
§1 FRANÇON INTRODUCTION 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Introduction. This short program implements a Françon-inspired bijection between binary trees with
Strahler number s and nested strings with height h, where 2s−1 ≤ h < 2s+1−1. But it uses a direct method
that is complementary to his approach. [Reference: Jean Françon, “Sur le nombre de registres nécessaires a
l’évaluation d’une expression arithmétique,” R.A.I.R.O. Informatique théorique 18 (1984), 355–364.]

#define n 17 /∗ nodes in the tree ∗/
#define nn (n+ n)

#include <stdio.h>

int d[nn + 1]; /∗ the path, a sequence of ±1s ∗/
int l[n+ 1], r[n+ 1]; /∗ tree links ∗/
int h[nn + 1], q[n+ 1], qm [n+ 1]; /∗ heap and queue structures for decision-making ∗/
int serial ; /∗ total number of cases checked ∗/
int count [10]; /∗ individual counts by Strahler number ∗/
〈Subroutines 5 〉
main ()
{

register int i, j, k, jj , kk ,m, p, s;

printf ("Checking binary trees with %d nodes...\n", n);
〈Set up the first nested string, d 2 〉;
while (1) {
〈Find the tree corresponding to d 7 〉;
〈Check the Strahler number 4 〉;
〈Check the inverse bijection 9 〉;
〈Move to the next nested string, or goto done 3 〉;

}
done :

for (s = 1; count [s]; s++)
printf ("Altogether %d cases with Strahler number %d.\n", count [s], s);

}

2. Nested strings (aka Dyck words) are conveniently generated by Algorithm 7.2.1.6P of The Art of
Computer Programming.

〈Set up the first nested string, d 2 〉 ≡
for (k = 0; k < nn ; k += 2) d[k] = +1, d[k + 1] = −1;
d[nn] = −1, i = nn − 2;

This code is used in section 1.

3. At this point, variable i is the position of the rightmost ‘+1’ in d.

〈Move to the next nested string, or goto done 3 〉 ≡
d[i] = −1;
if (d[i− 1] < 0) d[i− 1] = 1, i−−;
else {

for (j = i− 1, k = nn − 2; d[j] > 0; j−−, k −= 2) {
d[j] = −1, d[k] = +1;
if (j ≡ 0) goto done ;

}
d[j] = +1, i = nn − 2;
}

This code is used in section 1.

https://cs.stanford.edu/~knuth/programs.html

2 INTRODUCTION FRANÇON §4

4. 〈Check the Strahler number 4 〉 ≡
for (s = j = k = 1; k < nn − 1; j += d[k], k++)

if (j ≥ ((1� s)− 1)) s++;
s−−; /∗ now s is the Strahler number ∗/
count [s]++, serial ++;
if (strahler (1) 6= s) {
fprintf (stderr , "I goofed on case %d.\n", serial);
}

This code is used in section 1.

5. 〈Subroutines 5 〉 ≡
int strahler (int x)
{

register int sl , sr ;

if (l[x]) sl = strahler (l[x]);
else sl = 0;
if (r[x]) sr = strahler (r[x]);
else sr = 0;
return (sl > sr ? sl : sl < sr ? sr : sl + 1);
}

This code is used in section 1.

§6 FRANÇON THE MAIN ALGORITHM 3

6. The main algorithm. A large family of bijections between nested strings and binary trees was
described by Proskurowski in JACM 27 (1980), page 1: We build a binary tree by choosing, at each step,
some node and some yet-unset link field in that node; then we look at the next element d[p] of the nested
string. The link is set to a new node if d[p] > 0, and to null if d[p] < 0. The bijection implemented here is
of that type.

To decide what link should be constructed next, we use a heap-like data structure h[1], h[2], . . . , in which
cell k is the parent of cells 2k and 2k + 1. The cell elements are pointers to nodes in the tree being built,
and the nodes recorded in the heap can be embedded as a subtree of that tree. (In other words, if h[k] and
h[bk/2c] are both nonzero, they point to nodes of the tree in which the first is a descendant of the second. It
might be helpful to imagine a set of pebbles on the tree, with the heap cells recording the positions of those
pebbles.) When h[2k] = 0, meaning that heap cell 2k is empty, we also have h[2k + 1] = 0. The basic idea
of the algorithm is to attempt to fill the first empty cell k in the heap, by setting the links of the tree node
pointed to by h[k/2].

The number of elements in the heap is always the partial sum d[0] + · · ·+ d[p]. If this number is 2t − 1 or
more, the Strahler number of the binary tree is at least t. Conversely, if the Strahler number is s, one can
show without difficulty that the partial sum will indeed reach the value 2s − 1 at some point, with the heap
at that time containing the “topmost” complete subtree of size 2s − 1 embedded in the tree.

