§1 DRAGON-CALC INTRO 1

(See htips://cs.stanford.edu/ knuth/programs.htm] for date.)

1. Intro. This is an interactive program to do calculations associated with Dekking’s generalized dragon
curves and the associated calculus of tiles, as described in my notes on “diamonds and dragons.”
When prompted, the user can do the following things:

e p(path)
Set the current zigzag path to the sequence of directions specifed by (path). (Directions are the digits 0,
1, 2, 3, meaning “right,” “up,” “left,” and “down,” respectively; they must begin with 0 and alternate in

parity.) The computer responds with the value of z, which is the point reached at the end of the path in
the complex plane that starts at 0 and moves by i* when taking direction k. For example, p01012 yields
z = 14 2i. At the beginning of computation the current path is simply 0, and z = 1.

e (folding sequence)
Set the current zigzag path to the specified (folding sequence), which is a sequence of D’s and U’s. A folding
sequence of length s — 1 corresponds to the path of length s that starts in direction 0 and then changes
the direction by +1 (mod 4) for each D and —1 (mod 4) for each U. For example, the command DUDD is
equivalent to the command p01012. (I apologize for the historical baggage of this notation, according to
which the down-fold D corresponds to making the actual direction go up.)

e *(path) or *(folding sequence)
Multiply the current path by the specified path or folding sequence, using Dekking’s folding product. For
example, if the current path is 01012, the command *03 or *U will change it to 0101210303 and set
z 4 3+1.

o (tile)x(tile)
Compute the folding product of two tiles with respect to the current value of z. Here (tile) is a list of
two integers separated by a comma. For example, 3,2*%-2,3 will yield the result -8,1 when z = 1 + 2,
because (3 + 2i) * (-2 4 3i) = i(3+2i) + 2(—2+ 2i) = —8 + 4.

o ax(tile)
Compute the folding product v * w of all tiles v in the polyomino of the current path with the specified
tile w. In particular, if the specified tile is the unit tile 1,0, the effect is simply to list all of the current
polyomino tiles v.

e c(tile) or ¢
Show the congruence class and type of the specified tile. Or, if no tile is specified, show the congruence
classes and types of all tiles in the current polynomino.

e f(tile) or F(tile)
“Factor” the given tile v to obtain v and w such that u = v *x w with respect to the current path, where v
is a tile in the current polyomino. With F instead of £, proceed to factor w in the same way, until cycling.
These commands are allowed only when the current path is plane-filling.

em
Output METAPOST commands to draw the current path.

e v(integer)
Specify the level of verbosity, where vO gives the minimum amount of output and v-1 gives the maximum.

®q
Quit the program.

e Y (comment)
Do nothing, but politely think about whatever comment has been given.

e i(filename)
Take commands from the specified file, then come back for more (unless the file included a “quit”
command). The file may contain any command except another i command, because I don’t want to
bother maintaining a stack of included files.

Please realize that I had to write this program in an awful hurry, because of many other commitments.

https://cs.stanford.edu/~knuth/programs.html

2 INTRO DRAGON-CALC

2. Here we go.

#define mazm (1 < 15) /* length of longest path allowed */

#define mazd (1 < 8) /* anything > v/2mazm is safe here x/

#define mazp 100 /* how much memory is allowed for cycle detection? x/
#define bufsize 1024 /* maximum length of commands x/

#define verbose_echo (1 <« 0) /* should commands of included files be echoed? =/
#define verbose_folds (1 < 1) / should folds be printed when directions given? x*/
#define verbose_dirs (1 < 2) /* should directions be printed when folds given? x/

#define metapost_-name "/tmp/dragon-calc.mp" /* file name for METAPOST output */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int wvbose;
FILE xinfile, xoutfile;
char buf [bufsize];
char dir[mazm], fold[mazm]; /* directions and folds of current path =/
int s; /* length of current path */
typedef struct pair_struct {
long z,y;
} pair;
pair e, u, v, w, z, uu, VU;
pair ipower[4] = {{1,0},{0,1},{-1,0},{0,—1}};
pair sqrt8i = {2, 2};

pair poly[mazm]; /* polyomino of current path (i.e., its tiles) */

int congclass[mazd][4 x mazm]; /* congruence class table */

int fill[mazm]; /+ mapping from classes to tiles of a plane-filling path */
pair cyc[mazpl; /* elements to check for cycling in F commands */

int cycptr; /* number of relevant elements in cyc */

int count; /= this many paths have been output x/

(Subroutines 23);

main ()

register int c,d, j, k, neg;
register char xp, xq;
long qg;
int including = 0;
(Reset the current path to the unit path 3);
while (1) {
if (including) (Read a new command from infile 6)
else (Prompt the user for a new command 5);
(Do the command in buf 7);
while (xp = ’.’) p++;
if (xp #’\n’) printf (" Junk, at_ end of command has been ignored: %s",p);

done: (Make sure that outfile is closed 39)

