.

#define deg u.I

#include "gb_graph.h" /∗ the GraphBase data structures ∗/
#include "gb_save.h" /∗ restore graph ∗/

main (int argc , char ∗argv [])
{

Graph ∗g;
Vertex ∗x, ∗y, ∗z, ∗tmax ;
register Vertex ∗t, ∗u, ∗v;
register Arc ∗a, ∗aa ;
register int d;
Arc ∗b, ∗bb ;
int count = 0;
int dmin ,modulus ;

〈Process the command line, inputting the graph 2 〉;
〈Prepare g for backtracking, and find a vertex x of minimum degree 3 〉;
for (v = g~vertices ; v < g~vertices + g~n; v++) printf (" %d", v~deg);
printf ("\n"); /∗ TEMPORARY CHECK ∗/
if (x~deg < 2) {

printf ("The minimum degree is %d (vertex %s)!\n", x~deg , x~name);
return −1;

}
for (b = x~arcs ; b~next ; b = b~next)

for (bb = b~next ; bb ; bb = bb~next) {
v = b~ tip ;
z = bb~ tip ;
〈Find all simple paths of length g~n− 2 from v to z, avoiding x 4 〉;

}
printf ("Altogether %d solutions.\n", count);
for (v = g~vertices ; v < g~vertices + g~n; v++) printf (" %d", v~deg);
printf ("\n"); /∗ TEMPORARY CHECK, SHOULD AGREE WITH FORMER VALUES ∗/
}

2. 〈Process the command line, inputting the graph 2 〉 ≡
if (argc > 1) g = restore graph (argv [1]); else g = Λ;
if (argc < 3 ∨ sscanf (argv [2], "%d",&modulus) 6= 1) modulus = 1000000000;
if (¬g ∨modulus ≤ 0) {
fprintf (stderr , "Usage: %s foo.gb [modulus]\n", argv [0]);
exit (−1);
}

This code is used in section 1.

https://cs.stanford.edu/~knuth/programs.html

2 HAMILTONIAN CYCLES HAM §3

3. Vertices that have already appeared in the path are “taken,” and their taken field is nonzero. Initially
we make all those fields zero.

#define taken v.I

〈Prepare g for backtracking, and find a vertex x of minimum degree 3 〉 ≡
dmin = g~n;
for (v = g~vertices ; v < g~vertices + g~n; v++) {
v~ taken = 0;
d = 0;
for (a = v~arcs ; a; a = a~next) d++;
v~deg = d;
if (d < dmin) dmin = d, x = v;
}

This code is used in section 1.

§4 HAM THE DATA STRUCTURES 3

4. The data structures. I use one simple rule to cut off unproductive branches of the search tree: If
one of the vertices we could move to next is adjacent to only one other unused vertex, we must move to it
now.

The moves will be recorded in the vertex array of g. More precisely, the kth vertex of the path will be
t~vert when t is the kth vertex of the graph. If the move was not forced, t~ark will point to the Arc record
representing the edge from t~vert to (t + 1)~vert ; otherwise t~ark will be Λ.

This program is a typical backtrack program. I am more comfortable doing it with labels and goto
statements than with while loops, but some day I may learn my lesson.

#define vert w.V
#define ark x.A

〈Find all simple paths of length g~n− 2 from v to z, avoiding x 4 〉 ≡
t = g~vertices ; tmax = t + g~n− 1;
x~ taken = 1; t~vert = x;
t~ark = Λ;

advance : 〈 Increase t and update the data structures to show that vertex v is now taken; goto backtrack if
no further moves are possible 5 〉;

try : 〈Look at edge a and its successors, advancing if it is a valid move 7 〉;
restore : 〈Downdate the data structures to the state they were in when level t was entered 6 〉;
backtrack : 〈Decrease t, if possible, and try the next possibility; or goto done 8 〉;

done :

This code is used in section 1.

5. 〈 Increase t and update the data structures to show that vertex v is now taken; goto backtrack if no
further moves are possible 5 〉 ≡

t++;
t~vert = v;
v~ taken = 1;
if (v ≡ z) {

if (t ≡ tmax) 〈Record a solution 9 〉;
goto backtrack ;
}
for (aa = v~arcs , y = Λ; aa ; aa = aa~next) {
u = aa~ tip ;
d = u~deg − 1;
if (d ≡ 1 ∧ u~ taken ≡ 0) {

if (y) goto restore ; /∗ restoration will stop at aa ∗/
y = u;

}
u~deg = d;
}
if (y) {
t~ark = Λ;
v = y;
goto advance ;
}
a = v~arcs ;

This code is used in section 4.