For validity of this algorithm, we don’t really need to choose the first hole in the heap. Any rule
for choosing k would work, provided only that (a) k is even; (b) h[k/2] 6= 0; and (c) k ≥ 2t implies
d[0] + · · ·+ d[p] ≥ 2t − 1. Thus there are many possible bijections, some of which are presumably easier to
analyze than others.

7. Variable m represents the number of nodes in the tree; variable p is our position in the nested string;
and variable k is a lower bound on the location of the least hole in the heap.

〈Find the tree corresponding to d 7 〉 ≡
h[1] = m = 1, k = 2, p = 0;
while (1) {

while (h[k]) k += 2; /∗ find the smallest hole ∗/
kk = h[k � 1]; /∗ kk is the node pointed to by k’s parent ∗/
if (d[++p] > 0) h[k] = l[kk] = ++m; else l[kk] = 0;
if (d[++p] > 0) h[k + 1] = r[kk] = ++m; else r[kk] = 0;
if (h[k]) {

if (h[k + 1]) continue;
kk = k;

} else if (h[k + 1]) kk = k + 1;
else {
h[k � 1] = 0, kk = (k � 1)⊕ 1, k = kk &−2;
if (k ≡ 0) break; /∗ we’re done when the heap is empty ∗/

}
〈Move the subheap rooted at kk up one level 8 〉;
}

This code is used in section 1.

4 THE MAIN ALGORITHM FRANÇON §8

8. Let the binary representation of kk be (bt . . . b0)2. We want to set h[(bt . . . b1α)2] ← h[(bt . . . b0α)2] for
all binary strings α.

〈Move the subheap rooted at kk up one level 8 〉 ≡
j = 0, jj = 1, q[0] = kk , qm [0] = 1;
while (j < jj) {
kk = q[j];
h[((kk � 1) &−qm [j]) + (kk & (qm [j]− 1))] = h[kk];
if (h[kk + kk]) q[jj] = kk + kk , q[jj + 1] = kk + kk + 1, qm [jj] = qm [jj + 1] = qm [j]� 1, jj += 2;
else h[kk] = 0;
j++;
}

This code is used in sections 7 and 9.

§9 FRANÇON THE INVERSE ALGORITHM 5

9. The inverse algorithm. To reverse the process, we simply look at the tree and build the nested
string, instead of vice versa. The same heap-oriented logic applies.

#define check (s)
{ if (d[++p] 6= s) fprintf (stderr , "Rejection at position %d of case %d!\n", p, serial); }

〈Check the inverse bijection 9 〉 ≡
h[1] = 1, k = 2, p = 0;
while (1) {

while (h[k]) k += 2; /∗ find the smallest hole ∗/
kk = h[k � 1]; /∗ kk is the node pointed to by k’s parent ∗/
if (l[kk]) {
h[k] = l[kk]; check (+1);

} else check (−1);
if (r[kk]) {
h[k + 1] = r[kk]; check (+1);

} else check (−1);
if (h[k]) {

if (h[k + 1]) continue;
kk = k;

} else if (h[k + 1]) kk = k + 1;
else {
h[k � 1] = 0, kk = (k � 1)⊕ 1, k = kk &−2;
if (k ≡ 0) break; /∗ we’re done when the heap is empty ∗/

}
〈Move the subheap rooted at kk up one level 8 〉;
}

This code is used in section 1.

6 INDEX FRANÇON §10

10. Index.

check : 9.
count : 1, 4.
d: 1.
done : 1, 3.
fprintf : 4, 9.
h: 1.
i: 1.
j: 1.
jj : 1, 8.
k: 1.
kk : 1, 7, 8, 9.
l: 1.
m: 1.
main : 1.
n: 1.
nn : 1, 2, 3, 4.
p: 1.
printf : 1.
q: 1.
qm : 1, 8.
r: 1.
s: 1.
serial : 1, 4, 9.
sl : 5.
sr : 5.
stderr : 4, 9.
strahler : 4, 5.
x: 5.

FRANÇON NAMES OF THE SECTIONS 7

〈Check the Strahler number 4 〉 Used in section 1.

〈Check the inverse bijection 9 〉 Used in section 1.

〈Find the tree corresponding to d 7 〉 Used in section 1.

〈Move the subheap rooted at kk up one level 8 〉 Used in sections 7 and 9.

〈Move to the next nested string, or goto done 3 〉 Used in section 1.

〈Set up the first nested string, d 2 〉 Used in section 1.

〈Subroutines 5 〉 Used in section 1.

FRANÇON

Section Page
Introduction . 1 1
The main algorithm . 6 3
The inverse algorithm . 9 5
Index . 10 6

	Introduction
	The main algorithm
	The inverse algorithm
	Index
	Names of the sections
	Check the Strahler number
	Check the inverse bijection
	Find the tree corresponding to d
	Move the subheap rooted at kk up one level
	Move to the next nested string, or goto done
	Set up the first nested string, d
	Subroutines

