81 FLOORPLAN-TO-TWINTREE-TTFORM INTRO 1

1* Intro. This (hastily written) program computes the twintree that corresponds to a given floorplan
specification. See exercises MPR~-135 and 7.2.2.1-372 in Volume 4B of The Art of Computer Programming
for an introduction to the relevant concepts and terminology.

Each room of the floorplan is specified on stdin by a line that gives its name, followed by the names of
its top bound, bottom bound, left bound, and right bound. For example, the following ten lines specify the

example in that exercise:
hO h3 vO vi

hO hl v1 vb
hl h3 v1 v3
h3 h5 vO0 v2
h5 h6 vO v2
h3 h6 v2 v3
h1l h2 v3 v5
h2 h4 v3 v4
h4 h6 v3 v4
h2 h6 v4 vb

HIDQTMEOQmE>®>

[

Each name should have at most seven characters (visible ASCII). The rooms can be listed in any order.
The output on stdout is in the format acceptable to the companion program TWINTREE-TO-BAXTER.

#define bufsize 80 /* maximum length of input lines */
#define mazrooms 1024
#define maznames (2% mazrooms + 3)
#define mazjuncs (2 % mazrooms + 3)
#define panic(m,s)
{ forintf (stderr,"%s'y(%s)\n",m, s); exit(—666); } /x rudely reject bad data */
#define pan(m)
{ fprintf (stderr,"%s'\n",m); exit(—66); } /* rudely stop on inconsistency */
#define panicic(m, s, s2)
{ forintf (stderr,"%s'y(%suand,%s)\n",m, s1,s2); exit(—666); }
/* rudely stop with two reasons */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
(Global variables 3);
(Subroutines 32*);

void main()

register int ¢, 5, k, [, m,n, q, nameloc, nametyp, rooms, hbounds, vbounds, todo;

(Input the floorplan 2);

(Find the junctions 12);

(Create the twintree 30);

(Output the twintree 33*);
}

2 THE INPUT PHASE FLOORPLAN-TO-TWINTREE-TTFORM 82

2. The input phase. We begin with the easy stuff. Names are remembered in the name array, and
classified as either rooms or bounds. We store five things for each room, namely the relevant indices top|i]
and bot[i] which point into hbound, the relevant indices Ift[i] and rt[i] which point into vbound, and the
index room|i] of its name.

(Input the floorplan 2) =

rooms = hbounds = vbounds = 0;

while (1) {
if (—fgets(buf, bufsize, stdin)) break;
k=0;
(Scan the name of room/[i] 4);
(Scan the name of its top bound, topli] 6);
(Scan the name of its bottom bound, bot[i] 8);
(Scan the name of its left bound, Ift[i] 9);
(Scan the name of its right bound, rt[i] 11);

}

fprintf (stderr, " (0K, _I’ve_ read the specs for j%d rooms, %d horizontal bounds,",rooms,
hbounds);

forintf (stderr, " %d vertical bounds) \n", vbounds);

if (hbounds + vbounds # rooms + 3) panic("but_ those totals can’t be right", "not h+v=r+3");

This code is used in section 1%*.

3. (Global variables 3) =
char buf [bufsize];
char name[maznames + 1][8];
char typ[maznames]; /* 1 =room, 2 = horiz bound, 3 = vert bound */
int nameptr; /* we’ve seen this many names so far */
int inz[maznames]; /* pointer into room or hbound or vbound x/
int room[maxrooms + 1], hbound [maxrooms + 1], vbound [mazrooms + 1]; /* pointers back to names x/
int top[mazrooms], bot[mazrooms], lft [maxrooms], rt[mazrooms|; /* the room’s boundaries */
See also sections 7, 10, 29, 31, and 34*.

This code is used in section 1%*.

4. (Scan the name of room[i] 4) =
(Scan a name 5);
if (nametyp) panic("duplicate room name", name[nameloc]);
i = rooms, room [rooms ++| = nameloc;
typ|nameloc] = 1, inx [nameloc] = i;

This code is used in section 2.

