
§1 GRAYSPSPAN INTRODUCTION 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Introduction. This program combines the ideas of GRAYSPAN and SPSPAN, resulting in a glorious
routine that generates all spanning trees of a given graph, changing only one edge at a time, with “guaranteed
efficiency”—in the sense that the total running time is O(m+n+ t) when there are m edges, n vertices, and
t spanning trees.

The reader should be familiar with both GRAYSPAN and SPSPAN, because their principles of operation
are not repeated here.

The first command line argument is the name of a file that specifies an undirected graph in Stanford
GraphBase SAVE GRAPH format. Additional command line arguments are ignored except that they cause
more verbose output. The least verbose output contains only overall statistics about the total number of
spanning trees found and the total number of mems used.

#define verbose (xargc > 2)
#define extraverbose (xargc > 3)
#define o mems ++

#define oo mems += 2
#define ooo mems += 3
#define oooo mems += 4
#define ooooo mems += 5
#define oooooo mems += 6

#include "gb_graph.h"

#include "gb_save.h"

〈Preprocessor definitions 〉
double mems ; /∗ memory references made ∗/
double count ; /∗ trees found ∗/
Graph ∗gg ; /∗ a global copy of g ∗/
int xargc ; /∗ a global copy of argc ∗/
〈Type definitions 5 〉
〈Global variables 7 〉
〈Subroutines 9 〉
main (int argc , char ∗argv [])
{
〈Local variables 3 〉;
〈 Input the graph 2 〉;
if (n > 1) 〈Generate all spanning trees 25 〉;
printf ("Altogether %.15g spanning trees, using %.15g mems.\n", count ,mems);
exit (0);
}

https://cs.stanford.edu/~knuth/programs.html

2 INTRODUCTION GRAYSPSPAN §2

2. 〈 Input the graph 2 〉 ≡
if (argc < 2) {

fprintf (stderr , "Usage: %s foo.gb [[gory] details]\n", argv [0]);
exit (−11);
}
xargc = argc ;
gg = g = restore graph (argv [1]);
if (¬g) {

fprintf (stderr , "Sorry, can’t create the graph from file %s! (error code %d)\n", argv [1],
panic code);

exit (−2);
}
〈Allocate additional storage 6 〉;
〈Check the graph for validity and prepare it for action 18 〉;

This code is used in section 1.

3. 〈Local variables 3 〉 ≡
register Graph ∗g; /∗ the graph we’re dealing with ∗/
register int n; /∗ the number of vertices ∗/
register int m; /∗ the number of edges ∗/
register int l; /∗ the current level of shrinkage ∗/
register int k; /∗ current integer of interest ∗/
register Vertex ∗u, ∗v, ∗w; /∗ current vertices of interest ∗/
register Arc ∗e, ∗ee , ∗f, ∗ff ; /∗ current edges of interest ∗/
register Bond ∗b; /∗ current interest-bearing bond ∗/

This code is used in section 1.

§4 GRAYSPSPAN THE METHOD AND ITS DATA STRUCTURES 3

4. The method and its data structures. The basic idea of this program, which goes back to Malcolm
Smith’s M.S. thesis, “Generating spanning trees” (University of Victoria, 1997), is to modify the GRAYSPAN

algorithm, replacing edges by series-parallel subgraphs that we will call “bonds.”
A bond between vertices u and v is either an edge of the given graph, or a sequence of bonds joined in

series, or a set of bonds joined in parallel. The GRAYSPSPAN algorithm essentially uses the GRAYSPAN

method to generate spanning trees with respect to bonds, together with the SPSPAN method to generate all
of the corresponding spanning trees with respect to the original edges.

Suppose we start by considering each edge to be a bond of the simplest kind. Then we can remove multiple
bonds, if any, by combining them in parallel. And we can remove vertices of degree 2 by combining their
adjacent bonds in series. A vertex of degree 1 and its adjacent bond can be removed from the graph, if
we require that bond to be present in every spanning tree. Under the assumption that the given graph is
connected, repeated reductions of this kind will eventually lead to a simple graph that is irreducible, either
trivial (with only one point) or with all vertices of degree 3 or more.

For example, consider the smallest nontrivial irreducible graph, having four vertices and bonds between
any two of them. Suppose the vertices are v1, v2, v3, v4 and the bonds are b12, b13, b14, b23, b24, b34. If
the GRAYSPAN algorithm produces the spanning tree b12b13b24, say, the SPSPAN algorithm is used to cycle
through all the 1-configs of b12, b13, and b24 together with all the 0-configs of the other bonds b14, b23,
b34. Then if GRAYSPAN produces its next spanning tree by changing b24 to b34, this change corresponds to
removing the designated leaf of bond b24 and including the designated leaf of b34, after which SPSPAN runs
through the 1-configs of b12, b13, b34 with the 0-configs of b14, b23, b24.

The actual operation of this program is not quite the same as just described, because the operation of
shrinking b12 causes the resulting graph to reduce to a triviality; the GRAYSPAN algorithm never gets to
the case n = 2 that used to be its goal. But conceptually we make progress on the graph as a whole by
shrinking edges and removing nonbridges just as in GRAYSPAN, and each reduction in the number of bonds
takes more of the computation into the highly efficient SPSPAN domain.

5. A suitable data structure to support all this machinery can be fashioned from a struct of type Bond,
which contains the fields typ , val , des , done , focus , and rsib that we used in SPSPAN. We also need left
and right pointers, because we must keep branch nodes in a doubly linked list instead of allocating them
sequentially and statically as we did before. Then there are lchild , lsib , and scope pointers for constructing
new bonds from old ones; also lhist and rhist for deconstructing when bonds are being undone. Finally
there’s yet another doubly linked list, containing the top-level bonds of the current spanning tree; its link
fields are called up and down .

〈Type definitions 5 〉 ≡
typedef struct bond struct {

int typ ; /∗ 1 for series bonds, 0 for parallel bonds, 2 for deletion records ∗/
int val ; /∗ 1 if the bond is in the current spanning tree ∗/
struct bond struct ∗lchild ; /∗ leftmost child; Λ for a leaf ∗/
struct bond struct ∗lsib ; /∗ left sibling; wraps around cyclically ∗/
struct bond struct ∗rsib ; /∗ right sibling; wraps around cyclically ∗/
struct bond struct ∗des ; /∗ designated child ∗/
struct bond struct ∗done ; /∗ final designated child in a sweep ∗/
struct bond struct ∗scope ; /∗ last branch descendant in preorder ∗/
struct bond struct ∗focus ; /∗ magic pointer control for Gray products ∗/
struct bond struct ∗left ; /∗ left neighbor in the action list ∗/
struct bond struct ∗right ; /∗ right neighbor in the action list ∗/
struct bond struct ∗up ; /∗ upper neighbor in the tree list ∗/
struct bond struct ∗down ; /∗ lower neighbor in the tree list ∗/
struct bond struct ∗lsave , ∗rsave ; /∗ needed for restoration in one case ∗/
Arc ∗lhist , ∗rhist ; /∗ the edges that spawned this bond ∗/
} Bond;

This code is used in section 1.

4 THE METHOD AND ITS DATA STRUCTURES GRAYSPSPAN §6

6. If the graph has m edges, we put the basic one-edge bonds into bondbase + k for 1 ≤ k ≤ m; series and
parallel combinations, and “deletion records” for undoing a bond deletion, go into the subsequent locations,
in a last-in-first-out manner.

#define isleaf (b) ((b) ≤ topleaf) /∗ is b simply an edge? ∗/
#define action bondbase /∗ head of the action list ∗/
#define tree (&treehead) /∗ head of the tree list ∗/
〈Allocate additional storage 6 〉 ≡
m = g~m/2;
bondbase = (Bond ∗) calloc(3 ∗m, sizeof (Bond));
action~ left = action~right = action , action~ typ = 2, action~ focus = action ;
/∗ the action list starts empty ∗/

tree~up = tree~down = tree ; /∗ and so does the tree list ∗/
This code is used in section 2.

