81 GDANCE GENERALIZED EXACT COVER 1

(See htips://cs.stanford.edu/ knuth/programs.htm] for date.)

1. Generalized exact cover. This program implements an extension of the algorithm discussed in
my paper about “dancing links.” I hacked it together from the XCOVER program that I wrote in 1994; I
apologize for not having time to apply spit and polish.

Given a matrix whose elements are 0 or 1, the problem in that paper was to find all subsets of its rows
whose sum is at most 1 in all columns and ezactly 1 in all “primary” columns. The matrix is specified in
the standard input file as follows: Each column has a symbolic name, up to seven characters long. The first
line of input contains the names of all primary columns, followed by ‘|’, followed by the names of all other
columns. (If all columns are primary, the ‘|’ may be omitted.) The remaining lines represent the rows, by
listing the columns where 1 appears.

Here I extend the idea so that nonprimary columns can have a different sort of restriction: If a row specifies
a “color” in a nonprimary column, it rules out rows of all other colors in that column, but any number of
rows with the same color are allowed. (The previous situation was the special case in which all rows had
a different color.) If xx is a column name, a specification like xx:a as part of a row stands for color a in
column xx. Each color is specified by a single character.

The program prints the number of solutions and the total number of link updates. It also prints every
nth solution, if the integer command line argument n is given. A second command-line argument causes the
full search tree to be printed, and a third argument makes the output even more verbose.

#define maz_level 1000 /* at most this many rows in a solution */

#define max_degree 6000 /* at most this many branches per search tree node */
#define maz_cols 6000 /* at most this many columns */

#define maz_nodes 1000000 /* at most this many nonzero elements in the matrix */

#define verbose Verbose

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
('Type definitions 3)
(Global variables 2)
(Subroutines 6);
main (arge, argu)
int argc;
char xargv|];

(Local variables 10);

verbose = argc — 1;

if (verbose) sscanf (argv[l],"%d", &spacing);
(Initialize the data structures 7);

(Backtrack through all solutions 12);

printf ("Altogether %11d, solutions,", count);
printf ("Lafter %11d updates", updates);

printf ("uand, %11d, ,cleansings.\n", purifs);

if (verbose) (Print a profile of the search tree 23);
exit (0);

https://cs.stanford.edu/~knuth/programs.html

2

2.

GENERALIZED EXACT COVER GDANCE 82

(Global variables 2) =
int verbose; /* > 0 to show solutions, > 1 to show partial ones too x/
unsigned long long count; /* number of solutions found so far x/
unsigned long long updates; /* number of times we deleted a list element */
unsigned long long purifs; /+ number of times we purified a list element */
int spacing = 1; /* if verbose, we output solutions when count % spacing =0 x/
unsigned long long profile[max_level][maz_degree]; /* tree nodes of given level and degree */
unsigned long long upd_prof [maz_level]; /* updates at a given level %/
unsigned long long pur_prof [max_level]; /* purifications at a given level */
int mazb = 0; /* maximum branching factor actually needed x/
int mazl = 0; /* maximum level actually reached */

See also sections 8 and 14.

This code is used in section 1.

83 GDANCE DATA STRUCTURES 3

3. Data structures. FEach column of the input matrix is represented by a column struct, and each row
is represented as a linked list of node structs. There’s one node for each nonzero entry in the matrix.
More precisely, the nodes are linked circularly within each row, in both directions. The nodes are also
linked circularly within each column; the column lists each include a header node, but the row lists do not.
Column header nodes are part of a column struct, which contains further info about the column.
Each node contains five fields. Four are the pointers of doubly linked lists, already mentioned; the fifth
points to the column containing the node.
(Type definitions 3) =
typedef struct node_struct {
struct node_struct xleft, xright; /* predecessor and successor in row x/
struct node_struct xup, xdown; /x predecessor and successor in column */
struct col_struct *col; /+ the column containing this node x/
int color; /* color, if specified */
} node;
See also section 4.

This code is used in section 1.

4. Each column struct contains five fields: The head is a node that stands at the head of its list of nodes;
the len tells the length of that list of nodes, not counting the header; the name is a one-, two-, or ... or
seven-letter identifier; next and prev point to adjacent columns, when this column is part of a doubly linked
list.

As backtracking proceeds, nodes will be deleted from column lists when their row has been blocked by
other rows in the partial solution. But when backtracking is complete, the data structures will be restored
to their original state.

(Type definitions 3) +=
typedef struct col_struct {
node head; / the list header =/
int len; /* the number of non-header items currently in this column’s list */
char name[8]; /* symbolic identification of the column, for printing */
struct col_struct *xprev, xnext; /* neighbors of this column x/
} column;

5. One column struct is called the root. It serves as the head of the list of columns that need to be
covered, and is identifiable by the fact that its name is empty.

