81 GRACEFUL-COUNT-SMALL INTRO 1

1¥ Intro. Here'’s an easy way to calculate the number of graceful labelings that have m edges and at
most n nonisolated vertices, for 0 < n < m+1, given m and n. I subdivide into connected and nonconnected
graphs.

The idea is to run through all m-tuples (z1, ..., 2,) with 0 < z; < m — j; edge j will go from the vertex
labeled x; to the vertex labeled x; + j.

I consider only the labelings in which x,,_1 = 1; in other words, I assume that edge m — 1 runs from
1 to m. (These are in one-to-one correspondence with the labelings for which that edge runs from 0 to m—1.)
But I multiply all the answers by 2; hence the total over all n is exactly m/!.

I could go through those m-tuples in some sort of Gray code order, with only one z; changing at a time.
But I'm not trying to be tricky or extremely efficient. So I simply use reverse colexicographic order. That is,
for each choice of (z;41,...,Zm), I run through the possibilities for z; from m — j to 0, in decreasing order.

#define mazm 100

2. I do, however, want to have some fun with data structures.

Every vertex is represented by its label. Vertex v, for 0 < v < m, is isolated if and only if label v has
not been used in any of the edges. (In particular, vertices 0, 1, and m are never isolated, because of the
assumption above.)

It’s easy to maintain, for each vertex, a linked list of all its neighbors. These lists are stacks, since they
change in first-in-last-out fashion.

It’s also easy to maintain a dynamic union-find structure, because of the first-in-last-out behavior of this
algorithm.

3¥ OK, let’s get going.

#include <stdio.h>

#include <stdlib.h>
int mm,nn; /* command-line parameters */
(Global variables 15);

main (int argc, char xargv|])
{
register j,k,l,m,n;
{ Process the command line 4*);
(Initialize to (m —1,...,2,1,0) 7*);
while (1) {
(Study the current graph 16);
(Move to the next m-tuple, or goto done 5*);

}

done: (Print the stats 17*);

}

2 INTRO GRACEFUL-COUNT-SMALL
4* (Process the command line 4*) =
if (arge # 3V sscanf (argv[1],"%hd", &mm) # 1V sscanf (argv|[2],"%d", &nn) # 1) {
forintf (stderr, "Usage:hs.mun\n", argv[0]);
exit (—1);
¥
m=mm,n = nn;
if (m<2vm>mazm) {
forintf (stderr, "Sorry, m_must_be_ between 2 ,and %d!\n", mazm);
exit (—2);
¥
if (n>m+1) {
forintf (stderr, "Sorry, n must_be_less than m+1\n");
exit (—3);
¥

This code is used in section 3*.

5% (Move to the next m-tuple, or goto done 5*) =
for (j =1; z[j] = 0; j++) {
tryagain_inloop: (Delete the edge from z[j] to z[j] +j 9);

if (j=m—1) goto done;
tryagain: {Delete the edge from x[j] to z[j] +j 9);
[j]—;
(Insert an edge from z[j] to x[j] +j 8);
if (active >n) {
if (z[j] =0) goto tryagain_inloop;
else goto tryagain;
¥
for (j——; ji j—) {
zlj] =m - j;
(Insert an edge from z[j] to z[j] + 7 8);
if (active > n) goto tryagain;

}

This code is used in section 3*.

§4

86 GRACEFUL-COUNT-SMALL GRACEFUL STRUCTURES 3

6. Graceful structures. An unusual — indeed, somewhat amazing — data structure works well with
graceful graphs.

Suppose v has neighbors wy, ..., w;. Let f,(w) =w—wv, if w > v; fy(w) =m+v—w, if w<wv. Then we
set arcs[v] = f(w1), or 0 if ¢t = 0; link[f(w;)] = f(w,41) for 1 < j < t; and link[f(w;)] = 0.

(Think about it. If 0 < k < m, we use link[k] only for an arc from v to v+ k for some v. If m < k < 2m,
we use link [k] only for an arc from v to v — (k —m) for some v. In either case at most one such arc is present.
Thus all of the memory for link storage is preallocated; we don’t need a list of available slots.)

7¥ We silently use the facts that arcs[v] is initially 0 for all v, and active = 0. But the = and link arrays
needn’t be initialized (I mean, everything would work fine if they were initially garbage).
(Initialize to (m —1,...,2,1,0) 7*) =
(Initialize the union/find structures 11);
for (j =m; j; j—) {
zlj] = m — j;
(Insert an edge from z[j] to z[j] +j 8);
if (active > n) goto tryagain;

This code is used in section 3*.
8. (Inmsert an edge from z[j] to z[j] +j 8) =

register int p, u, v, uu, vv;

u = z[j];

v =u-+J;

(Do a union operation u = v 12);
p = arcs|ul;

if (—p) active++;

link[j] = p, arcs[u] = j;

p = arcs[v];

if (—p) active++;

link[m + j] = p, arcs[v] = m + j;

This code is used in sections 5* and 7*.
9. (Delete the edge from x[j] to z[j]+j 9) =

register int p, u, v, uu, vv;

u = zljl;

v=u+7;

p = link[m + jl; /x at this point arcs[v] =m +j x/
arcs[v] = p;

if (-p) active—;

p = link[j]; /* at this point arcs[u] = j */

arcs[u] = p;

if (-p) active—;
(Undo the union operation u = v 14);

}

This code is used in section 5%*.