7. 〈Global variables 7 〉 ≡
Bond ∗bondbase ; /∗ base address for almost all Bond structs ∗/
int bondcount ; /∗ the number of bonds currently defined ∗/
Bond ∗topleaf ; /∗ dividing line between leaves and branches ∗/
Bond treehead ; /∗ header for the tree list ∗/
Bond ∗inbond , ∗outbond ; /∗ bonds to be included and excluded next ∗/
Bond James ; /∗ my little joke ∗/

This code is used in section 1.

8. The bonds between vertices are represented as Arc structs in almost the usual way; namely, a bond
between u and v appears as an arc e with e~ tip = v in the list u~arcs , and as an arc f with f~ tip = u in the
list v~arcs , where f = mate (e) and e = mate (f). However, as in GRAYSPAN, we doubly link the arc list,
making e~prev~next = e~next~prev = e and starting the list with a dummy entry called its header.

We also include a new field e~bond pointing to the Bond struct that carries further information. This
one has to be coerced to type (Bond ∗) when used in the C code.

#define deg u.I /∗ utility field u of each vertex holds its current degree ∗/
#define prev a.A /∗ utility field a of each arc holds its backpointer ∗/
#define bond b.A /∗ utility field b of each arc leads to the corresponding Bond ∗/
#define mate (e) (edge trick & (siz t)(e) ? (e)− 1 : (e) + 1)
#define bn (b) ((b)− bondbase) /∗ the number of bond b, for printout ∗/
#define ebn (e) bn ((Bond ∗)((e)~bond))
#define delete (e) ee = e, oooo , ee~prev~next = ee~next , ee~next~prev = ee~prev
#define undelete (e) ee = e, oooo , ee~next~prev = ee , ee~prev~next = ee

§9 GRAYSPSPAN DIAGNOSTIC ROUTINES 5

9. Diagnostic routines. Here are a few handy ways to look at the current data.

〈Subroutines 9 〉 ≡
void printgraph (void) /∗ prints the current graph ∗/
{

register Vertex ∗v;
register Arc ∗e;
for (v = gg~vertices ; v < gg~vertices + gg~n; v++)

if (v~mark ≥ 0) {
printf ("Bonds from %s:", v~name);
for (e = v~arcs~next ; e~ tip ; e = e~next) printf (" %s(%d)", e~ tip~name , ebn (e));
printf ("\n");

}
}

See also sections 10, 11, 12, 31, 38, and 39.

This code is used in section 1.

10. 〈Subroutines 9 〉 +≡
void printbond (Bond ∗b)
{

printf ("%d:%c", bn (b), isleaf (b) ? ’l’ : b~ typ ≡ 2 ? ’r’ : b~ typ ≡ 1 ? ’s’ : ’p’);
if (b~ typ ≡ 2) {

printf (" lhist=%d", ebn (b~ lhist));
if (b~rhist) printf (" rhist=%d", ebn (b~ lhist));

} else {
printf ("%c", b~val + ’0’);
if (b~ lsib) printf (" lsib=%d, rsib=%d", bn (b~ lsib), bn (b~rsib));
if (¬isleaf (b)) {

if (b~ focus 6= b) printf (" focus=%d", bn (b~ focus));
printf (" lchild=%d, scope=%d, des=%d, done=%d", bn (b~ lchild), bn (b~scope), bn (b~des),

bn (b~done));
}
}
printf ("\n");

}

6 DIAGNOSTIC ROUTINES GRAYSPSPAN §11

11. 〈Subroutines 9 〉 +≡
void printaction (void) /∗ prints the current action list ∗/
{

register Bond ∗b;
for (b = action~right ; b 6= action ; b = b~right) printbond (b);
}
void printtree (void) /∗ prints the current tree list ∗/
{

register Bond ∗b;
for (b = tree~down ; b 6= tree ; b = b~down) printbond (b);
}
void printleaves (void) /∗ prints all the leaves ∗/
{

register Bond ∗b;
for (b = bondbase + 1; b ≤ topleaf ; b++) printbond (b);
}

12. Since there’s so much redundancy in the data structures, I need reassurance that I haven’t slipped up
and forgotten to keep everything shipshape. “A data structure is only as strong as its weakest link.”

The sanitycheck routine is designed to print out most discrepancies between my assumptions and the true
state of affairs. I used it to locate lapses when this program was being debugged, and it remains as testimony
to the most vital structural assumptions that are being made.

〈Subroutines 9 〉 +≡
〈Declare the recursive routine bondsanity 16 〉;
int sanitycheck (int flags)
{

register Vertex ∗u, ∗v;
register Arc ∗e;
register Bond ∗b;
register int k, n;
int bugs = 0;

if (flags & 1) 〈Do a sanity check on the graph 13 〉;
if (flags & 2) 〈Do a sanity check on the action list 15 〉;
if (flags & 4) 〈Do a sanity check on the tree list 17 〉;
return bugs ;
}

13. 〈Do a sanity check on the graph 13 〉 ≡
{

for (n = 0, v = gg~vertices ; v < gg~vertices + gg~n; v++)
if (v~mark ≥ 0) 〈Do a sanity check on v’s bond list 14 〉;

}
This code is used in section 12.

§14 GRAYSPSPAN DIAGNOSTIC ROUTINES 7

14. Some of the “bugs” detected in this routine are, of course, harmless in certain contexts. My goal is to
call attention to things that might be unexpected, but to keep going in any case.

〈Do a sanity check on v’s bond list 14 〉 ≡
{
n++;
if (v~mark) bugs ++, printf ("Vertex %s is marked\n", v~name);
if ((v~deg < 3 ∧ v~deg 6= 0) ∨ v~deg ≥ gg~n)

bugs ++, printf ("Vertex %s has degree %d\n", v~name , v~deg);
for (k = 0, e = v~arcs ; k ≤ v~deg ; k++, e = e~next) {

if (e~prev~next 6= e ∨ e~next~prev 6= e)
bugs ++, printf ("Link failure at vertex %s, bond %d\n", v~name , k);

if (k > 0) {
b = (Bond ∗) e~bond ;
if (b ≤ bondbase ∨ b > bondbase + bondcount)

bugs ++, printf ("Vertex %s has bad bond %d\n", v~name , k);
else if (b~ lhist 6= e ∧ b~ lhist 6= mate (e))

bugs ++, printf ("Bond %d has bad lhist pointer\n", bn (b));
if (mate (e)~bond 6= e~bond) bugs ++, printf ("Vertex %s has unmated bond %d\n", v~name , k);
if (mate (e)~ tip 6= v)

bugs ++, printf ("Vertex %s’s bond %d has wrong mate tip\n", v~name , k);
u = e~ tip ;
if (¬u) bugs ++, printf ("Vertex %s has bad tip %d\n", v~name , k);
else if (u~mark < 0)

bugs ++, printf ("Vertex %s points to deleted vertex %s\n", v~name , u~name);
}

}
if (e 6= v~arcs) bugs ++, printf ("Vertex %s has more than %d bonds\n", v~name , v~deg);
}

This code is used in section 13.

15. The action list is essentially a forest of bonds, in preorder.

〈Do a sanity check on the action list 15 〉 ≡
{

if (action~ left~right 6= action ∨ action~right~ left 6= action)
bugs ++, printf ("Link failure at head of action list\n");

for (b = action~right ; b 6= action ; b = b~right) {
if (b~val ≡ 1 ∧ (¬b~up ∨ b~up~down 6= b))

bugs ++, printf ("Bond %d isn’t properly in the tree list\n", bn (b));
if (b~ lsib ∨ b~rsib) bugs ++, printf ("Top level bond %d has siblings\n", bn (b));
if (isleaf (b)) bugs ++, printf ("Leaf %d is in the action list\n", bn (b));
else {

bugs += bondsanity (b);
b = b~scope ;

}
}
}

This code is used in section 12.