85 FLOORPLAN-TO-TWINTREE-TTFORM THE INPUT PHASE 3

5. (Scan a name 5) =
while (buf[k] =°u’) k++;
if (buf[k] <’u’ Vbuf[k] > ’~?) panic("input_line must have five names", buf);
for (j = 0; buf [k] > o> Abuf[k] < °~7; j+ k++) {
if (j =7) panic("name longer than seven characters", name[nameptr));
name [nameptr][j] = buf [k];

name [nameptr][j] = *\0’;
for (nameloc = 0; stremp(name[nameloc], name[nameptr]); nameloc++) ;
if (nameloc < nameptr) nametyp = typ[nameloc];
else { /* name not seen before */
nametyp = 0;
if (++nameptr > maznames) panic("too many names","recompile?");

}

This code is used in sections 4, 6, 8, 9, and 11.

6. The jth horizontal bound is named name[hbound[j]]. It adjoins tnbrs[j] rooms above and bnbrs[j]
rooms below. Those neighbors appear in arrays called tnbr[j] and bnbr[j].

(Scan the name of its top bound, topli] 6) =
(Scan a name 5);
if (—nametyp) typ[nameloc] = 2, inz[nameloc] = hbounds, hbound [hbounds++] = nameloc;
else if (nametyp # 2) panic("not a horizontal bound", name|[nameloc));
J = top[i] = inxz[nameloc];
bnbr[7][bnbrs[j]++] = ;

This code is used in section 2.

7. (Global variables 3) +=
int tnbr[mazrooms + 1][mazrooms), bnbr|[mazrooms + 1|[maxrooms];
int tnbrs[mazrooms + 1], bnbrs[maxrooms + 1];

8. (Scan the name of its bottom bound, bot[i] 8) =
(Scan a name 5);
if (—nametyp) typ[nameloc] = 2, inz[nameloc] = hbounds, hbound [hbounds++] = nameloc;
else if (nametyp # 2) panic("not a horizontal bound", name|[nameloc));
J = bot[i] = inz[nameloc);
tnbr [][tnbrs[j]++] = 1;
if (bot[i] = topli]) panic("room of zero height", nameli]);

This code is used in section 2.

9. Similarly, the jth vertical bound is named name[vbound[j]]. It adjoins Inbrs[j] rooms to its left and
rnbrs[j] rooms to its right. Those neighbors appear in arrays called Inbr[j] and rnbr[j].

(Scan the name of its left bound, Ift[i] 9) =
(Scan a name 5);
if (—nametyp) typ[nameloc] = 3, inz[nameloc] = vbounds, vbound [vbounds ++] = nameloc;
else if (nametyp # 3) panic("not a vertical bound", name[nameloc));
J = Ilft[i] = inz[nameloc];
rnbr[j][rnbrs [j]++] = i

This code is used in section 2.

4 THE INPUT PHASE FLOORPLAN-TO-TWINTREE-TTFORM 810

10. (Global variables 3) +=
int Inbr[maxrooms + 1][mazrooms|, rnbr [mazrooms + 1][mazrooms];
int Inbrs[mazrooms + 1], rnbrs[mazrooms + 1];

11. (Scan the name of its right bound, rt[i] 11) =
(Scan a name 5);
if (—nametyp) typ[nameloc] = 3, inz[nameloc] = vbounds, vbound [vbounds ++] = nameloc;
else if (nametyp # 3) panic("not a vertical bound", name[nameloc));
j = rt[i] = inz[nameloc];
Inbr[f][Inbrs[j]++] = i;
if (Ift[i] = rt[i]) panic("room_ of zero width", nameli]);

This code is used in section 2.

§12 FLOORPLAN-TO-TWINTREE-TTFORM THE SETUP PHASE 5

12. The setup phase. Now we want to discover the junction points, where a horizontal bound meets a
vertical bound. Every horizontal bound runs from a ‘-’ junction on its left to a ‘-’ junction on its right. (Well,
this isn’t strictly true for the topmost and bottommost horizontal lines; but we shall treat the floorplan’s
corners as if they were junctions of two different kinds.)

