81 GRAPH-SIG-VO0 INTRO 1

1. Imntro. OK, you've heard about SIGGRAPH; what’s this?

GRAPH-SIG is an experimental program to find potential equivalence classes in automorphism testing.
Given a graph G and a vertex vy, we compute “signatures” of all vertices such that, if there’s an automorphism
that fixes vy and takes v to v’, then v and v’ will have the same signature.

I plan to generalize the idea, but in this test case I just proceed as follows: First I compute level 0
signatures, which are just the distances from vg. Then, given level k signatures o, I compute signatures
ok+1(v) =TI, (¥ — ox(u)), where z is a random integer and the multiplication is done mod 254. We keep
going until reaching a round where no class is further refined.

My tentative name for these signatures is “lookahead invariants.”

(Notes for the future: If there’s an automorphism that takes vy into v, then the multiset of signatures
computed with respect to vy will be the same as the multiset computed with respect to v(, after each round.
Also we can generalize to automorphisms that fix k& vertices, by defining level 0 signatures as the ordered
sequence of distances from wvg, ..., vg—1. Universal hashing schemes conveniently map such an ordered
sequence into a single number.)

#define mazn 100 /* upper bound on vertices in the graph */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "gb_graph.h"

#include "gb_save.h"

#include "gb_flip.h"
long sg[mazn]; /* new signatures found in current class */
Vertex xhd[mazn], xtl[mazn]; /* subdivisions of current class */

main (int argc, char xargv|])
{
register int i, j, k, 7, change;
register Graph xg;
register Vertex xu, *v;
register Arc xa, xb;
register long z, s;
Vertex xv0, *prev, xhead;
{Process the command line 2);
(Make the initial signatures 3);
for (change = 1,r =1; change; r++) {
change = 0;
(Do round r 5);
}
}

2 INTRO GRAPH-SIG-VO §2

2. (Process the command line 2) =

if (arge #3) {
forintf (stderr, "Usage: %hs foo.gb,v0\n", argv[0]);
exit (—1);

}

g = restore_graph (argv[1]);

if (—g) {
forintf (stderr, "I couldn’t reconstruct graph,¥%s!\n", argv[l]);
exit (—2);

}

if (g-n > mazn) {
forintf (stderr, "Recompile me:_ g->n=%1d, maxn=Y%d!\n", g-n, mazn);
exit (—3);

gb_init_rand (0); /* the seed doesn’t matter much =/

for (v = g~vertices; v < g~vertices + g-n; v++)
if (stremp(v-name, argv[2]) = 0) break;

if (v = gvertices + g-n) {
forintf (stderr, "I can’t,find a vertex named, ‘%s’!\n", argv[2]);
exit(—9);

}

v0 = v;

This code is used in section 1.

3. Vertices with the same signature are linked cyclically. As mentioned above, we start by simply computing
distances from vg.

#define sig w.l /* signature of a vertex */
#define link u.V /* link field in a circular list */
#define tag v.1 /* to what extent have we processed the vertex? */

(Make the initial signatures 3) =
printf ("Initial round:\n");

for (v = g~vertices; v < g~vertices + g-n; v++) vsig = —1,v~tag = 0;
v0-sig = 0, v0-link = v0,k =1,v =v0;
while (v) {

prev = head = A;
while (1) {
printf ("Uhsudist %ld\n", v-name, v-sig);
(Set signature of all v’s unseen neighbors to k 4);
v-tag = k;
v = v-link;
if (v~tag) break;
}
if (prev = A) break; /x all vertices reachable from vy have been seen */
head-link = prev; /* close the cycle x/
v = prev, k++;

}

This code is used in section 1.

84 GRAPH-SIG-VO0 INTRO 3

4. (Set signature of all v’s unseen neighbors to k 4) =
for (a = v~arcs; a; a = a~next) {
u = a~tip;
if (u~sig < 0) {
u-sig = k;
if (prev = A) head = u;
else u~link = prev;
prev = u;
}
}

This code is used in section 3.

5. Now comes the fun part. As we pass from o,_1 to o,, each equivalence class becomes one or more
classes.

#define oldsig z.I

(Do round r 5) =
printf ("Round, %d: \n", r);
for (v = gvertices; v < g-vertices + g-n; v++) v~oldsig = v-sig;
k++; /* k is a unique stamp to identify this round */
x = (gb_next_-rand() < 1) + 1; /* pseudorandom number used for new signatures */
for (v = g~vertices; v < g~vertices + g-n; v++)
if (v-tag > 0) {
if (v-tag = k) continue;
if (v-link =v) {

printf ("u%hsuisufixed\n", v-name); /x class of size 1 x/
v-tag = —k; /* we needn’t pursue it further */
continue;

}
for (j =0; votag #k; v=u) {
u = v-link;
(Compute s = 0,.(v) 6);
printf ("uhsuhlx\n", v-name, s);
V-Stg = S;
for (i =0,sg[j] = s; sqg[i] # s; i++) ;
if (i=j) hdlj) =tlj] = v,j++; /* a new cyclic list begins */
else v-link = tl[i], tl[i] = v; /* continue building an existing list */
v~tag = k;
}
for (i =0; i < j; i++) hd[i]~link = ¢[i]; /* complete the cycles */
if (j > 1) change = 1;

This code is used in section 1.
6. (Compute s =0,(v) 6) =

for (s = 1,a = v~arcs; a; a = a~next) s x= x — a~tip~oldsig;

This code is used in section 5.

4 INDEX GRAPH-SIG-VO §7

7. Index.

a: 1.
Arc: 1
arcs: 4,
arge: 1
argv: 1
b: 1.

change: 1, 5.
exit: 2.
forintf: 2.

g 1.
gb_init_rand: 2.
gb_next_rand: 5.
Graph: 1.
hd: 1, 5.
head: 1, 3, 4.
i
VE
k: 1.
link: 3, 4, 5.
main: 1.
mazn: 1, 2.
name: 2, 3, 5.
next: 4, 6.
oldsig: 5, 6.
prev: 1, 3, 4.
printf: 3, 5.

r: 1.
restore_graph: 2.
s 1.

sg: 1, 5.

stg: 3, 4, 5.
stderr: 2.
stremp: 2.
tag: 3, 5.
tip: 4, 6.
t: 1, 5.
u:
v: 1
Vertex: 1.
vertices: 2, 3, 5.
v0: 1, 2, 3.

x: 1.

[

(20

==

GRAPH-SIG-V0

{Compute s = 0,.(v) 6) Used in section 5.

(Do round r 5> Used in section 1.

(Make the initial signatures 3) Used in section 1.
(Process the command line 2) Used in section 1.
(Set signature of all v’s unseen neighbors to k 4)

Used in section 3.

NAMES OF THE SECTIONS

5

GRAPH-SIG-VO

Section Page

	Intro
	Index
	Names of the sections
	Compute s=_r(v)
	Do round r
	Make the initial signatures
	Process the command line
	Set signature of all v's unseen neighbors to k

