
§1 GRACEFUL-COUNT INTRO 1

1. Intro. Here’s an easy way to calculate the number of graceful labelings that have m edges and n
nonisolated vertices, for 0 ≤ n ≤ m + 1, given m > 1. I subdivide into connected and nonconnected graphs.

The idea is to run through all m-tuples (x1, . . . , xm) with 0 ≤ xj ≤ m− j; edge j will go from the vertex
labeled xj to the vertex labeled xj + j.

I consider only the labelings in which xm−1 = 1; in other words, I assume that edge m − 1 runs from
1 to m. (These are in one-to-one correspondence with the labelings for which that edge runs from 0 to m−1.)
But I multiply all the answers by 2; hence the total over all n is exactly m!.

I could go through those m-tuples in some sort of Gray code order, with only one xj changing at a time.
But I’m not trying to be tricky or extremely efficient. So I simply use reverse colexicographic order. That is,
for each choice of (xj+1, . . . , xm), I run through the possibilities for xj from m− j to 0, in decreasing order.

#define maxm 20 /∗ this is plenty big, because 20! is a 61-bit number ∗/

2. I do, however, want to have some fun with data structures.
Every vertex is represented by its label. Vertex v, for 0 ≤ v ≤ m, is isolated if and only if label v has

not been used in any of the edges. (In particular, vertices 0, 1, and m are never isolated, because of the
assumption above.)

It’s easy to maintain, for each vertex, a linked list of all its neighbors. These lists are stacks, since they
change in first-in-last-out fashion.

It’s also easy to maintain a dynamic union-find structure, because of the first-in-last-out behavior of this
algorithm.

3. OK, let’s get going.

#include <stdio.h>

#include <stdlib.h>

int mm ; /∗ command-line parameter ∗/
〈Global variables 15 〉;
main (int argc , char ∗argv [])
{

register j, k, l,m;

〈Process the command line 4 〉;
〈 Initialize to (m− 1, . . . , 2, 1, 0) 7 〉;
while (1) {
〈Study the current graph 16 〉;
〈Move to the next m-tuple, or goto done 5 〉;

}
done : 〈Print the stats 17 〉;
}

4. 〈Process the command line 4 〉 ≡
if (argc 6= 2 ∨ sscanf (argv [1], "%d",&mm) 6= 1) {
fprintf (stderr , "Usage: %s m\n", argv [0]);
exit (−1);
}
m = mm ;
if (m < 2 ∨m > maxm) {
fprintf (stderr , "Sorry, m must be between 2 and %d!\n",maxm);
exit (−2);
}

This code is used in section 3.

2 INTRO GRACEFUL-COUNT §5

5. 〈Move to the next m-tuple, or goto done 5 〉 ≡
for (j = 1; x[j] ≡ 0; j++) {
〈Delete the edge from x[j] to x[j] + j 9 〉;
}
if (j ≡ m− 1) goto done ;
〈Delete the edge from x[j] to x[j] + j 9 〉;
x[j]−−;
〈 Insert an edge from x[j] to x[j] + j 8 〉;
for (j−−; j; j−−) {
x[j] = m− j;
〈 Insert an edge from x[j] to x[j] + j 8 〉;
}

This code is used in section 3.

§6 GRACEFUL-COUNT GRACEFUL STRUCTURES 3

6. Graceful structures. An unusual — indeed, somewhat amazing — data structure works well with
graceful graphs.

Suppose v has neighbors w1, . . . , wt. Let fv(w) = w− v, if w > v; fv(w) = m+ v−w, if w < v. Then we
set arcs [v] = f(w1), or 0 if t = 0; link [f(wj)] = f(wj+1) for 1 ≤ j < t; and link [f(wt)] = 0.

(Think about it. If 0 < k ≤ m, we use link [k] only for an arc from v to v + k for some v. If m < k ≤ 2m,
we use link [k] only for an arc from v to v− (k−m) for some v. In either case at most one such arc is present.
Thus all of the memory for link storage is preallocated; we don’t need a list of available slots.)

7. We silently use the facts that arcs [v] is initially 0 for all v, and active = 0. But the x and link arrays
needn’t be initialized (I mean, everything would work fine if they were initially garbage).

〈 Initialize to (m− 1, . . . , 2, 1, 0) 7 〉 ≡
〈 Initialize the union/find structures 11 〉;
for (j = m; j; j−−) {
x[j] = m− j;
〈 Insert an edge from x[j] to x[j] + j 8 〉;
}

This code is used in section 3.

8. 〈 Insert an edge from x[j] to x[j] + j 8 〉 ≡
{

register int p, u, v, uu , vv ;

u = x[j];
v = u + j;
〈Do a union operation u ≡ v 12 〉;
p = arcs [u];
if (¬p) active++;
link [j] = p, arcs [u] = j;
p = arcs [v];
if (¬p) active++;
link [m + j] = p, arcs [v] = m + j;
}

This code is used in sections 5 and 7.

9. 〈Delete the edge from x[j] to x[j] + j 9 〉 ≡
{

register int p, u, v, uu , vv ;

u = x[j];
v = u + j;
p = link [m + j]; /∗ at this point arcs [v] = m + j ∗/
arcs [v] = p;
if (¬p) active−−;
p = link [j]; /∗ at this point arcs [u] = j ∗/
arcs [u] = p;
if (¬p) active−−;
〈Undo the union operation u ≡ v 14 〉;
}

This code is used in section 5.

4 GRACEFUL STRUCTURES GRACEFUL-COUNT §10

10. Two vertices are equivalent if they belong to the same component. We use a classic union-find data
structure to keep of equivalences: The invariant relations state that parent [v] < 0 and size [v] = c if v is the
root of an equivalence class of size c; otherwise parent [v] points to an equivalent vertex that is nearer the
root. These trees have at most lgm levels, because we never merge a tree of size c into a tree of size < c.