4 GRACEFUL STRUCTURES GRACEFUL-COUNT-SMALL 810

10. Two vertices are equivalent if they belong to the same component. We use a classic union-find data
structure to keep of equivalences: The invariant relations state that parent[v] < 0 and size[v] = ¢ if v is the
root of an equivalence class of size ¢; otherwise parent[v] points to an equivalent vertex that is nearer the
root. These trees have at most 1gm levels, because we never merge a tree of size ¢ into a tree of size < c.

Variable [is the current number of edges. It is also, therefore, the number of union operations previously
done but not yet undone.

11. (Initialize the union/find structures 11) =
for (j=0; j <m; j++) parent[j] = —1, size[j] = 1; /x and =0 */
l=0;

This code is used in section 7*.

12. (Do a union operation u = v 12) =
for (vu = wu; parent[uu] > 0; uu = parent[uu]) ;
for (vv = v; parent[vv] > 0; vv = parent|vv]) ;
if (uu = vw) movell] = —1;
else if (size[uu] < size[vv]) parent[uu] = vv, movell] = uu, size[vv] += size|uu];
else parent[vv] = uu, movel[l] = vv, size[uu] += size[vv];
[++;

This code is used in section 8.

13. Dynamic union-find is ridiculously easy because, as observed above, the operations are strictly last-in-
first-out. And we didn’t clobber the size information when merging two classes.

14. (Undo the union operation u = v 14) =
l—;
uu = movelll;
if (wu >0) {
v = parent[uul; /* we have parent[vv] <0 %/
size[vv] —= size|uul;
parent [uu] = —1;

}

This code is used in section 9.

15. (Global variables 15) =
int active; /* this many vertices are currently labeled (not isolated) =/
int parent[maxzm + 1), size[mazm + 1], move [mazm]; /* the union-find structures x/
int arcs[mazm + 1]; /x the first neighbor of v */
int link|2 x mazm + 1]; /* the next element in a list of neighbors */
int z[mazm + 1J; /* the governing sequence of edge choices */
See also section 18.

This code is used in section 3*.

816 GRACEFUL-COUNT-SMALL DOING IT 5

16. Doing it. Now we're ready to harvest the routines we’ve built up.

[A puzzle for the reader: Is parent[m] always negative at this point? Answer: Not if, say, m = 7 and
(x1,...,2m) = (5,4,3,2,0,1,0).]
(Study the current graph 16) =

for (k = parent[m]; parent[k] > 0; k = parent[k]) ;

if (size[k] = active) connected [active]++;

else disconnected[active]++;

This code is used in section 3*.

17*% (Print the stats 17*) =
printf ("Counts,for,%d edges and at most %d vertices:\n",m,n);
for (k=2 k<m+1; k++)
if (connected[k] 4+ disconnected[k]) {
printf ("on,%5d vertices, %11d are connected, %11ld not\n", k,2 * connected [k],
2 x disconnected [k]);
totconnected += 2 % connected [k], totdisconnected += 2 x disconnected [k];
}
printf ("Altogether %,11d ,connected,,and, %11d, not.\n", totconnected, totdisconnected);

This code is used in section 3*.

18. (Global variables 15) +=
unsigned long long connected [maxm + 2], disconnected [mazm + 2];
unsigned long long totconnected, totdisconnected;

6 INDEX

19* Index.

The following sections were changed by the change file: 1, 3, 4, 5, 7, 17, 19.

active: 5F7¥8, 9, 15, 16.
arcs: 6, 7¥8, 9, 15.

argc: 3¥ 4%

argv: 3¥ 4*%

connected: 16, 17F 18.
disconnected: 16, 17F 18.
done: 3F 5¥F

exit: 4%

forintf: 4F

j: 3

k: 3F

l. 3*

link: 6, 7%8, 9, 15.

m: 3¥

main: 3

maxm: 1F 4% 15, 18.

mm: 3F 4F

move: 12, 14, 15.

n: 3*

nn: 3% 4¥%

p: 8, 9.

parent: 10, 11, 12, 14, 15, 16.
printf: 17*

size: 10, 11, 12, 13, 14, 15, 16.
sscanf: 4%

stderr: 4%

totconnected: 17F 18.
totdisconnected: 17F 18.
tryagain: 5F 7*
tryagain_inloop: 5%
u 8, 9.

wu: 8, 9, 12, 14.
v: 8, 9.

vo: 8,9, 12, 14.
x: 15.

GRACEFUL-COUNT-SMALL

§19

GRACEFUL-COUNT-SMALL

Delete the edge from z[j] to x[j] +j 9) Used in section 5*.
Do a union operation 4 = v 12) Used in section 8.

Global variables 15, 18> Used in section 3*.

Initialize the union/find structures 11) Used in section 7*.
Initialize to (m —1,...,2,1,0) 7*) Used in section 3*.

Move to the next m-tuple, or goto done 5*) Used in section 3*.

Print the stats 17%) Used in section 3*.

Process the command line 4*) Used in section 3*.
Study the current graph 16) Used in section 3*.

Undo the union operation w = v 14) Used in section 9.

(
(
(
2
(Insert an edge from z[j] to z[j] + 7 8) Used in sections 5* and 7*.
(
(
(
(
(

NAMES OF THE SECTIONS

7

Intro

GRACEFUL-COUNT-SMALL

Section Page

Graceful StIUCLUTES . .ottt e e
Doing It . ..

Index

1

o v W

	Intro
	Graceful structures
	Doing it
	Index
	Names of the sections
	Delete the edge from x[j] to x[j]+j
	Do a union operation u==v
	Global variables
	Initialize the union/find structures
	Initialize to (m-1,,2,1,0)
	Insert an edge from x[j] to x[j]+j
	Move to the next m-tuple, or goto done
	Print the stats
	Process the command line
	Study the current graph
	Undo the union operation u==v