#define root col_array|0] /* gateway to the unsettled columns */

4 DATA STRUCTURES GDANCE §6
6. A row is identified not by name but by the names of the columns it contains. Here is a routine that
prints a row, given a pointer to any of its nodes. It also prints the position of the given node in its column.
(Subroutines 6) =
print_row (p)
node *p;
{ register node xq = p;
register int k;
do {
printf ("uhs", g=col-name);
if (g~color) (Print the color of node ¢ 27);
q = q-right;
} while (g # p);
for (¢ = p~col~head.down,k =1; q # p; k++)
if (¢ = &(p~col-head)) {
printf ("\n"); return 0; /* row not in its column! x/
} else ¢ = ¢~down;
printf ("L ChduofL%d) \n", k, p~col-len);
}
See also sections 15, 16, 25, 26, and 28.

This code is used in section 1.

87 GDANCE INPUTTING THE MATRIX

7. Inputting the matrix. Brute force is the rule in this part of the program.

(Initialize the data structures 7) =
(Read the column names 9);
(Read the rows 11);

This code is used in section 1.

8. #define buf size 8 x max_cols + 3 /x upper bound on input line length */
(Global variables 2) +=

column col_array[maz_cols + 2J; /* place for column records */
node node_array|[maz_nodes|; /x place for nodes x/

char buf [buf_size];

column xfirst_nonprim_col; /* the first nonprimary column, if any */
column xlast_nonprim_col; /* the first unused column x*/

9. #define panic(m)
{ fprintf (stderr, "%s'\nks", m, buf); exit(—1); }
(Read the column names 9) =
cur_col = col_array + 1;
foets(buf | buf_size, stdin);
if (buf [strlen(buf) — 1] # ’\n’) panic("Input, line too,long");
for (p = buf, primary = 1; *p; p++) {
while (isspace (*p)) p++;
if (—xp) break;
if (sp="1") {
primary = 0;
if (cur_col = col_array + 1) panic("No_primary, columns");
(cur_col — 1)~next = &root, root.prev = cur_col — 1;
first_nonprim_col = cur_col;
continue;
}
for (¢ =p+1; —isspace(xq); q++) ;
if (¢ >p+7) panic("Column name too long");
if (cur_col > &col_array|[maz_cols]) panic("Too_many ,columns");
for (q = cur_col-name; —isspace(xp); q++,p++) *q = *p;
cur_col~head .up = cur_col-head.down = & cur_col-head;
cur_col-len = 0;
if (primary) cur_col-prev = cur_col — 1, (cur_col — 1)~next = cur_col;
else cur_col-prev = cur_col-next = cur_col;
cur_col ++;
¥
if (primary) {
if (cur_-col = col_array + 1) panic("No primary,columns");
(cur_col — 1)=next = &root, root.prev = cur_col — 1;
first_nonprim_col = cur_col;
¥
last_nonprim_col = cur_col;

This code is used in section 7.

6 INPUTTING THE MATRIX GDANCE

10. (Local variables 10) =
register column xcur_col;
register char xp, xq;
register node *xcur_node;
int primary;

See also sections 13 and 20.

This code is used in section 1.

11. (Read the rows 11) =
cur_node = node_array;
while (fgets(buf, buf_size, stdin)) {
register column xccol;
register node xrow_start, xx;

if (buf [strlen(buf) — 1] # >\n’) panic("Input,line too,long");
row_start = A;
for (p = buf; «p; p++) {
while (isspace(xp)) p++;
if (—*p) break;
for (¢ =p+1; —isspace(xq) Nxq # 7:7; q++) ;
if (¢ >p+7) panic("Column name too_long");
for (¢ = cur_col-name; —isspace(xp) A xp # 7175 g+, p++) *q = *p;
*q = "\0’;
for (ccol = col_array; stremp (ccol-name, cur_col-name); ccol++) ;
if (ccol = cur_col) panic("Unknown,,column, name");
if (cur-node = &node_array[maz_nodes]) panic("Too many nodes");
if (—row_start) row_start = cur-node;
else cur_node-left = cur_node — 1, (cur_node — 1)~right = cur_node;
for (z = row_start; x # cur_node; x++)
if (z~col = ccol) panic("A row, can’t use a column twice");
cur_node~col = ccol;
cur_node~up = ccol~head.up, ccol-head.up~down = cur_node;
ccol~head .up = cur_node, cur_node~down = &ccol-head;
ceol-len ++;
if (xp=7:7) (Read a color restriction 24);
cur_node ++;

if (—row_start) panic("Empty_row");
row_start-left = cur_node — 1, (cur_node — 1)~right = row_start;

}

This code is used in section 7.