At each junction point j we’ll determine two of the rooms that adjoin it in northeast, southeast, southwest,
and northwest directions. Those rooms will be called ne[j], se[j], sw[j], and nw[j], respectively. We set
only nw[j] and ne[j] if j is a ‘L’; we set only nw[j] and sw(j] if j is a ‘+’; we set only sw[j] and se[j] if j
is a ‘T’; we set only ne[j] and se[j] if j is a ‘F’. The two unset rooms aren’t always known, and in any case
they’re irrelevant.

Empty space surrounding the floorplan is considered to be in a room with the nonexistent number rooms.
(It shows up only in the four junctions at the extreme corner points.)

The strategy we’ll use is quite simple: First we identify the bottom-right corner. Then we work from right
to left for every - junction that we know, and from bottom to top for every L junction that we know, finding
the mates of those junctions as we discover new ones.

Of course many floorplan specifications are actually impossible, or disconnected, etc. We’ll want to detect
any such anomalies as we go.

(Find the junctions 12) =
(Locate the bottom-right room and bounds 13);
(Process each bound that’s connected to a known junction 17);
(Make every room point to its corner junctions 28);

This code is used in section 1%*.

13. (Locate the bottom-right room and bounds 13) =
(Set i to the number of the rightmost vertical bound 14);
(Set j to the number of the bottom horizontal bound 15);
(Set I to the number of the bottom-right room 16);

This code is used in section 12.

14. (Set i to the number of the rightmost vertical bound 14) =
for (i=—1,k=0; k < vbounds; k++)
if (—rnbrs[k]) { /* a vertical with no neighbor on the right */
if (i > 0) panicic("both are rightmost", name[vbound][i]], name[vbound[k]]);
1= k;
}
if (i <0) pan("there’s noyrightmost bound");

This code is used in section 13.

15. (Set j to the number of the bottom horizontal bound 15) =
for (j = -1,k =0; k < hbounds; k++)
if (=bnbrs(k]) { /* a horizontal with no neighbor below */
if (j > 0) panicic("both_are at the bottom", name[hbound[j]], name[hbound k]]);
=k

if (j <0) pan("there’s no bottom line");

This code is used in section 13.

6 THE SETUP PHASE FLOORPLAN-TO-TWINTREE-TTFORM 816

16. (Set ! to the number of the bottom-right room 16) =
for (I=-1,k=0; k < tnbrs[j]; k++)
if (rt[tnbr['][k]] =1i) {
f (I >0) panicic("both are at bottom-right", name[room|l]], name[room[rt[tnbr[j][k]]]);
L= tnbr K]
}
if (I <0) pan("there’s no bottom-right room");

This code is used in section 13.

17. (Process each bound that’s connected to a known junction 17) =
nw (0] = I, ne[0] = sw|[0] = rooms; /* the rooms touching junc[0] */
vjunc|i] = hjunc|j] = 0;

Jtyp[0] = #8, vstack[0] = i, hstack|[0] = j;
jptr = hptr = vptr = 1;
todo = hbounds + vbounds;
while (hptr + vptr) {
if (hptr) {
J = hstack[— hptr];
(Process horizontal bound j 18);
todo —;
} else {
i = vstack|[—uvptr];
(Process vertical bound i 23);
todo —;

}
}

if (todo) pan("disconnected floorplan");

This code is used in section 12.

18. At this point we know that horizontal bound j has its right end at the = junction hjunc[j]. We want
to rearrange its lists of neighbors, and to establish new junctions that we encounter along the way.

(Process horizontal bound j 18) =
(Rearrange the rooms just below bound j 19);
(Rearrange the rooms just above bound j 20);
(Establish the F junction at the left of bound j 21);
(Launch new L junctions in bound j 22);

This code is used in section 17.

§19 FLOORPLAN-TO-TWINTREE-TTFORM THE SETUP PHASE 7

19. I use the simplest possible “brute force” approach when rearranging rooms within the neighbor lists.
So the rearrangements done here might take quadratic time.