8 DIAGNOSTIC ROUTINES GRAYSPSPAN §16

16. 〈Declare the recursive routine bondsanity 16 〉 ≡
int bondsanity (Bond ∗b)
{

int bugs = 0;
register Bond ∗a, ∗extent ;
register int j, k;

extent = b;
if (b~ left~right 6= b ∨ b~right~ left 6= b) bugs ++, printf ("Link failure at bond %d\n", bn (b));
for (a = b~ lchild , j = k = 0; a 6= b~ lchild ∨ k ≡ 0; a = a~rsib , k++) {

if (a ≤ bondbase ∨ a > bondbase + bondcount) {
bugs ++, printf ("Bond %d has a child out of range\n", bn (b));
break;

}
if (a~ lsib~rsib 6= a ∨ a~rsib~ lsib 6= a)

bugs ++, printf ("Sibling link failure at bond %d\n", bn (a));
if (a ≡ b~des) j = 1;
else if (a~val 6= b~ typ) bugs ++, printf ("Bond %d should have value %d\n", bn (a), b~ typ);
if (¬isleaf (a)) {

if (a~ left 6= extent)
bugs ++, printf ("Preorder failure: bond %d doesn’t follow %d\n", bn (a), bn (extent));

bugs += bondsanity (a);
extent = a~scope ;

}
}
if (¬j) bugs ++, printf ("Bond %d doesn’t designate any of its children\n", bn (b));
else if (b~done 6= b~des~ lsib)

bugs ++, printf ("Bond %d should be done at %d\n", bn (b), bn (b~des~ lsib));
if (b~scope 6= extent) bugs ++, printf ("Bond %d should have scope %d\n", bn (b), bn (extent));
return bugs ;

}
This code is used in section 12.

17. If flags & 1, we’ve computed the number n of current vertices.

〈Do a sanity check on the tree list 17 〉 ≡
{

if (tree~up~down 6= tree ∨ tree~down~up 6= tree)
bugs ++, printf ("Link failure at head of tree list\n");

for (b = tree~down , k = 0; b 6= tree ; k++, b = b~down) {
if (b~up~down 6= b ∨ b~down~up 6= b)

bugs ++, printf ("Link failure in tree list at bond %d\n", bn (b));
if (b~val 6= 1) bugs ++, printf ("Bond %d in the tree list has value 0\n", bn (b));

}
if ((flags & 1) ∧ (k 6= n− 1− (inbond ≡ Λ)))

bugs ++, printf ("The tree list holds %d bonds, not %d\n", k, n− 1− (inbond ≡ Λ));
}

This code is used in section 12.

§18 GRAYSPSPAN GRAPH PREPARATION 9

18. Graph preparation. At the beginning, we want to make sure that the given graph is truly undi-
rected, and that we can find mates of its edges using the infamous edge trick . We also need to change its
representation from singly linked edges to doubly linked bonds, and to compute vertex degrees, as well as to
find an initial spanning tree.

All of these things can be done easily with a single search of the graph. The following program sets
v~mark = 2 for each vertex that has been seen, and keeps a sequential stack of vertices that have been
seen but not yet explored. (The search has aspects of both bread-first and depth-first approaches: When
we explore a vertex we see all of its successors before exploring another, but we select new vertices for
exploration in the last-seen-first-explored manner.)

Why is the mark field set to 2? Because any nonzero value will do, and it turns out that we’ll want to set
it to 2 shortly after this part of the program is done.

#define stack (k) (g~vertices + (k))~z.V /∗ utility field z is used for a stack ∗/
#define mark v.I /∗ utility field v of each vertex holds a mark ∗/
〈Check the graph for validity and prepare it for action 18 〉 ≡

for (v = g~vertices + 1; v ≤ g~vertices + g~n; v++) v~mark = 0;
if (verbose) printf ("Graph %s has the following edges:\n", g~ id);
v = g~vertices , stack (0) = v, k = 1, v~mark = 2, n = 1,m = 0;
while (k) { /∗ k is the number of items on the stack ∗/
o, v = stack (−−k);
f = gb virgin arc();
f~next = v~arcs ; /∗ the new header node ∗/
for (v~deg = 0, e = v~arcs , v~arcs = f ; e; v~deg ++, f = e, e = e~next) {
looky : u = e~ tip ;

if (u ≡ v) { /∗ self-loops are silently ignored ∗/
f~next = e = e~next ;
if (¬e) break;
goto looky ;

}
e~prev = f ;
if (mate (e)~ tip 6= v) {

fprintf (stderr , "Graph %s has an arc from %s to %s,\n", g~ id , u~name , v~name);
fprintf (stderr , " but the edge trick doesn’t find the opposite arc!\n");
exit (−3);

}
if (o,¬e~bond) {

ooo ,m++, b = bondbase + m, e~bond = mate (e)~bond = (Arc ∗) b, b~ lhist = e;
if (verbose) printf (" %d: %s −− %s\n",m, v~name , u~name);

}
if (o,¬u~mark) {

ooo , u~mark = 2, stack (k++) = u, b = (Bond ∗) e~bond , b~val = 1;
ooo , n++, b~up = tree~up , tree~up~down = b, tree~up = b, b~down = tree ;

}
}
v~arcs~prev = f, f~next = v~arcs ; /∗ complete the double linking ∗/
}
if (n < g~n) {

fprintf (stderr , "Oops, the graph isn’t connected!\n");
exit (−4);
}
o, topleaf = bondbase + m, bondcount = m;

This code is used in section 2.

10 REDUCTION GRAYSPSPAN §19

19. Reduction. Let’s start to write real code now. This program reaches a crucial step when we get to
the label called reduce , corresponding roughly to the point where GRAYSPAN gets to its label called enter .

When reduce is reached, we’re in the following state:

1) Bonds a1 . . . al of the current graph have been shrunk, represented as the array aa (1) through aa (l). After
we’ve found all spanning trees in the shrunken graph, we’ll want to unshrink them.

2) The tree list specifies a set of bonds that form a spanning tree on the current graph, if inbond 6= Λ, or a
near-spanning tree if inbond = Λ. The next spanning tree we generate is supposed to include all of those
bonds.

3) If the current graph contains any parallel edges, they are adjacent to vertices v for which v~mark = 2.

4) If the current graph contains any vertices v of degree less than 3, we have v~mark > 0.

5) All marked vertices appear on the stack, which currently holds k items.

6) All current bonds and subbonds appear in locations bondbase + 1 through bondbase + bondcount . The
ones created before reaching level l are less than or equal to bondbase + bonds (l).

Our job is to zero out the marks, continuing to reduce the graph either by forming more complex bonds or
by shrinking bonds of the tree list, until the graph finally becomes trivial.

#define bonds (l) (g~vertices + l)~y.I /∗ utility field y of the vertex array ∗/
#define aa (l) (g~vertices + l)~x.A /∗ utility field x holds al ∗/
〈Reduce the graph until it’s trivial 19 〉 ≡
reduce : while (k) {

o, v = stack (−−k);
if (o, v~mark > 1) 〈Parallelize duplicate bonds from v 20 〉;
if (o, v~deg < 3) 〈Eliminate v, then goto trivialgraph if only one vertex is left 21 〉
else o, v~mark = 0;
}

/∗ now all relevant marks are zero and the graph still isn’t trivial ∗/
o, l++, bonds (l) = bondcount ;
if (extraverbose) printf ("Entering level %d\n", l);
oooo , b = tree~down , tree~down = b~down , tree~down~up = tree ;
oo , e = b~ lhist , aa (l) = e; /∗ we have b~ lhist~bond = (Arc ∗) b ∗/
〈Shrink bond e 24 〉;
goto reduce ;

This code is used in section 25.