§10

8§12 GDANCE BACKTRACKING 7

12. Backtracking. Our strategy for generating all exact covers will be to repeatedly choose always the
column that appears to be hardest to cover, namely the column with shortest list, from all columns that still
need to be covered. And we explore all possibilities via depth-first search.

The neat part of this algorithm is the way the lists are maintained. Depth-first search means last-in-first-
out maintenance of data structures; and it turns out that we need no auxiliary tables to undelete elements
from lists when backing up. The nodes removed from doubly linked lists remember their former neighbors,
because we do no garbage collection.

The basic operation is “covering a column.” This means removing it from the list of columns needing to
be covered, and “blocking” its rows: removing nodes from other lists whenever they belong to a row of a
node in this column’s list.

(Backtrack through all solutions 12) =
level = 0;
forward: (Set best_col to the best column for branching 19);
cover (best_col);
cur_node = choice[level| = best_col~head .down;
advance:
if (cur_node = &(best_col-head)) goto backup;
if (verbose > 1) {
printf ("L%d: ", level);
print_row (cur-node);
}
(Cover all other columns of cur_node 17);
if (root.next = &root) (Record solution and goto recover 21);
level ++;
goto forward;
backup: uncover (best_col);
if (level =0) goto done;
level —;
cur-node = choice[level]; best_col = cur_node~col;
recover: (Uncover all other columns of cur_node 18);
cur-node = choice[level] = cur_node~down; goto advance;
done:
if (verbose > 3) (Print column lengths, to make sure everything has been restored 22);

This code is used in section 1.

13. (Local variables 10) +=
register column xbest_col; /* column chosen for branching */
register node xpp; /* traverses a row */

14. (Global variables 2) +=
int level; /* number of choices in current partial solution */
node xchoice[maz_level]; /* the row and column chosen on each level */

8 BACKTRACKING GDANCE §15

15. When a row is blocked, it leaves all lists except the list of the column that is being covered. Thus a
node is never removed from a list twice.
(Subroutines 6) +=
cover (c)
column xc;
{ register column [, *r;
register node x7r, xnn, xuu, xdd;
register int £ = 1; /* updates */
l = cprev; r = coneat;
l-next = r; roprev = I;
for (rr = cvhead.down; rr # &(c-head); rr = rr-down)
for (nn = rr-right; nn # rr; nn = nn-right) {
uu = nn~up; dd = nn~down;
uu~down = dd; dd-up = uu;

k++;
nn-col-len —;
}
updates += k;

upd_prof [level] += k;

}

16. Uncovering is done in precisely the reverse order. The pointers thereby execute an exquisitely choreo-
graphed dance which returns them almost magically to their former state.
(Subroutines 6) +=
uncover(c)
column xc;
{ register column x*l, *r;
register node x7r, xnn, xuu, xdd;

for (rr = chead.up; rr # &(chead); rr = rr-up)
for (nn = rr-left; nn # rr; nn = nn-left) {
uu = nn-up; dd = nn~down;
uu~down = dd-up = nn;
nn~col-len ++;
}
l = cprev; r = coneat;
[-next = r-prev = c;

}

17. (Cover all other columns of cur_-node 17) =
for (pp = cur_node~right; pp # cur_node; pp = pp-right)
if (—pp~color) cover(pp-col);
else if (pp-color > 0) purify(pp);

This code is used in section 12.

818 GDANCE BACKTRACKING 9

18. We included left links, thereby making the rows doubly linked, so that columns would be uncovered
in the correct LIFO order in this part of the program. (The uncover routine itself could have done its job
with right links only.) (Think about it.)

(Uncover all other columns of cur_node 18) =
for (pp = cur_node~left; pp # cur_node; pp = pp-left)
if (—pp~color) uncover(pp-col);
else if (pp-color > 0) unpurify(pp);

This code is used in section 12.

19. (Set best_col to the best column for branching 19) =
minlen = maz_nodes;
if (verbose > 2) printf ("Level %d:", level);
for (cur_col = root.next; cur_col # &root; cur_col = cur_col-next) {
if (verbose > 2) printf (" %s(%d)", cur_col-name, cur_col-len);
if (cur_col-len < minlen) best_col = cur_col, minlen = cur_col-len;

}
if (verbose) {
if (level > maal) {
if (level > mazx_level) panic("Too_many levels");
maxl = level;

if (minlen > mazxb) {
if (minlen > maz_degree) panic("Too many branches");
mazxb = minlen;

profile[level][minlen]++;
if (verbose > 2) printf ("Uubranching on %s (%d)\n", best_col-name, minlen);

}

This code is used in section 12.