}

3. (Reset the current path to the unit path 3) =
s=1lzx=1z2y=0;
(Clear the current auxiliary tables 4);

This code is used in sections 2 and 9.

§2

84 DRAGON-CALC INTRO 3

4. We compute the poly table only when it’s needed. After it has been computed, poly[0] will be {1,0}.
Similarly, we compute the congclass and fill tables only when necessary.

(Clear the current auxiliary tables 4) =
poly[0].z = 0, congclass[0][0] = —1;
filllo] = —1;

This code is used in sections 3 and 9.

5. (Prompt the user for a new command 5) =
{
printf (">,"); fflush(stdout);
faets (buf , bufsize, stdin);

This code is used in section 2.

6. (Read a new command from infile 6) =

if (—fgets(buf, bufsize, infile)) {
including = 0;
continue;
}
¥

This code is used in section 2.

7. (Do the command in buf 7) =
for (p=buf; *p="1"; p+t) ;
if (xp=-°\n’) {
if (—including) printf ("Please typeya command, or,say g to,quit.\n");
continue;
¥
if (including N\ (vbose & verbose_echo)) printf ("%hs", buf);
switch (xp) {
case ’q’: goto done;
case ’i’:
if (—including) {
for (p=buf +1; xp="_"; p++) ;
for (g=p+1; xg#’\n’; q++) ;
= \0%;
if (infile = fopen(p,"r")) including = 1;
else printf ("Sorry,---,I couldn’t open file,‘%s’ for reading!\n",p);
} else printf ("Sorry; you,can’tinclude one, file in another.\n");
case ’%’: continue;
case ’'v’: p++;
(Scan an integer to k 8);
vbose = k; break;

(Cases for nontrivial commands 9);

}

This code is used in section 2.

4 INTRO DRAGON-CALC §8

8. (Scan an integer to k 8) =

while (xp =) p++;
if (xp="-?) neg =1,p++;
else neg = 0;
for (k=0; *p>’0> Axp <°9’; p++) k=10xk+*p— ’0’;
if (neg) k= —k;
}

This code is used in sections 7, 20, 25, 30, and 34.

9. (Cases for nontrivial commands 9) =
case ’p’: for (s =0,z.x = z.y = 0,p++; *p > 20’ Axp < ?37; s++,p++) {
if (s=0A*p#£°07) {
printf ("A_path must_start in direction 0!\n");
goto bad_path;
} else if ((xp®s) & #1) {
printf ("Direction %cin this path has bad parity!\n", «p);
bad_path: {Reset the current path to the unit path 3); break;

}

(Set dir[s] and update z 11);

}

if (s > mazm) {

too_long: pm’ntf("Sorry ,ulucan’tdeal with paths longer than j%d; recompile me!\n", maxm);

goto bad_path;

}

(Convert the directions to folds 13);
finish_dirs: (Print the current folds 10);
print_path_params: printf ("us=%d, z=",s);

(Print the complex number z 12);

printf ("\n");

(Clear the current auxiliary tables 4);

break;

See also sections 14, 17, 20, 25, 30, 34, and 37.

This code is used in section 7.

10. (Print the current folds 10) =
if (vbose & werbose_folds) printf ("L%s,", fold);

This code is used in sections 9 and 18.

11. (Set dir[s] and update z 11) =
if (s < mazm) dir[s] =*p—07;
switch (xp) {
case ’0’: z.x++; break;
case ’1’: z.y++; break;
case ’2’: z.xr—; break;
case ’3’: z.y—; break;

}

This code is used in section 9.