However, if the floorplan specifications are input in the diagonal order of rooms, no rearrangements will
be needed, and this entire algorithm will take linear time.

(Rearrange the rooms just below bound j 19) =
1 = swlhjunclj]]; /* rightmost room below j x/
if (I < rooms) {
for (¢ = rt[l],i = bnbrs[j] — 1; i; i—) {
for (k=0; k <i; k++)
if (rt[bnbr[j][k]] = q) break;
if (k> 1) panicic("can’t_find NE room", name[hbound[j]], name[vbound[q]]);
if (k< i) g = bnbr[j][K], bubr[j][K] = bnbr[j][i], bubr[7][i] = g
g = U [bbr[j][i);

}

This code is used in section 18.

20. (Rearrange the rooms just above bound j 20) =
I = nwlhjunc[j]]; /* rightmost room above j */
if (I < rooms) {
for (¢ = rt[l],i = tnbrs[j] — 1; i; i—) {
for (k=0; k <i; k++)
if (rt[tnbr[j][k]] = ¢q) break;
if (k> i) panicic("can’t,find NW room", name[hbound j]], name[vboundq]]);
if (k <1) q = tnbr[j][k], tnbr[j][k] = tnbr[j][i], tnbr[j][i] = ¢;
q = Uft[tnbr[j][i]];

}

This code is used in section 18.

21. Interesting subtleties arise here: We need to launch the vertical bound at the extreme left, if j is the
horizontal bound at the very bottom. (This actually happens if and only if jptr = 1, because that horizontal
bound was placed on the stack first when we began.)

That vertical bound will, similarly, launch the horizontal bound at the extreme top, and it will determine
the top left corner (called tlc) at that time. When we’re processing that horizontal bound, we don’t want to
make another junction at the top left corner.

(Establish the F junction at the left of bound j 21) =
neljptr] = tnbr[;]0], seljptr] = bubr [j][0)
if (—tnbdrs[j]) {
if (se[jptr] # se[tle]) pan("thisycan’t happen");
} else if (=bnbrs[j])
seljptr] = nw[jptr] = rooms, q = lft[neljptr]], viunc|q] = jptr, vstack[vptr ++] = q, jtyp [jptr ++] = *4;
else jtyp [jptr++] = *6;

This code is used in section 18.

8 THE SETUP PHASE FLOORPLAN-TO-TWINTREE-TTFORM

22. If k rooms are above j, we launch k£ — 1 junctions and put the relevant vertical bounds on wvstack.

(Launch new L junctions in bound j 22) =
for (k=1; k < tnbrs[j]; k++) {
q = lft[tnbr[j][k]], vjunc|q] = jptr, vstack [vptr ++] = g;
nw[jptr] = tnbr[j][k — 1], ne[jptr] = tnbr [j][k], jtyp[jptr] = #<, jpir++;

This code is used in section 18.

23. Vertical bounds are treated the same, but with dimensions swapped.

(Process vertical bound i 23) =
(Rearrange the rooms just right of bound i 24);
(Rearrange the rooms just left of bound i 25);
(Establish the T junction at the top of bound i 26);
(Launch new junctions in bound ¢ 27);

This code is used in section 17.

24. (Rearrange the rooms just right of bound i 24) =
1 = nelvjuncli]]; /* lowest room to the right of i */
if (I < rooms) {
for (¢ = bot[l],j = rnbrs[i] — 1; j; j—) {
for (k=0; k <j; k++)
if (bot[rnbrli][k]] = q) break;
if (k> j) panicic("can’t find SW room", namehboundq]], name[vboundi]]);
if (k< j) q= rnbrli][k], rnbr[i][k] = rnbr[i][j], rnbr[i][j] = ¢
q = top[rnbr [i][j]];

}

This code is used in section 23.