6. 〈Downdate the data structures to the state they were in when level t was entered 6 〉 ≡
for (a = t~vert~arcs ; a 6= aa ; a = a~next) a~ tip~deg ++;

This code is used in section 4.

4 THE DATA STRUCTURES HAM §7

7. 〈Look at edge a and its successors, advancing if it is a valid move 7 〉 ≡
while (a) {
v = a~ tip ;
if (v~ taken ≡ 0) {

t~ark = a;
goto advance ;

}
a = a~next ;
}

restore all : aa = Λ; /∗ all moves tried; we fall through to restore ∗/
This code is used in section 4.

8. 〈Decrease t, if possible, and try the next possibility; or goto done 8 〉 ≡
t~vert~ taken = 0;
t−−;
if (t~ark) {
a = t~ark~next ;
goto try ;
}
if (t ≡ g~vertices) goto done ;
goto restore all ; /∗ the move was forced ∗/

This code is used in section 4.

9. 〈Record a solution 9 〉 ≡
{
count ++;
if (count %modulus ≡ 0) {

printf ("%d: ", count);
for (u = g~vertices ; u ≤ tmax ; u++) printf ("%s ", u~vert~name);
printf ("\n");

}
}

This code is used in section 5.

§10 HAM INDEX 5

10. Index.

a: 1.
aa : 1, 5, 6, 7.
advance : 4, 5, 7.
Arc: 1.
arcs : 1, 3, 5, 6.
argc : 1, 2.
argv : 1, 2.
ark : 4, 5, 7, 8.
b: 1.
backtrack : 4, 5.
bb : 1.
count : 1, 9.
d: 1.
deg : 1, 3, 5, 6.
dmin : 1, 3.
done : 4, 8.
exit : 2.
fprintf : 2.
g: 1.
Graph: 1.
main : 1.
modulus : 1, 2, 9.
name : 1, 9.
next : 1, 3, 5, 6, 7, 8.
printf : 1, 9.
restore : 4, 5, 7.
restore all : 7, 8.
restore graph : 1, 2.
sscanf : 2.
stderr : 2.
t: 1.
taken : 3, 4, 5, 7, 8.
tip : 1, 5, 6, 7.
tmax : 1, 4, 5, 9.
try : 4, 8.
u: 1.
v: 1.
vert : 4, 5, 6, 8, 9.
Vertex: 1.
vertices : 1, 3, 4, 8, 9.
x: 1.
y: 1.
z: 1.

6 NAMES OF THE SECTIONS HAM

〈Decrease t, if possible, and try the next possibility; or goto done 8 〉 Used in section 4.

〈Downdate the data structures to the state they were in when level t was entered 6 〉 Used in section 4.

〈Find all simple paths of length g~n− 2 from v to z, avoiding x 4 〉 Used in section 1.

〈 Increase t and update the data structures to show that vertex v is now taken; goto backtrack if no further
moves are possible 5 〉 Used in section 4.

〈Look at edge a and its successors, advancing if it is a valid move 7 〉 Used in section 4.

〈Prepare g for backtracking, and find a vertex x of minimum degree 3 〉 Used in section 1.

〈Process the command line, inputting the graph 2 〉 Used in section 1.

〈Record a solution 9 〉 Used in section 5.

HAM

Section Page
Hamiltonian cycles . 1 1
The data structures . 4 3
Index . 10 5

	Hamiltonian cycles
	The data structures
	Index
	Names of the sections
	Decrease t, if possible, and try the next possibility; or goto done
	Downdate the data structures to the state they were in when level t was entered
	Find all simple paths of length g->n-2 from v to z, avoiding x
	Increase t and update the data structures to show that vertex v is now taken; goto backtrack if no further moves are possible
	Look at edge a and its successors, advancing if it is a valid move
	Prepare g for backtracking, and find a vertex x of minimum degree
	Process the command line, inputting the graph
	Record a solution

