81 FRANCON INTRODUCTION 1

(See htips://cs.stanford.edu/ knuth/programs.htm] for date.)

1. Introduction. Thisshort program implements a Francon-inspired bijection between binary trees with
Strahler number s and nested strings with height h, where 25 —1 < h < 25*! —1. But it uses a direct method
that is complementary to his approach. [Reference: Jean Frangon, “Sur le nombre de registres nécessaires a
Pévaluation d’une expression arithmétique,” R.A.L.R.O. Informatique théorique 18 (1984), 355-364.]

#define n 17 /* nodes in the tree x/
#define nn (n+n)

#include <stdio.h>
int d[nn + 1]; /* the path, a sequence of +1s */
int I[n+ 1],7[n + 1]; /* tree links x/
int hlnn + 1], q[n + 1], gm[n + 1]; /* heap and queue structures for decision-making */
int serial; /x total number of cases checked */
int count[10]; /* individual counts by Strahler number */

(Subroutines 5)

main ()

register int 4,5, k, jj, kk,m,p, s;
pm’ntf("Checkingubinary._ltreesuwithu%dunodes. ..\n", n);
(Set up the first nested string, d 2);
while (1) {

(Find the tree corresponding to d 7);

(Check the Strahler number 4);

(Check the inverse bijection 9);

(Move to the next nested string, or goto done 3);

}

done:
for (s = 1; count[s]; s++)
printf ("Altogether,)d cases_ with, Strahler number %d.\n", count[s], s);

2. Nested strings (aka Dyck words) are conveniently generated by Algorithm 7.2.1.6P of The Art of
Computer Programming.

(Set up the first nested string, d 2) =
for (k=0; k<nn; k+=2) dk] =+1,dk+1] = -1,
dlnn] = -1,i=nn — 2;

This code is used in section 1.

3. At this point, variable 7 is the position of the rightmost ‘41’ in d.

(Move to the next nested string, or goto done 3) =

dfi] = —1;
if (dfi—1]<0)dli—1]=1,i—;
else {
for (j=i—1,k=nn—2;d[j]>0; j—,k—=2) {
dlj] = —1,d[k] = +1;

] =
if (j =0) goto done;
[1]=+1,i=nn —2;

This code is used in section 1.

https://cs.stanford.edu/~knuth/programs.html

2 INTRODUCTION FRANCON 84

4. (Check the Strahler number 4) =
for (s=j=k=1; k<nn—1; j+=d[k],k++)
if (j>(1<ks)—1)) s++;
§—; /* now s is the Strahler number */
count [s]++, serial ++;
if (strahler(1) # s) {
forintf (stderr, "I goofed on case %d.\n", serial);

This code is used in section 1.

5. (Subroutines 5) =

int strahler (int x)

{
register int sl, sr;
if (I[z]) sl = strahler(l[x]);
else sl = 0;
if (r[z]) sr = strahler(r[x]);
else sr =0;
return (sl > sr?sl:sl <sr?sr:sl+1);

}

This code is used in section 1.

86 FRANCON THE MAIN ALGORITHM 3

6. The main algorithm. A large family of bijections between nested strings and binary trees was
described by Proskurowski in JACM 27 (1980), page 1: We build a binary tree by choosing, at each step,
some node and some yet-unset link field in that node; then we look at the next element d[p] of the nested
string. The link is set to a new node if d[p] > 0, and to null if d[p] < 0. The bijection implemented here is
of that type.

To decide what link should be constructed next, we use a heap-like data structure h[1], h[2], ..., in which
cell k is the parent of cells 2k and 2k + 1. The cell elements are pointers to nodes in the tree being built,
and the nodes recorded in the heap can be embedded as a subtree of that tree. (In other words, if h[k] and
h[|k/2]] are both nonzero, they point to nodes of the tree in which the first is a descendant of the second. It
might be helpful to imagine a set of pebbles on the tree, with the heap cells recording the positions of those
pebbles.) When h[2k] = 0, meaning that heap cell 2k is empty, we also have h[2k 4+ 1] = 0. The basic idea
of the algorithm is to attempt to fill the first empty cell k in the heap, by setting the links of the tree node
pointed to by hlk/2].

The number of elements in the heap is always the partial sum d[0] + - - - + d[p]. If this number is 2! — 1 or
more, the Strahler number of the binary tree is at least ¢. Conversely, if the Strahler number is s, one can
show without difficulty that the partial sum will indeed reach the value 2° — 1 at some point, with the heap
at that time containing the “topmost” complete subtree of size 2° — 1 embedded in the tree.