25. (Rearrange the rooms just left of bound i 25) =
I = nw|vjunc|i]]; /* lowest room to the left of i x/
f (I < rooms) {
for (q = bot[l], j = nbrslil - 1; ji j—) {
break;

] —
for (k=0; k <j; k++)
if (bot[Inbr[i][k]] = q)

if (k> j) panicic("can’t,find SE room", name[hboundq]], name[vbound|i]]);

if (k <j) q=Wnbriilk], nbri][k] = Inbr[i][j], inbr[i][j] = ¢

q = top[lnbrli][j]];

}

}

This code is used in section 23.

26. (Establish the T junction at the top of bound ¢ 26) =
swjptr] = Inbri][0], se[jptr] = rnbr[i][0];
if (—inbrsli]) swjptr] = neljptr] = rooms, tic = jptr, jtyp[jptr] = #2;
else if (—rnbrs|i])

seljptr] = nwljptr] = rooms, q = top[sw[jptr]], hjunc|q] = jptr, hstack[hptr++] = q, jtyp[jptr] = #1;

else jtyp[jptr] = #3;
Jptr++;

This code is used in section 23.

§22

827 FLOORPLAN-TO-TWINTREE-TTFORM THE SETUP PHASE 9

27. If k rooms are left of 7, we launch k£ — 1 junctions and put the relevant horizontal bounds on hstack.

(Launch new - junctions in bound i 27) =
for (k=1; k < lInbrs[i]; k++) {
q = top|[lnbr[i|[k]], hjunc[q] = jptr, hstack [hptr++] = ¢;
nw [jptr] = Inbr[i|[k — 1], sw{jptr] = Inbr[i][k], jtyp [jptr] = *9, jptr++;

This code is used in section 23.

28. Finally, each junction identifies itself to the rooms that it knows.

(Make every room point to its corner junctions 28) =
for (k=0; k < jptr; k++) {

qzjtyp[k]
f (q&*1) triswlk]] = k;
1f (q & #2) tl[se[k]] = k;
if (¢&*4) blne[k]] = k;
1f (q & #8) brinwlk]] = k;

}

This code is used in section 12.

29. (Global variables 3) +=
int hjunc[mazrooms + 1|, vjunc[mazrooms + 1];
int hstack|[mazrooms + 1], vstack[maxrooms + 1];
int Aptr, vptr; /* sizes of the stacks */
int junc[mazjuncs];
int jptr; /* we’ve seen this many junctions so far x/
char jtyp[mazjuncs]; /x #3=T,#c=1,#6="F, #9 =+ x/
int nw|[mazjuncs], ne[maxjuncs], se[mazjuncs], sw|[mazjuncs];
int tl[maxrooms], tr[mazrooms], bl[mazrooms), br [mazrooms|;
/* top left, top right, bottom left, and bottom-right junctions */
int tlc; /* the top-left corner junction */

10 THE COOL PHASE FLOORPLAN-TO-TWINTREE-TTFORM 830

30. The cool phase. Now we’re ready to construct the twintree, using a reformulation of the remarkably
simple method discovered by Bo Yao, Hongyu Chen, Chung-Kuan Cheng, and Ronald Graham in ACM
Transactions on Design Automation of Electronic Systems 8 (2003), 55-80.

From this construction we see that many of the arrays above are superfluous, and we needn’t have bothered
to compute them!

(Create the twintree 30) =

null = rooms;

for (k=0; k < rooms; k++) {
Jj = tk];
if (jtyp[j] =73) W0[k] =
else [0[k] = ne[j], 11 [K]
Jj = brlk];
if (jtyplf] = #9) r0[k] = null, r1 K] = sulj};
else r0[k] = nelj], r1[k] = null;

null, U1 [k] = sw(j];
= null;

root0 = ne[l], rootl = swtle + 1J;

This code is used in section 1%*.

31. (Global variables 3) +=
int root0, 10 [mazrooms], r0 [mazrooms], root1 , l1 [mazrooms], r1 [mazrooms];
int null; /* the null room x*/

§32 FLOORPLAN-TO-TWINTREE-TTFORM THE OUTPUT PHASE 11

32¥ The output phase.
#define rjustname (k) (int)(8 — strlen(namelroom[k]])),"", name[room[k]]

(Subroutines 32*) =
void inorder0 (int root)

if (10[root] # null) inorder0(10[root));
serial[root] = ++rank;
if (r0[root] # null) inorder0(r0[root]);

void inorder! (int root)

{
if ({1 [root] # null) inorderl (11 [root]);
printf ("%xshs:Lh*shs, h*shs\n", rjustname (root), rjustname (11 [root)), rjustname (r1 [root]));
if (r1[root] # null) inorderl (r1[root]);

This code is used in section 1%*.