20. #define dup w.A /∗ utility field w points to a previous edge ∗/
〈Parallelize duplicate bonds from v 20 〉 ≡
{

for (oo , e = v~arcs~next ; o, e~ tip ; o, e = e~next) o, e~ tip~dup = Λ;
for (e = v~arcs~next ; o, e~ tip ; o, e = e~next) {

u = e~ tip ;
if (o, u~dup) {

makeparallel (u~dup , e); /∗ create a new parallel bond ∗/
if (o,¬u~mark) oo , u~mark = 1, stack (k++) = u;

} else o, u~dup = e;
}
}

This code is used in section 19.

§21 GRAYSPSPAN REDUCTION 11

21. A deleted vertex is marked −1, for debugging purposes only.

〈Eliminate v, then goto trivialgraph if only one vertex is left 21 〉 ≡
{
v~mark = −1;
if (v~deg ≡ 2) 〈Serialize the bonds from v 23 〉
else if (v~deg ≡ 1) 〈Require the bond from v 22 〉
else {
v~mark = 0; /∗ the last vertex doesn’t go away ∗/
goto trivialgraph ; /∗ v~deg = 0, hence no other vertices remain ∗/

}
}

This code is used in section 19.

22. If the single bond touching v isn’t in the tree list, we know that the tree list must specify only a
near-spanning tree. So we set inbond , which will complete a spanning tree later. And we eliminate v; thus
the tree list henceforth is a spanning tree on the remaining vertices.

〈Require the bond from v 22 〉 ≡
{

ooo , e = v~arcs~next , b = (Bond ∗) e~bond ;
o, u = e~ tip ;
deletebonds (mate (e),Λ); /∗ remove mate (e) and decrease u~deg ∗/
if (o, b~val) oooo , b~up~down = b~down , b~down~up = b~up ;
else {

if (inbond) {
fprintf (stderr , "I’ve goofed (inbond doubly set)!\n");
exit (−5);

}
inbond = b;

}
if (o,¬u~mark) oo , u~mark = 1, stack (k++) = u;
}

This code is used in section 21.

12 REDUCTION GRAYSPSPAN §23

23. A subtle point arises here: We might be serializing two bonds not in the spanning tree, if v happens
to be the only vertex not reachable from the current near-spanning tree. In that case we want to set inbond
to the subbond of the new series bond that will not be designated by makeseries .

〈Serialize the bonds from v 23 〉 ≡
{

oooooo , e = v~arcs~next , f = e~next , u = e~ tip , w = f~ tip , b = (Bond ∗) e~bond ;
if (o,¬b~val) {
o, b = (Bond ∗) f~bond ;
if (o,¬b~val) {

if (inbond) {
fprintf (stderr , "I’ve doubly goofed (inbond set)!\n");
exit (−6);
}
inbond = b;

}
}
makeseries (e, f); /∗ create a new series bond ∗/
if (o, u~mark) o, u~mark = 2;
else oo , u~mark = 2, stack (k++) = u;
if (o, w~mark) o, w~mark = 2;
else oo , w~mark = 2, stack (k++) = w;
}

This code is used in section 21.

24. At this point the graph is irreducible, so v appears only once in u’s list.

〈Shrink bond e 24 〉 ≡
oo , u = e~ tip , v = mate (e)~ tip ;
for (oo , f = u~arcs~next ; o, f~ tip ; o, f = f~next)

if (f ≡ mate (e)) delete (f);
else o,mate (f)~ tip = v;

delete (e);
ooo , v~deg += u~deg − 2;
o, ee = v~arcs ; /∗ now f = u~arcs ∗/
oooo , f~prev~next = ee~next , ee~next~prev = f~prev ;
ooo , f~next~prev = ee , ee~next = f~next ;
if (extraverbose) printf (" shrinking %d; now %s has degree %d\n", ebn (e), v~name , v~deg);
oo , u~mark = −1, v~mark = 2, k = 1, stack (0) = v;

This code is used in section 19.

§25 GRAYSPSPAN THE MAIN ALGORITHM 13

25. The main algorithm. Now that we understand reduction, we’re ready to complete the GRAYSPAN

portion of this program, except for low-level details.

〈Generate all spanning trees 25 〉 ≡
{

for (k = 0; k < n; k++) o, stack (k) = g~vertices + k; /∗ all vertices are initially suspect ∗/
o, b = tree~up , b~val = 0; /∗ we delete the last edge of the preliminary tree ∗/
oo , tree~up = b~up , tree~up~down = tree ;
if (verbose) {

printf ("Start with the near−spanning edges");
for (b = tree~down ; b 6= tree ; b = b~down) printf (" %d", bn (b));
printf ("\n");

}
l = 0;
〈Reduce the graph until it’s trivial 19 〉;

trivialgraph : 〈Obtain a new spanning tree by changing outbond and inbond 30 〉;
〈Do the SPSPAN algorithm on the action list 47 〉;
while (l) {
〈Undo all changes to the graph since entering level l 29 〉;
o, e = aa (l);
〈Unshrink bond e 26 〉;
l−−;
〈 If e is not a bridge, delete it, set outbond = e~bond , and goto reduce 27 〉;
oooooo , b = (Bond ∗) e~bond , b~up = tree~up , tree~up = b~up~down = b, b~down = tree ;

}
}

This code is used in section 1.

26. After unshrinking, the graph will still be irreducible.

〈Unshrink bond e 26 〉 ≡
ooooo , u = e~ tip , v = mate (e)~ tip , v~deg −= u~deg − 2;
oo , ee = v~arcs , f = u~arcs ;
oooo , ee~next = f~prev~next , ee~next~prev = ee ;
ooo , f~prev~next = f, f~next~prev = f ;
for (o, f = f~next ; o, f~ tip ; o, f = f~next) o,mate (f)~ tip = u;
undelete (e), undelete (mate (e));
if (extraverbose) printf (" unshrinking %d; now %s has degree %d\n", ebn (e), v~name , v~deg);
u~mark = 0; /∗ it was −1 ∗/

This code is used in section 25.

14 THE MAIN ALGORITHM GRAYSPSPAN §27

27. We use a field bfs that shares space with mark , because mark is zero in all relevant vertices at this
time.

#define bfs v.V /∗ link for the breadth-first search: nonnull if vertex seen ∗/
〈 If e is not a bridge, delete it, set outbond = e~bond , and goto reduce 27 〉 ≡

oo , u = e~ tip , v = mate (e)~ tip ;
for (o, u~bfs = v, w = u; u 6= v; o, u = u~bfs) {

for (oo , f = u~arcs~next ; o, f~ tip ; o, f = f~next)
if (o, f~ tip~bfs ≡ Λ) {

if (f~ tip ≡ v) {
if (f 6= mate (e)) 〈Nullify all bfs links, delete e, and goto reduce 28 〉;
} else oo , f~ tip~bfs = v, w~bfs = f~ tip , w = f~ tip ;

}
}
if (extraverbose) printf ("Leaving level %d: %d is a bridge\n", l + 1, ebn (e));
for (o, u = e~ tip ; u 6= v; o, u~bfs = Λ, u = w) o, w = u~bfs ;

This code is used in section 25.

28. We have discovered that e is not a bridge.

〈Nullify all bfs links, delete e, and goto reduce 28 〉 ≡
{

for (o, u = e~ tip ; u 6= v; o, u~bfs = Λ, u = w) o, w = u~bfs ;
outbond = (Bond ∗)(e~bond);
deletebonds (e,mate (e));
oooo , k = 2, stack (0) = e~ tip , stack (1) = mate (e)~ tip ;
oo , e~ tip~mark = mate (e)~ tip~mark = 1;
goto reduce ;
}

This code is used in section 27.

29. 〈Undo all changes to the graph since entering level l 29 〉 ≡
o; while (bondcount > bonds (l)) unbuildbond ();

This code is used in section 25.

§30 GRAYSPSPAN THE MAIN ALGORITHM 15

30. When the program reaches trivialgraph , the variables outbond and inbond point to bonds whose values
are to become 0 and 1, respectively, in the next spanning tree.

(Exception: On the first iteration, outbond is null and we’ve already printed n − 2 edges of the first
spanning tree, as sort of a pump-priming process.)