20. (Local variables 10) +=
register int minlen;
register int j k, z;
long long zz, tt;

21. (Record solution and goto recover 21) =
{
count ++;
if (verbose) {
profile[level + 1][0]++;
if (count % spacing = 0) {
printf ("%11d:\n", count);
for (k=0; k < level; k++) print_row(choice[k));
}
}

goto recover;

}

This code is used in section 12.

10 BACKTRACKING GDANCE

22. (Print column lengths, to make sure everything has been restored 22) =
{
printf ("Final column lengths");
for (cur_col = root.next; cur_col # &root; cur_col = cur_col-next)
printf ("uhs (b ", cur_col-name, cur_col-len);
printf ("\a");

}

This code is used in section 12.

23. (Print a profile of the search tree 23) =
{
zr = 1; /* the root node doesn’t show up in the profile */
for (level = 1; level < maal + 1; level++) {
tt = 0;
for (k= 0; k < maxb; k++) {
printf ("%1011d", profile[level][k]);
tt += profile[level][k];

printf ("%1611d_ nodes, %1lu updates, %1llu,cleansings\n", tt, upd_prof [level — 1],
pur_prof [level — 1]);
Tx += tt;
}

printf ("Total %11d, nodes.\n", zz);

}

This code is used in section 1.

§22

824 GDANCE COLOR BARRIERS 11

24. Color barriers. Finally, here’s the new material related to coloring.

(Read a color restriction 24) =
{
if (ccol < first_nonprim_col) panic("Color,isn’t allowed in a primary, column");
if (isspace(x(p + 1)) V —isspace (x(p 4+ 2))) panic("Color,should be a single character");
cur_node~color = x(p + 1);
p+=2;

}

This code is used in section 11.

25. When we choose a row that specifies colors in one or more columns, we “purify” those columns by
removing all incompatible rows. All rows that want the same color in a purified column will now be given
the color code —1 so that we need not purify the column again.
(Subroutines 6) +=
purify (p)
node #*p;
{ register column xc = p~col;
register int x = p-color;
register node xrr, *nn, xuu, *dd;
register int k£ = 0,kk = 1; /+ updates x/
chead.color = ; /* this is used only to help print_row =/
for (rr = chead.down; rr # &(chead); rr = rr-down)
if (rr-color #) {
for (nn = rr-right; nn # rr; nn = nn-right) {
uu = nn-up; dd = nn~down;
uu~down = dd; dd-up = uu;
k++;
nn~col-len —;

} else if (rr # p) kk++, rr-color = —1;
updates += k, purifs += kk;
upd_prof [level] += k, pur_prof [level] += kk;

12 COLOR BARRIERS

26. Just as purify is analogous to cover, the inverse process is analogous to uncover.

{ Subroutines 6) +=
unpurify (p)
node *p;
{ register column xc = p~col;
register int = = p~color;
register node x7r,xnn, xuu, xdd;
for (rr = chead.up; rr # &(c=head); T = rr-up)
if (rr-color < 0) rr-color = x;
else if (rr #p) {
for (nn = rr-left; nn # rr; nn = nn~left) {
uu = nn-up; dd = nn~down;
uu~down = dd-up = nn;
nn~col-len ++;
}
}
c~head.color = 0;

}

27. (Print the color of node ¢ 27) =
printf (" :%c", g~color > 0?7 g~color : g~col-head.color);

This code is used in section 6.

GDANCE

§26

§28 GDANCE HELP FOR DEBUGGING 13

28. Help for debugging. Here’s a subroutine for when I'm doing a long run and want to check the
current progress.

(Subroutines 6) +=

void show_state()

{
register int k;
printf ("Current state,, (level %d) : \n", level);
for (k=0; k < level; k++) print_row(choice[k));
printf ("Max_ level so_ far: %d\n", mazl);
printf ("Max_branching so far: %d\n", mazb);
printf ("Solutions so far: %11d\n", count);

14 INDEX

29. Index.
advance: 12.

arge: 1.

argv: 1.

backup: 12.
best_col: 12, 13, 19.
buf: 8,9, 11.

buf size: 8, 9, 11.

c: 15, 16, 25, 26.

ceol: 11, 24.

choice: 12, 14, 21, 28.

col: 3,6, 11, 12, 15, 16, 17, 18, 25, 26, 27.
col_array: 5, 8, 9, 11.

col_struct: 3, 4.

color: 3, 6, 17, 18, 24, 25, 26, 27.
column: 4,5, 8, 10, 11, 13, 15, 16, 25, 26.
count: 1, 2, 21, 28.

cover: 12, 15, 17, 26.

cur_col: 9, 10, 11, 19, 22.

cur_node: 10, 11, 12, 17, 18, 24.

dd: 15, 16, 25, 26.

done: 12.

down: 3, 6,9, 11, 12, 15, 16, 25, 26.
exit: 1, 9.

fgets: 9, 11.

first_nonprim_col: 8, 9, 24.

forward: 12.

forintf: 9.

head: 4, 6,9, 11, 12, 15, 16, 25, 26, 27.
isspace: 9, 11, 24.