For validity of this algorithm, we don’t really need to choose the first hole in the heap. Any rule
for choosing k would work, provided only that (a) k is even; (b) hlk/2] # 0; and (c) k > 2! implies
d[0] + - -+ +d[p] > 2¢ — 1. Thus there are many possible bijections, some of which are presumably easier to
analyze than others.

7. Variable m represents the number of nodes in the tree; variable p is our position in the nested string;
and variable k is a lower bound on the location of the least hole in the heap.

(Find the tree corresponding to d 7) =
hl]=m =1,k =2,p = 0;
while (1) {
while (h[k]) k +
kk = hlk > 1]
if (d[++p] >0
if (d[++p] >0
if (b

/* find the smallest hole */
kk is the node pointed to by k’s parent */
l[kk] = ++m; else [[kk] = 0;
1] = r[kk] = ++m; else r[kk] = 0;

=2
; /*
) hlk] =
) hlk +
(h[K]

~

{
+1]) continue;

} else if (h[k+1]) kk =k +1;
else {
hik>1]=0,kk = (k> 1)® 1,k =kk & -2;
if (k=0) break; /* we’re done when the heap is empty */

(Move the subheap rooted at kk up one level 8);

}

This code is used in section 1.

4 THE MAIN ALGORITHM FRANCON §8

8. Let the binary representation of kk be (b;...bg)s. We want to set h[(b;...bja)s] < h[(bs...boa)s] for
all binary strings a.

(Move the subheap rooted at kk up one level 8) =
7 =0,7 =1,4[0] = kk, gm[0] = 1;
while (j < j7) {
kk = q(j];
h[((kk > 1) & —qm[j]) + (kk & (gml[j] — 1))] = h[kk];
if (h[kk + kk]) qlij] = kk + Kk, qlj + 1] = kk + kk + 1, gm[jj] = gm[jj + 1] = gm[j] < 1,5j += 2;
else hlkk] = 0;
J+s
}

This code is used in sections 7 and 9.

89
9.

FRANCON THE INVERSE ALGORITHM 5

The inverse algorithm. To reverse the process, we simply look at the tree and build the nested

string, instead of vice versa. The same heap-oriented logic applies.
#define check(s)

{ if (d[++p] # s) fprintf (stderr,"Rejection at_ position %d of case %d!\n",p, serial); }

(Check the inverse bijection 9) =
1] =1,k =2,p = 0;

while (1) {
while (h[k]) k +=2; /* find the smallest hole */
kk = hlk > 1]; /* kk is the node pointed to by k’s parent */
if (I[kk]) {

}

hk] = U[kk]; check(+1);
} else check(—1);
it (r[kk]) {
hlk + 1] = r[kk]; check(+1);
} else check(—1);
if (h[k]) {
if (h|k +1]) continue;
kk = k;
} else if (h[k +1]) kk =k + 1;
else {
hlk>1]=0,kk = (k> 1) & 1,k = kk & —2;
if (k=0) break; /* we're done when the heap is empty */
}

{Move the subheap rooted at kk up one level 8);

This code is used in section 1.

6 INDEX FRANCON 810

10. Index.

check: 9.
count: 1, 4.
d: 1.

done: 1, 3.
forintf: 4, 9.
h:

serial: 1, 4, 9.
sl: 5.

sr: 9.

stderr: 4, 9.

strahler: 4, 5.
x: 5.

FRANCON

Check the Strahler number 4) Used in section 1.
Check the inverse bijection 9) Used in section 1.
Find the tree corresponding to d 7) Used in section 1.

Move to the next nested string, or goto done 3) Used in section 1.
Set up the first nested string, d 2) Used in section 1.
Subroutines 5> Used in section 1.

(
(
(
{Move the subheap rooted at kk up one level 8) Used in sections 7 and 9.
(
(
(

NAMES OF THE SECTIONS

7

FRANCON

Section Page

Introduction
The main algorithm
The inverse algorithim e

Index

1

3
5
6

	Introduction
	The main algorithm
	The inverse algorithm
	Index
	Names of the sections
	Check the Strahler number
	Check the inverse bijection
	Find the tree corresponding to d
	Move the subheap rooted at kk up one level
	Move to the next nested string, or goto done
	Set up the first nested string, d
	Subroutines