Note that inbond might not be a top-level bond, because of the subtle point mentioned earlier. But
outbond always at the top level, because it was removed from the graph when outbond was set.

〈Obtain a new spanning tree by changing outbond and inbond 30 〉 ≡
count ++;
if (verbose) printf ("%.15g:", count);
if (outbond) {

for (b = outbond ; ; o, b = b~des) {
o, b~val = 0;
if (isleaf (b)) break;

}
if (verbose) printf ("−%d", bn (b));
}
if (¬inbond) {

fprintf (stderr , "Internal error (no inbond)!\n");
exit (−7);
}
for (b = inbond ; ; o, b = b~des) {
o, b~val = 1;
if (isleaf (b)) break;
}
if (verbose) {

printf ("+%d", bn (b));
if (extraverbose) {

printf (" (");
for (b = bondbase + 1; b ≤ topleaf ; b++)

if (b~val) printf (" %d", bn (b));
printf (")\n");

} else printf ("\n");
}
inbond = outbond = Λ;

This code is used in section 25.

16 CONSTRUCTION GRAYSPSPAN §31

31. Construction. Reducing the main graph means constructing more bonds.
The down side of having a complex data structure is that we have to do tedious maintenance work when

conditions change. The following part of the program was least fun to write, and it is the most likely place
where silly errors might have crept in. But I gritted my teeth and I think I’ve gotten the job done. (As
Anne Lamott would say, this part of the program was written “bird by bird.”)

The two subroutines makeseries and makeparallel are each called only once, so I needn’t have made them
subroutines. They do share a lot of common code, however, so I’ve simplified my task by writing a combined
routine that handles both cases. Hopefully this will reduce the chances of error. But mems are computed as
if the subroutine had been expanded inline and customized for the cases t = 0 and t = 1.

#define makeseries (e, f) buildbond (1, e, f)
#define makeparallel (e, f) buildbond (0, e, f)

〈Subroutines 9 〉 +≡
void buildbond (int t,Arc ∗aa ,Arc ∗bb)
{

register Bond ∗a, ∗b, ∗c, ∗d;
register int at , av , bt , bv ;
register Vertex ∗u, ∗v;
register Arc ∗ee ; /∗ used by the delete macro ∗/
bondcount ++, c = bondbase + bondcount ;
oooo , c~ typ = t, c~ lhist = aa , c~rhist = bb , c~ focus = c;
oo , a = (Bond ∗) aa~bond , b = (Bond ∗) bb~bond ;
oo , av = a~val , at = a~ typ , bv = b~val , bt = b~ typ ;
if (t) 〈Update aa and bb for a new series bond 32 〉
else 〈Update aa and bb for a new parallel bond 33 〉;
oo ,mate (bb)~bond = aa~bond ; /∗ remember the bond that’s going away ∗/
oo , aa~bond = mate (aa)~bond = (Arc ∗) c; /∗ c~ lhist~bond points to c ∗/
if (isleaf (a))

if (isleaf (b)) 〈Build leaf with leaf 34 〉
else 〈Build leaf with branch 35 〉

else if (isleaf (b)) 〈Build branch with leaf 36 〉
else 〈Build branch with branch 37 〉;
if (av) oooo , a~up~down = a~down , a~down~up = a~up ;
if (bv) oooo , b~up~down = b~down , b~down~up = b~up ;
if (av ≡ bv ∨ bv ≡ t)

if (isleaf (a) ∨ at 6= t) o, c~des = a;
else oo , c~des = a~des ;

else if (isleaf (b) ∨ bt 6= t) o, c~des = b;
else oo , c~des = b~des ;
oooo , c~val = c~des~val , c~done = c~des~ lsib ;
if (c~val) ooooo , c~up = tree~up , tree~up = c~up~down = c, c~down = tree ;
}

§32 GRAYSPSPAN CONSTRUCTION 17

32. The new series bond has to agree with its mate. So we move the arc node aa from one list to another.

〈Update aa and bb for a new series bond 32 〉 ≡
{

if (extraverbose) printf (" %d=series(%d,%d) between %s and %s\n", bn (c), bn (a), bn (b),
aa~ tip~name , bb~ tip~name);

oooo , ee = mate (bb), aa~prev = ee~prev , aa~next = ee~next ;
oo , aa~prev~next = aa~next~prev = aa ;
oo ,mate (aa)~ tip = bb~ tip ;
}

This code is used in section 31.

33. 〈Update aa and bb for a new parallel bond 33 〉 ≡
{

oo , u = aa~ tip , v = mate (aa)~ tip ;
if (extraverbose)

printf (" %d=parallel(%d,%d) between %s and %s\n", bn (c), bn (a), bn (b), u~name , v~name);
oooo , delete (bb), delete (mate (bb)), u~deg −−, v~deg −−;
}

This code is used in section 31.

34. 〈Build leaf with leaf 34 〉 ≡
{

oooo , a~ lsib = a~rsib = b, b~ lsib = b~rsib = a;
o, c~ lchild = a;
ooo , c~right = action~right , c~right~ left = c;
oo , c~ left = action , action~right = c;
o, c~scope = c;
}

This code is used in section 31.

35. 〈Build leaf with branch 35 〉 ≡
{

if (bt 6= t) {
oooo , a~ lsib = a~rsib = b, b~ lsib = b~rsib = a;
ooo , c~right = b, c~scope = b~scope ;

} else {
oooo , a~rsib = b~ lchild , a~ lsib = b~ lchild~ lsib ;
oo , a~rsib~ lsib = a~ lsib~rsib = a;
oooo , c~right = b~right , c~scope = (b~scope ≡ b ? c : b~scope);

}
o, c~ lchild = a;
oo , c~ left = b~ left ;
oo , c~ left~right = c~right~ left = c;
}

This code is used in section 31.

18 CONSTRUCTION GRAYSPSPAN §36

36. 〈Build branch with leaf 36 〉 ≡
{

if (at 6= t) {
oooo , a~ lsib = a~rsib = b, b~ lsib = b~rsib = a;
oooo , c~right = c~ lchild = a, c~scope = a~scope ;

} else {
oooo , b~rsib = a~ lchild , b~ lsib = a~ lchild~ lsib ;
oo , b~rsib~ lsib = b~ lsib~rsib = b;
oooo , c~right = a~right , c~ lchild = a~ lchild ;
oo , c~scope = (a~scope ≡ a ? c : a~scope);

}
oo , c~ left = a~ left ;
oo , c~ left~right = c~right~ left = c;
}

This code is used in section 31.

§37 GRAYSPSPAN CONSTRUCTION 19

37. 〈Build branch with branch 37 〉 ≡
{

ooo , d = a~scope , c~rsave = d~right ;
oooo , a~ left~right = d~right , d~right~ left = a~ left ;
ooo , c~ left = b~ left , c~ left~right = c;
if (at 6= t) {

oo , c~ lsave = a~ left ;
ooo , c~ lchild = a, c~right = a, a~ left = c;
if (bt 6= t) {

oooo , a~ lsib = a~rsib = b, b~ lsib = b~rsib = a;
oo , d~right = b, b~ left = d;
ooo , c~scope = b~scope ;

} else {
oooo , a~rsib = b~ lchild , a~ lsib = b~ lchild~ lsib ;
oo , a~ lsib~rsib = a~rsib~ lsib = a;
ooo , d~right = b~right , d~right~ left = d;
oo , c~scope = (b~scope ≡ b ? d : b~scope);

}
} else if (bt 6= t) {

ooo , c~ lchild = b~rsib = a~ lchild ;
oo , b~ lsib = a~ lchild~ lsib ;
oo , b~ lsib~rsib = b~rsib~ lsib = b;
if (d ≡ a) o, c~right = b;
else oooo , c~right = a~right , d~right = b, b~ left = d;
o, c~right~ left = c;
oo , c~scope = b~scope ;

} else {
if (d ≡ a) oo , c~right = b~right ;
else ooooo , c~right = a~right , d~right = b~right , b~right~ left = d;
o, c~right~ left = c;
oo , c~ lchild = a~ lchild ;
oooo , d = a~ lchild~ lsib , a~ lchild~ lsib = b~ lchild~ lsib ;
ooo , b~ lchild~ lsib~rsib = a~ lchild , b~ lchild~ lsib = d, d~rsib = b~ lchild ;
oo , c~scope = (b~scope ≡ b ? (a~scope ≡ a ? c : a~scope) : b~scope);
}

}
This code is used in section 31.