7 20.

k: 6, 15, 20, 25, 28.

kk: 25.

l: 15, 16.

last_nonprim_col: 8, 9.

left: 3, 11, 16, 18, 26.

len: 4, 6,9, 11, 15, 16, 19, 22, 25, 26.
level: 12, 14, 15, 19, 21, 23, 25, 28.
main: 1.

max_cols: 1, 8, 9.

max_degree: 1, 2, 19.

maz_level: 1, 2, 14, 19.

maz_nodes: 1, 8, 11, 19.

mazb: 2, 19, 23, 28.

mazl: 2, 19, 23, 28.

minlen: 19, 20.

name: 4, 5, 6,9, 11, 19, 22.

next: 4,9, 12, 15, 16, 19, 22.

nn: 15, 16, 25, 26.

node: 3,4, 6,8, 10, 11, 13, 14, 15, 16, 25, 26.

node_array: 8, 11.
node_struct: 3.

GDANCE

p: 6, 10, 25, 26.

panic: 9, 11, 19, 24.

pp: 13, 17, 18.

prev: 4, 9, 15, 16.
primary: 9, 10.

print_row: 6, 12, 21, 25, 28.
printf: 1,6, 12, 19, 21, 22, 23, 27, 28.
profile: 2, 19, 21, 23.
pur_prof: 2, 23, 25.

purifs: 1, 2, 25.

purify: 17, 25, 26.

q: 6, 10.

r: 15, 16.

recover: 12, 21.

right: 3, 6, 11, 15, 17, 18, 25.
root: 5,9, 12, 19, 22.
row_start: 11.

rr: 15, 16, 25, 26.
show_state: 28.

spacing: 1, 2, 21.

sscanf: 1.

stderr: 9.

stdin: 9, 11.

stremp: 11,

strlen: 9, 11.

t: 20, 23.

uncover: 12, 16, 18, 26.
unpurify: 18, 26.

up: 3,9, 11, 15, 16, 25, 26.
upd_prof: 2, 15, 23, 25.
updates: 1, 2, 15, 25.

wu: 15, 16, 25, 26.
Verbose: 1.

verbose: 1, 2, 12, 19, 21.
xz: 11, 20, 25, 26.

zr: 20, 23.

§29

GDANCE NAMES OF THE SECTIONS 15

(Backtrack through all solutions 12) Used in section 1.

(Cover all other columns of cur_node 17) Used in section 12.

<Global variables 2, 8, 14> Used in section 1.

(Initialize the data structures 7) Used in section 1.

<Local variables 10, 13, 20> Used in section 1.

(Print a profile of the search tree 23) Used in section 1.

(Print column lengths, to make sure everything has been restored 22) Used in section 12.
(Print the color of node ¢ 27) Used in section 6.

(Read a color restriction 24) Used in section 11.

(Read the column names 9) Used in section 7.

(Read the rows 11) Used in section 7.

{Record solution and goto recover 21) Used in section 12.

(Set best_col to the best column for branching 19) Used in section 12.
(Subroutines 6, 15, 16, 25, 26, 28) Used in section 1.

(Type definitions 3, 4) Used in section 1.

(Uncover all other columns of cur-node 18) Used in section 12.

GDANCE

Section Page

Generalized €XaCt COVET 1
Data StrUCtUIeSo 3
Inputting the matrix e 7
Backtracking 12
Color DarTiers 24
Help for debuggingo 28

I .o 29

	Generalized exact cover
	Data structures
	Inputting the matrix
	Backtracking
	Color barriers
	Help for debugging
	Index
	Names of the sections
	Backtrack through all solutions
	Cover all other columns of cur_node
	Global variables
	Initialize the data structures
	Local variables
	Print a profile of the search tree
	Print column lengths, to make sure everything has been restored
	Print the color of node q
	Read a color restriction
	Read the column names
	Read the rows
	Record solution and goto recover
	Set best_col to the best column for branching
	Subroutines
	Type definitions
	Uncover all other columns of cur_node