33*% (Output the twintree 33*) =
room [rooms| = nameptr;
strepy (name [nameptr], " /\\");
rank = 0;
inorder0 (root0);
serial [rooms]| = 0;
printf ("hdukd\n", serial [root0], serial[root!]);
for (k=0; k < rooms; k++)
printf ("%duhduhduhdukd\n", serial [k], serial [10[k]], serial [r0[k]], serial [I1 [K]], serial[r1 [K]]);

This code is used in section 1%*.

34% (Global variables 3) +=
int rank;
int serial[mazrooms + 1]J;

12 INDEX

35* Index.

FLOORPLAN-TO-TWINTREE-TTFORM 835

The following sections were changed by the change file: 1, 32, 33, 34, 35.

bl: 28, 29.

bnbr: 6, 7, 19, 21.

bnbrs: 6, 7, 15, 19, 21.

bot: 2,3, 8, 24, 25.

br: 28, 29, 30.

buf: 2, 3, 5.

bufsize: 1¥ 2, 3.

exit: 1%

foets: 2.

fprintf: 1F 2.

hbound: 2, 3, 6, 8, 15, 19, 20, 24, 25.

hbounds: 1F2, 6, 8, 15, 17.

hjunc: 17, 18, 19, 20, 26, 27, 29.

hptr: 17, 26, 27, 29.

hstack: 17, 26, 27, 29.

i: 1*

inorder(: 32F 33*

inorderl: 32F

mz: 3, 4, 6, 8,9, 11.

oo 1F

jptr: 17, 21, 22, 26, 27, 28, 29.

jtyp: 17, 21, 22, 26, 27, 28, 29, 30.

Junc: 17, 29.

k: 1*

l. 1%

Ift: 2, 3,9, 11, 19, 20, 21, 22.

Inbr: 9, 10, 11, 25, 26, 27.

Inbrs: 9, 10, 11, 25, 26, 27.

10: 30, 31, 32F 33*

I1: 30, 31, 32* 33*

m: 1*

main: 1F

mazjuncs: 1% 29.

maznames: 1% 3, 5.

mazxrooms: 1¥3, 7, 10, 29, 31, 34*

n: 1F

name: 2, 3, 4, 5, 6, 8,9, 11, 14, 15, 16, 19,
20, 24, 25, 32* 33*

nameloc: 1F¥4, 5, 6, 8, 9, 11.

nameptr: 3, 5, 33*

nametyp: 1%4, 5, 6, 8, 9, 11.

ne: 12, 17, 21, 22, 24, 26, 28, 29, 30.

null: 30, 31, 32*

nw: 12, 17, 20, 21, 22, 25, 26, 27, 28, 29.

pan: 1% 14, 15, 16, 17, 21.

panic: 1%¥2, 4,5 6,8, 9, 11.

panicic: 1%14, 15, 16, 19, 20, 24, 25.

printf: 32F 33%

q: 1%

rank: 32% 33F 34*

rjustname: 32%

rnbr: 9, 10, 24, 26.

rnbrs: 9, 10, 14, 24, 26.
room: 2, 3, 4, 16, 32¥ 33*
rooms: 1¥2,4,12,17,19, 20, 21, 24, 25, 26, 30, 33*
root: 32¥

root0: 30, 31, 33*

rootl: 30, 31, 33*

rt: 2, 3, 11, 16, 19, 20.

r0: 30, 31, 32¥F 33*

r1: 30, 31, 32% 33*

se: 12, 21, 26, 28, 29.
serial: 32F 33F 34*

stderr: 1F 2.

stdin: 1F 2.