20 CONSTRUCTION GRAYSPSPAN §38

38. A much simpler subroutine is used to record the fact that one or two bonds are temporarily being
deleted from the graph.

〈Subroutines 9 〉 +≡
void deletebonds (Arc ∗aa ,Arc ∗bb)
{

register Bond ∗a, ∗c;
register Vertex ∗u, ∗v;
register Arc ∗ee ;

bondcount ++, c = bondbase + bondcount ;
ooo , c~ typ = 2, c~ lhist = aa , c~rhist = bb ;
oo , u = mate (aa)~ tip , a = (Bond ∗) aa~bond ;
o, v = (bb ? mate (bb)~ tip : aa~ tip);
if (extraverbose) printf (" %d: deleting bond %d between %s and %s%s\n", bn (c), bn (a), u~name ,

bb ? "" : "endpoint ", v~name);
oo , delete (aa), u~deg −−;
if (bb) oo , delete (bb), v~deg −−;
}

§39 GRAYSPSPAN DECONSTRUCTION 21

39. Deconstruction. Every change to the graph after we first reach level 1 must be undone again
before we finish the program. But fortunately the changes are always made in a strictly last-done-first-
undone manner. Therefore we can use the “dancing links” principle to exploit of the fact that pointers
within deleted structures still retain the values to which they should be restored.

Thus I could write unbuildbond by just looking at the code for buildbond and unchanging everything that
it changed. (These remarks apply only to changes to prev , next , bond , lchild , lsib , rsib , scope , left , and
right , which govern the state of the bonds. The val , des , done , up , and down fields vary dynamically with
the spanning tree and should not be restored blindly. The focus fields always point to self when construction
or deconstruction is being done.)

(The programming task still was tedious and error-prone though; sigh.)

〈Subroutines 9 〉 +≡
void unbuildbond ()
{

register Bond ∗a, ∗b, ∗c, ∗d;
register int t, at , bt ;
register Vertex ∗u, ∗v;
register Arc ∗aa , ∗bb , ∗ee ; /∗ used by the undelete macro ∗/
c = bondbase + bondcount , bondcount −−;
ooo , t = c~ typ , aa = c~ lhist , bb = c~rhist ;
if (t > 1) 〈Restore one or two deleted bonds and return 46 〉
oo , a = (Bond ∗) mate (bb)~bond , b = (Bond ∗) bb~bond ;
o,mate (bb)~bond = (Arc ∗) b;
oo , aa~bond = mate (aa)~bond = (Arc ∗) a;
oo , at = a~ typ , bt = b~ typ ;
if (t) 〈Downdate aa and bb from an old series bond 40 〉
else 〈Downdate aa and bb from an old parallel bond 41 〉;
if (isleaf (a))

if (isleaf (b)) 〈Unbuild leaf with leaf 42 〉
else 〈Unbuild leaf with branch 43 〉

else if (isleaf (b)) 〈Unbuild branch with leaf 44 〉
else 〈Unbuild branch with branch 45 〉;
if (c~val) oooo , c~up~down = c~down , c~down~up = c~up ;
if (a~val) ooooo , a~up = tree~up , tree~up = a~up~down = a, a~down = tree ;
if (b~val) ooooo , b~up = tree~up , tree~up = b~up~down = b, b~down = tree ;
}

40. 〈Downdate aa and bb from an old series bond 40 〉 ≡
{

undelete (mate (bb)); /∗ now ee = mate (bb) ∗/
oo , v = ee~ tip ,mate (aa)~ tip = v, v~mark = 0;
ooo , aa~prev = v~arcs , aa~next = bb ;
if (extraverbose) printf (" removing %d=series(%d,%d) between %s and %s\n", bn (c), bn (a), bn (b),

aa~ tip~name , bb~ tip~name);
}

This code is used in section 39.

22 DECONSTRUCTION GRAYSPSPAN §41

41. 〈Downdate aa and bb from an old parallel bond 41 〉 ≡
{

oo , u = aa~ tip , v = mate (aa)~ tip ;
oooo , undelete (mate (bb)), undelete (bb), u~deg ++, v~deg ++;
if (extraverbose) printf (" removing %d=parallel(%d,%d) between %s and %s\n", bn (c), bn (a),

bn (b), u~name , v~name);
}

This code is used in section 39.

42. Sibling links of bonds at the top level are never examined. This program nullifies them only to be tidy
and possibly catch errors, but no mems are counted.

〈Unbuild leaf with leaf 42 〉 ≡
{
a~ lsib = a~rsib = b~ lsib = b~rsib = Λ;
ooo , action~right = c~right , action~right~ left = action ;
}

This code is used in section 39.

43. The nonobvious part here is the calculation of des when a disabled bond reenters the picture.

〈Unbuild leaf with branch 43 〉 ≡
{

if (bt 6= t) {
a~ lsib = a~rsib = b~ lsib = b~rsib = Λ;
oo , b~ left = c~ left ;

} else {
if (o, c~des ≡ a) o, b~val = bt ;
else oo , b~val = c~val ;
if (b~val 6= bt) b~des = c~des ; /∗ mem is charged below ∗/
oooo , b~ lchild~ lsib = a~ lsib , a~ lsib~rsib = b~ lchild ;
ooo , b~done = b~des~ lsib ;
a~ lsib = a~rsib = Λ;
oo , b~right~ left = b;

}
oo , b~ left~right = b;
}

This code is used in section 39.

§44 GRAYSPSPAN DECONSTRUCTION 23

44. 〈Unbuild branch with leaf 44 〉 ≡
{

if (at 6= t) {
a~ lsib = a~rsib = b~ lsib = b~rsib = Λ;
oo , a~ left = c~ left ;

} else {
if (o, c~des ≡ b) o, a~val = at ;
else oo , a~val = c~val ;
if (a~val 6= at) a~des = c~des ;
oooo , a~ lchild~ lsib = b~ lsib , b~ lsib~rsib = a~ lchild ;
ooo , a~done = a~des~ lsib ;
b~rsib = b~ lsib = Λ;
oo , a~right~ left = a;

}
oo , a~ left~right = a;
}

This code is used in section 39.

24 DECONSTRUCTION GRAYSPSPAN §45

45. If we previously combined two series bonds into a larger series bond, or two parallel bonds into a larger
parallel bond, we may have to search through the children in order to figure out where c~des lies.

〈Unbuild branch with branch 45 〉 ≡
{

ooo , d = a~scope , d~right = c~rsave ;
if (at 6= t) {

oo , a~ left = c~ lsave ;
if (bt 6= t) {

a~ lsib = a~rsib = b~ lsib = b~rsib = Λ;
ooo , b~ left = c~ left , b~ left~right = b;

} else {
if (o, c~des ≡ a) o, b~val = bt ;
else oo , b~val = c~val ;
if (b~val 6= bt) b~des = c~des ;
oooo , b~ lchild~ lsib = a~ lsib , a~ lsib~rsib = b~ lchild ;
ooo , b~done = b~des~ lsib ;
oooo , b~ left~right = b~right~ left = b;
a~ lsib = a~rsib = Λ;

}
} else {

if (d 6= a) oo , a~right~ left = a;
if (bt 6= t) {

if (o, c~des ≡ b) o, a~val = at ;
else oo , a~val = c~val ;
if (a~val 6= at) a~des = c~des ;
oooo , a~ lchild~ lsib = b~ lsib , b~ lsib~rsib = a~ lchild ;
ooo , a~done = a~des~ lsib ;
oooo , b~ left = c~ left , b~ left~right = b;
b~ lsib = b~rsib = Λ;

} else {
if (c~val ≡ t) oo , a~val = b~val = t;
else for (ooo , d = c~des ; ; o, d = d~ lsib)

if (d ≡ a~ lchild) {
ooo , a~val = 1− t, b~val = t, a~des = c~des ; break;

} else if (d ≡ b~ lchild) {
ooo , b~val = 1− t, a~val = t, b~des = c~des ; break;

}
oooooo , d = a~ lchild~ lsib , a~ lchild~ lsib = b~ lchild~ lsib , b~ lchild~ lsib = d;
oo , d~rsib = b~ lchild , a~ lchild~ lsib~rsib = a~ lchild ;
ooooo , a~done = a~des~ lsib , b~done = b~des~ lsib ;
d = a~scope ;
oooo , b~ left~right = b~right~ left = b;

}
}
oooo , a~ left~right = a, d~right~ left = d;

}
This code is used in section 39.