Variable l is the current number of edges. It is also, therefore, the number of union operations previously
done but not yet undone.

11. 〈 Initialize the union/find structures 11 〉 ≡
for (j = 0; j ≤ m; j++) parent [j] = −1, size [j] = 1; /∗ and l = 0 ∗/
l = 0;

This code is used in section 7.

12. 〈Do a union operation u ≡ v 12 〉 ≡
for (uu = u; parent [uu] ≥ 0; uu = parent [uu]) ;
for (vv = v; parent [vv] ≥ 0; vv = parent [vv]) ;
if (uu ≡ vv) move [l] = −1;
else if (size [uu] ≤ size [vv]) parent [uu] = vv ,move [l] = uu , size [vv] += size [uu];
else parent [vv] = uu ,move [l] = vv , size [uu] += size [vv];
l++;

This code is used in section 8.

13. Dynamic union-find is ridiculously easy because, as observed above, the operations are strictly last-in-
first-out. And we didn’t clobber the size information when merging two classes.

14. 〈Undo the union operation u ≡ v 14 〉 ≡
l−−;
uu = move [l];
if (uu ≥ 0) {
vv = parent [uu]; /∗ we have parent [vv] < 0 ∗/
size [vv] −= size [uu];
parent [uu] = −1;
}

This code is used in section 9.

15. 〈Global variables 15 〉 ≡
int active ; /∗ this many vertices are currently labeled (not isolated) ∗/
int parent [maxm + 1], size [maxm + 1],move [maxm]; /∗ the union-find structures ∗/
int arcs [maxm + 1]; /∗ the first neighbor of v ∗/
int link [2 ∗maxm + 1]; /∗ the next element in a list of neighbors ∗/
int x[maxm + 1]; /∗ the governing sequence of edge choices ∗/

See also section 18.

This code is used in section 3.

§16 GRACEFUL-COUNT DOING IT 5

16. Doing it. Now we’re ready to harvest the routines we’ve built up.
[A puzzle for the reader: Is parent [m] always negative at this point? Answer: Not if, say, m = 7 and

(x1, . . . , xm) = (5, 4, 3, 2, 0, 1, 0).]

〈Study the current graph 16 〉 ≡
for (k = parent [m]; parent [k] ≥ 0; k = parent [k]) ;
if (size [k] ≡ active) connected [active]++;
else disconnected [active]++;

This code is used in section 3.

17. 〈Print the stats 17 〉 ≡
printf ("Counts for %d edges:\n",m);
for (k = 2; k ≤ m + 1; k++)

if (connected [k] + disconnected [k]) {
printf ("on %5d vertices, %lld are connected, %lld not\n", k, 2 ∗ connected [k],

2 ∗ disconnected [k]);
totconnected += 2 ∗ connected [k], totdisconnected += 2 ∗ disconnected [k];

}
printf ("Altogether %lld connected and %lld not.\n", totconnected , totdisconnected);

This code is used in section 3.

18. 〈Global variables 15 〉 +≡
unsigned long long connected [maxm + 2], disconnected [maxm + 2];
unsigned long long totconnected , totdisconnected ;

6 INDEX GRACEFUL-COUNT §19

19. Index.

active : 7, 8, 9, 15, 16.
arcs : 6, 7, 8, 9, 15.
argc : 3, 4.
argv : 3, 4.
connected : 16, 17, 18.
disconnected : 16, 17, 18.
done : 3, 5.
exit : 4.
fprintf : 4.
j: 3.
k: 3.
l: 3.
link : 6, 7, 8, 9, 15.
m: 3.
main : 3.
maxm : 1, 4, 15, 18.
mm : 3, 4.
move : 12, 14, 15.
p: 8, 9.
parent : 10, 11, 12, 14, 15, 16.
printf : 17.
size : 10, 11, 12, 13, 14, 15, 16.
sscanf : 4.
stderr : 4.
totconnected : 17, 18.
totdisconnected : 17, 18.
u: 8, 9.
uu : 8, 9, 12, 14.
v: 8, 9.
vv : 8, 9, 12, 14.
x: 15.

GRACEFUL-COUNT NAMES OF THE SECTIONS 7

〈Delete the edge from x[j] to x[j] + j 9 〉 Used in section 5.

〈Do a union operation u ≡ v 12 〉 Used in section 8.

〈Global variables 15, 18 〉 Used in section 3.

〈 Initialize the union/find structures 11 〉 Used in section 7.

〈 Initialize to (m− 1, . . . , 2, 1, 0) 7 〉 Used in section 3.

〈 Insert an edge from x[j] to x[j] + j 8 〉 Used in sections 5 and 7.

〈Move to the next m-tuple, or goto done 5 〉 Used in section 3.

〈Print the stats 17 〉 Used in section 3.

〈Process the command line 4 〉 Used in section 3.

〈Study the current graph 16 〉 Used in section 3.

〈Undo the union operation u ≡ v 14 〉 Used in section 9.

GRACEFUL-COUNT

Section Page
Intro . 1 1
Graceful structures . 6 3
Doing it . 16 5
Index . 19 6

	Intro
	Graceful structures
	Doing it
	Index
	Names of the sections
	Delete the edge from x[j] to x[j]+j
	Do a union operation u==v
	Global variables
	Initialize the union/find structures
	Initialize to (m-1,,2,1,0)
	Insert an edge from x[j] to x[j]+j
	Move to the next m-tuple, or goto done
	Print the stats
	Process the command line
	Study the current graph
	Undo the union operation u==v