stdout: 1%

stremp: 5.

strepy: 33%F

strlen: 32¥

sw: 12, 17, 19, 26, 27, 28, 29, 30.
s1: 1%

s2: 1%

f: 28, 29, 30.

tle: 21, 26, 29, 30.

tnbr: 6, 7, 8, 16, 20, 21, 22.
tnbrs: 6, 7, 8, 16, 20, 21, 22.

todo: 1% 17.
top: 2, 3, 6, 8, 24, 25, 26, 27.
tr: 28, 29.

typ: 3, 4, 5, 6, 8, 9, 11.

vbound: 2, 3,9, 11, 14, 19, 20, 24, 25.
vbounds: 1¥2, 9, 11, 14, 17.

vjunc: 17, 21, 22, 24, 25, 29.

wptr: 17, 21, 22, 29.

vstack: 17, 21, 22, 29.

FLOORPLAN-TO-TWINTREE-TTFORM NAMES OF THE SECTIONS

Create the twintree 30) Used in section 1*.

Establish the T junction at the top of bound 7 26) Used in section 23.
Establish the F junction at the left of bound j 21) Used in section 18.
Find the junctions 12) Used in section 1*.

Global variables 3, 7, 10, 29, 31, 34*) Used in section 1*.

Input the floorplan 2) Used in section 1*.

Launch new L junctions in bound j 22) Used in section 18.

Launch new - junctions in bound 4 27) Used in section 23.

Locate the bottom-right room and bounds 13) Used in section 12.

Make every room point to its corner junctions 28) Used in section 12.
Output the twintree 33*) Used in section 1*.

Process each bound that’s connected to a known junction 17) Used in section 12.
Process horizontal bound j 18) Used in section 17.

Process vertical bound ¢ 23) Used in section 17.

Rearrange the rooms just above bound j 20) Used in section 18.

Rearrange the rooms just below bound j 19) Used in section 18.

Rearrange the rooms just left of bound ¢ 25) Used in section 23.

Rearrange the rooms just right of bound 4 24) Used in section 23.

Scan a name 5> Used in sections 4, 6, 8, 9, and 11.

Scan the name of its bottom bound, bot[i] 8) Used in section 2.

Scan the name of its left bound, Ift[i] 9) Used in section 2.

Scan the name of its right bound, 7¢[i] 11) Used in section 2.

Scan the name of its top bound, top[i] 6) Used in section 2.

Scan the name of room[i] 4) Used in section 2.

Set i to the number of the rightmost vertical bound 14) Used in section 13.
Set j to the number of the bottom horizontal bound 15) Used in section 13.
Set [to the number of the bottom-right room 16) Used in section 13.
Subroutines 32*) Used in section 1*.

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

13

FLOORPLAN-TO-TWINTREE-TTFORM

Section
Ibr0 o e 1
The INPut PRASE . . .o 2
The Setup PRAase . ..ot 12
The cool Phase 30
The output phase 32

IdeX .o 35

Page

2
5

	Intro
	The input phase
	The setup phase
	The cool phase
	The output phase
	Index
	Names of the sections
	Create the twintree
	Establish the junction at the top of bound i
	Establish the junction at the left of bound j
	Find the junctions
	Global variables
	Input the floorplan
	Launch new junctions in bound j
	Launch new junctions in bound i
	Locate the bottom-right room and bounds
	Make every room point to its corner junctions
	Output the twintree
	Process each bound that's connected to a known junction
	Process horizontal bound j
	Process vertical bound i
	Rearrange the rooms just above bound j
	Rearrange the rooms just below bound j
	Rearrange the rooms just left of bound i
	Rearrange the rooms just right of bound i
	Scan a name
	Scan the name of its bottom bound, bot[i]
	Scan the name of its left bound, lft[i]
	Scan the name of its right bound, rt[i]
	Scan the name of its top bound, top[i]
	Scan the name of room[i]
	Set i to the number of the rightmost vertical bound
	Set j to the number of the bottom horizontal bound
	Set l to the number of the bottom-right room
	Subroutines