§46 GRAYSPSPAN DECONSTRUCTION 25

46. 〈Restore one or two deleted bonds and return 46 〉 ≡
{

oo , u = mate (aa)~ tip , a = (Bond ∗) aa~bond ;
o, v = (bb ? mate (bb)~ tip : aa~ tip);
if (bb) oo , undelete (bb), v~deg ++;
else v~mark = 0; /∗ for debugging, remove its negative mark ∗/
oo , undelete (aa), u~deg ++;
if (extraverbose) printf (" restoring bond %d between %s and %s%s\n", bn (a), u~name ,

bb ? "" : "endpoint ", v~name);
if (a~val) ooooo , a~up = tree~up , tree~up = a~up~down = a, a~down = tree ;
return;

}
This code is used in section 39.

26 PULSING THE ACTION LIST GRAYSPSPAN §47

47. Pulsing the action list. OK, all the hard stuff is done; only one more piece of the program needs
to be put in place. And from SPSPAN, we know how to do the remaining job nicely.

#define easy (b) o, b~ typ ≡ b~val

〈Do the SPSPAN algorithm on the action list 47 〉 ≡
while (1) {

register Bond ∗q, ∗l, ∗r;

for (o, r = action~ left ; easy (r); o, r = r~ left) ; /∗ find the rightmost uneasy node ∗/
oo , b = r~ focus , r~ focus = r; /∗ steps (1) and (3) ∗/
if (b ≡ action) break;
〈Change b~des and visit a new spanning tree 49 〉;
if (o, b~des ≡ b~done) 〈Passivate b 48 〉;
}

This code is used in section 25.

48. All uneasy nodes to the right of b are now active, and l is the former b~des .

〈Passivate b 48 〉 ≡
{
o, b~done = l;
for (o, l = b~ left ; easy (l); o, l = l~ left) ; /∗ find the first uneasy node to the left ∗/
ooo , b~ focus = l~ focus , l~ focus = l;
}

This code is used in section 47.

49. If the user has asked for verbose output, we print only the edge that has entered the spanning tree
and the edge that has left.

〈Change b~des and visit a new spanning tree 49 〉 ≡
count ++;
oo , l = b~des , r = l~rsib ;
o, k = b~val ; /∗ k = l~val 6= r~val ∗/
for (q = l; ; o, q = q~des) {
o, q~val = k ⊕ 1;
if (isleaf (q)) break;
}
if (verbose) printf ("%.15g: %c%d", count , k ? ’−’ : ’+’, bn (q));
for (q = r; ; o, q = q~des) {
o, q~val = k;
if (isleaf (q)) break;
}
if (verbose) {

printf ("%c%d", k ? ’+’ : ’−’, bn (q));
if (extraverbose) {

printf (" (");
for (q = bondbase + 1; q ≤ topleaf ; q++)

if (q~val) printf (" %d", bn (q));
printf (")\n");

} else printf ("\n");
}
o, b~des = r; /∗ “visiting” ∗/

This code is used in section 47.

§50 GRAYSPSPAN PULSING THE ACTION LIST 27

50. Note: I haven’t proved the efficiency claim made in the opening paragraph. I don’t have time to write
the proof down now, sorry. But it is based on the fact that a connected graph on n vertices with all vertices
of degree 3 or more always has more than 2n/2 spanning trees. Therefore the time that is spent checking for
bridges, etc., which is polynomial in the number of vertices, is asymptotically less than the time needed to
spew out the trees.

28 INDEX GRAYSPSPAN §51

51. Index.

a: 16, 31, 38, 39.
aa : 19, 25, 31, 32, 33, 38, 39, 40, 41, 46.
action : 6, 11, 15, 34, 42, 47.
Arc: 3, 5, 9, 12, 18, 19, 31, 38, 39.
arcs : 8, 9, 14, 18, 20, 22, 23, 24, 26, 27, 40.
argc : 1, 2.
argv : 1, 2.
at : 31, 36, 37, 39, 44, 45.
av : 31.
b: 3, 10, 11, 12, 16, 31, 39.
bb : 31, 32, 33, 38, 39, 40, 41, 46.
bfs : 27, 28.
bn : 8, 10, 14, 15, 16, 17, 25, 30, 32, 33, 38,

40, 41, 46, 49.
bond : 8, 14, 18, 19, 22, 23, 25, 28, 31, 38, 39, 46.
Bond: 3, 5, 6, 7, 8, 10, 11, 12, 14, 16, 18, 22,

23, 25, 28, 31, 38, 39, 46, 47.
bond struct: 5.
bondbase : 6, 7, 8, 11, 14, 16, 18, 19, 30, 31,

38, 39, 49.
bondcount : 7, 14, 16, 18, 19, 29, 31, 38, 39.
bonds : 19, 29.
bondsanity : 15, 16.
bt : 31, 35, 37, 39, 43, 45.
bugs : 12, 14, 15, 16, 17.
buildbond : 31, 39.
bv : 31.
c: 31, 38, 39.
calloc : 6.
count : 1, 30, 49.
d: 31, 39.
deg : 8, 14, 18, 19, 21, 22, 24, 26, 33, 38, 41, 46.
delete : 8, 24, 31, 33, 38.
deletebonds : 22, 28, 38.
des : 5, 10, 16, 30, 31, 39, 43, 44, 45, 47, 48, 49.
done : 5, 10, 16, 31, 39, 43, 44, 45, 47, 48.
down : 5, 6, 11, 15, 17, 18, 19, 22, 25, 31, 39, 46.
dup : 20.
e: 3, 9, 12.
easy : 47, 48.
ebn : 8, 9, 10, 24, 26, 27.
edge trick : 8, 18.
ee : 3, 8, 24, 26, 31, 32, 38, 39, 40.
exit : 1, 2, 18, 22, 23, 30.
extent : 16.
extraverbose : 1, 19, 24, 26, 27, 30, 32, 33, 38,

40, 41, 46, 49.
f : 3.
ff : 3.
flags : 12, 17.
focus : 5, 6, 10, 31, 39, 47, 48.

fprintf : 2, 18, 22, 23, 30.
g: 3.
gb virgin arc : 18.
gg : 1, 2, 9, 13, 14.
Graph: 1, 3.
id : 18.
inbond : 7, 17, 19, 22, 23, 30.
isleaf : 6, 10, 15, 16, 30, 31, 39, 49.
j: 16.
James : 7.
k: 3, 12, 16.
l: 3, 47.
lchild : 5, 10, 16, 34, 35, 36, 37, 39, 43, 44, 45.
left : 5, 6, 15, 16, 34, 35, 36, 37, 39, 42, 43,

44, 45, 47, 48.
lhist : 5, 10, 14, 18, 19, 31, 38, 39.
looky : 18.
lsave : 5, 37, 45.
lsib : 5, 10, 15, 16, 31, 34, 35, 36, 37, 39, 42,

43, 44, 45.
m: 3.
main : 1.
makeparallel : 20, 31.
makeseries : 23, 31.
mark : 9, 13, 14, 18, 19, 20, 21, 22, 23, 24, 26,

27, 28, 40, 46.
mate : 8, 14, 18, 22, 24, 26, 27, 28, 31, 32, 33,

38, 39, 40, 41, 46.
mems : 1.
n: 3, 12.
name : 9, 14, 18, 24, 26, 32, 33, 38, 40, 41, 46.
next : 8, 9, 14, 18, 20, 22, 23, 24, 26, 27, 32, 39, 40.
o: 1.
oo : 1, 19, 20, 22, 23, 24, 25, 26, 27, 28, 31,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43,
44, 45, 46, 47, 49.

ooo : 1, 18, 22, 24, 26, 34, 35, 37, 38, 39, 40,
42, 43, 44, 45, 48.

oooo : 1, 8, 19, 22, 24, 26, 28, 31, 32, 33, 34, 35,
36, 37, 39, 41, 43, 44, 45.

ooooo : 1, 26, 31, 37, 39, 45, 46.
oooooo : 1, 23, 25, 45.
outbond : 7, 28, 30.
panic code : 2.
prev : 8, 14, 18, 24, 26, 32, 39, 40.
printaction : 11.
printbond : 10, 11.
printf : 1, 9, 10, 14, 15, 16, 17, 18, 19, 24, 25, 26,

27, 30, 32, 33, 38, 40, 41, 46, 49.
printgraph : 9.
printleaves : 11.

§51 GRAYSPSPAN INDEX 29

printtree : 11.
q: 47.
r: 47.
reduce : 19, 28.
restore graph : 2.
rhist : 5, 10, 31, 38, 39.
right : 5, 6, 11, 15, 16, 34, 35, 36, 37, 39, 42,

43, 44, 45.
rsave : 5, 37, 45.
rsib : 5, 10, 15, 16, 34, 35, 36, 37, 39, 42, 43,

44, 45, 49.
sanitycheck : 12.
scope : 5, 10, 15, 16, 34, 35, 36, 37, 39, 45.
siz t: 8.
stack : 18, 19, 20, 22, 23, 24, 25, 28.
stderr : 2, 18, 22, 23, 30.
t: 31, 39.
tip : 8, 9, 14, 18, 20, 22, 23, 24, 26, 27, 28, 32,

33, 38, 40, 41, 46.
topleaf : 6, 7, 11, 18, 30, 49.
tree : 6, 11, 17, 18, 19, 25, 31, 39, 46.
treehead : 6, 7.
trivialgraph : 21, 25, 30.
typ : 5, 6, 10, 16, 31, 38, 39, 47.
u: 3, 12, 31, 38, 39.
unbuildbond : 29, 39.
undelete : 8, 26, 39, 40, 41, 46.
up : 5, 6, 15, 17, 18, 19, 22, 25, 31, 39, 46.
v: 3, 9, 12, 31, 38, 39.
val : 5, 10, 15, 16, 17, 18, 22, 23, 25, 30, 31, 39,

43, 44, 45, 46, 47, 49.
verbose : 1, 18, 25, 30, 49.
Vertex: 3, 9, 12, 31, 38, 39.
vertices : 9, 13, 18, 19, 25.
w: 3.
xargc : 1, 2.

30 NAMES OF THE SECTIONS GRAYSPSPAN

〈Allocate additional storage 6 〉 Used in section 2.

〈Build branch with branch 37 〉 Used in section 31.

〈Build branch with leaf 36 〉 Used in section 31.

〈Build leaf with branch 35 〉 Used in section 31.

〈Build leaf with leaf 34 〉 Used in section 31.

〈Change b~des and visit a new spanning tree 49 〉 Used in section 47.

〈Check the graph for validity and prepare it for action 18 〉 Used in section 2.

〈Declare the recursive routine bondsanity 16 〉 Used in section 12.

〈Do a sanity check on the action list 15 〉 Used in section 12.

〈Do a sanity check on the graph 13 〉 Used in section 12.

〈Do a sanity check on the tree list 17 〉 Used in section 12.

〈Do a sanity check on v’s bond list 14 〉 Used in section 13.

〈Do the SPSPAN algorithm on the action list 47 〉 Used in section 25.

〈Downdate aa and bb from an old parallel bond 41 〉 Used in section 39.

〈Downdate aa and bb from an old series bond 40 〉 Used in section 39.

〈Eliminate v, then goto trivialgraph if only one vertex is left 21 〉 Used in section 19.

〈Generate all spanning trees 25 〉 Used in section 1.

〈Global variables 7 〉 Used in section 1.

〈 If e is not a bridge, delete it, set outbond = e~bond , and goto reduce 27 〉 Used in section 25.

〈 Input the graph 2 〉 Used in section 1.

〈Local variables 3 〉 Used in section 1.

〈Nullify all bfs links, delete e, and goto reduce 28 〉 Used in section 27.

〈Obtain a new spanning tree by changing outbond and inbond 30 〉 Used in section 25.

〈Parallelize duplicate bonds from v 20 〉 Used in section 19.

〈Passivate b 48 〉 Used in section 47.

〈Reduce the graph until it’s trivial 19 〉 Used in section 25.

〈Require the bond from v 22 〉 Used in section 21.

〈Restore one or two deleted bonds and return 46 〉 Used in section 39.

〈Serialize the bonds from v 23 〉 Used in section 21.

〈Shrink bond e 24 〉 Used in section 19.

〈Subroutines 9, 10, 11, 12, 31, 38, 39 〉 Used in section 1.

〈Type definitions 5 〉 Used in section 1.

〈Unbuild branch with branch 45 〉 Used in section 39.

〈Unbuild branch with leaf 44 〉 Used in section 39.

〈Unbuild leaf with branch 43 〉 Used in section 39.

〈Unbuild leaf with leaf 42 〉 Used in section 39.

〈Undo all changes to the graph since entering level l 29 〉 Used in section 25.

〈Unshrink bond e 26 〉 Used in section 25.

〈Update aa and bb for a new parallel bond 33 〉 Used in section 31.

〈Update aa and bb for a new series bond 32 〉 Used in section 31.

GRAYSPSPAN

Section Page
Introduction . 1 1
The method and its data structures . 4 3
Diagnostic routines . 9 5
Graph preparation . 18 9
Reduction . 19 10
The main algorithm . 25 13
Construction . 31 16
Deconstruction . 39 21
Pulsing the action list . 47 26
Index . 51 28

	Introduction
	The method and its data structures
	Diagnostic routines
	Graph preparation
	Reduction
	The main algorithm
	Construction
	Deconstruction
	Pulsing the action list
	Index
	Names of the sections
	Allocate additional storage
	Build branch with branch
	Build branch with leaf
	Build leaf with branch
	Build leaf with leaf
	Change b->des and visit a new spanning tree
	Check the graph for validity and prepare it for action
	Declare the recursive routine bondsanity
	Do a sanity check on the action list
	Do a sanity check on the graph
	Do a sanity check on the tree list
	Do a sanity check on v's bond list
	Do the SPSPAN algorithm on the action list
	Downdate aa and bb from an old parallel bond
	Downdate aa and bb from an old series bond
	Eliminate v, then goto trivialgraph if only one vertex is left
	Generate all spanning trees
	Global variables
	If e is not a bridge, delete it, set outbond=e->bond, and goto reduce
	Input the graph
	Local variables
	Nullify all bfs links, delete e, and goto reduce
	Obtain a new spanning tree by changing outbond and inbond
	Parallelize duplicate bonds from v
	Passivate b
	Reduce the graph until it's trivial
	Require the bond from v
	Restore one or two deleted bonds and return
	Serialize the bonds from v
	Shrink bond e
	Subroutines
	Type definitions
	Unbuild branch with branch
	Unbuild branch with leaf
	Unbuild leaf with branch
	Unbuild leaf with leaf
	Undo all changes to the graph since entering level l
	Unshrink bond e
	Update aa and bb for a new parallel bond
	Update aa and bb for a new series bond