§12 DRAGON-CALC

12. (Print the complex number z 12) =
if (z.z) printf("%1d", z.z);
else if (—z.y) printf("0");
if (2) {
if (z.y=1) pringf ("+i");
else if (z.y > 0) printf ("+%1di", z.y);
else if (z.y = —1) printf ("-i");
else printf ("-%1di", —z.y);

}

This code is used in section 9.

13. (Convert the directions to folds 13) =

for (j=k=0; j<s—1; j++) fold[j] = ((dir[j + 1] — dir[j]) &*#2 7 °U’ : °D’);

fold[j] = \07;

This code is used in section 9.

14. (Cases for nontrivial commands 9) +=
case ’D’: case ’U’: for (s =0; *xp =’D’ Vxp = U’; s++,p++)
if (s < mazm) fold[s] = *p;
if (++s > maxm) goto too_long;
finish_folds: { Convert the folds to directions 16);
(Print the current directions 15);
goto print_path_params;

15. (Print the current directions 15) =
if (vbose & verbose_dirs) {
printf ("u");
for (k=0; k <s; k++) printf ("%d", dir[k]);
}

This code is used in sections 14 and 19.

16. (Convert the folds to directions 16) =
for (j=k=0,z2=29y=0; k<s; k++) {

dir [k] = j;

switch (j) {

case 0: z.x++; break;

case 1: z.y++; break;

case 2: z.x—; break;

case 3: z.y—; break;

j=(j+ (fold[k] =D’ 71: -1)) & #3;
}

This code is used in sections 14 and 19.

17. (Cases for nontrivial commands 9) +=
case 'x’: pt+;
if (xp=°D’ Vxp=U’) (Multiply by a folding sequence 18)
else if (xp = 0’) (Multiply by a direction sequence 19)
else {
printf ("Improper multiplication!\n");
break;
}

INTRO

5

6 INTRO DRAGON-CALC §18

18. (Multiply by a folding sequence 18) =

{
for (k=j=s—1; xp="D" Vxp="U"; pt+) {
if (k+ s > mazm) goto too_long;

fold[k++] = xp;
if (j)

for (; j; j—) fold[k++] = U’ + D — fold[j — 1];
else

for (; j<s—1; j++) fold[k++] = fold[j];
}
fold|k] = °\0’ ;s =k +1;
(Print the current folds 10);
goto finish_folds;

This code is used in section 17.

19. (Multiply by a direction sequence 19) =
{
for (k=j=s—1,p+; *p >0 Axp <3’ A((xp@® x(p — 1)) & #1); p++) {
if (k+ s > mazm) goto too_long;
fold[k++] = (xp —x(p— 1)) & #2 7 °U’ : °D’;
if (j)
for (; j; j—) fold[k++] = U’ 4+ °D’ — fold[j — 1];
else
for (; j<s—1; j++) fold[k++] = fold[j];
}

fold[k] =°\0’, s =k +1;
(Convert the folds to directions 16);
(Print the current directions 15);
goto finish_dirs;

}

This code is used in section 17.

6§20 DRAGON-CALC

20. #define must_see(c)
while (xp =) p++; if (xp++ # ¢) goto bad_command
#define check_tile(v)
if ((vx+vy))=0) {
printf ("Bad_ tile,(%1d,%1d) '\n",v.z,v.y); break; }
(Cases for nontrivial commands 9) +=
default: (Scan an integer to k 8);
v.x =k;
while (xp =) p++;
if (xp++#£7,7){
bad_command: p—;
if (including N —(vbose & verbose_echo))
printf ("Sorry, I don’t understand the command, }s", buf);
else printf("Sorry, I don’t understand that_ command!\n");
break;
}
(Scan an integer to k 8);
vy =k;
check_tile (v);
must_see(?*);
(Scan an integer to k 8);
w.r = k;
must_see(?,’);
(Scan an integer to k 8);
w.y = k;
check_tile (w);
(Compute u=v*w 21);
printf ("u%ld,%ld\n", vz, u.y);
break;

21. (Compute u =v*w 21) =
(Set d to the type of w and e to the triply even neighbor 22);
u = sum (prod (ipower|[(—d) & #3],v), prod(z, €));

This code is used in sections 20 and 25.

22. #define typ(w) ((w.x&*1)+ ((w.e+w.y))+3) & #3)
(Set d to the type of w and e to the triply even neighbor 22) =

d = typ(w);

e = sum(w, ipower[(2 — d) & #3]);

This code is used in section 21.

/* yes it works! */

INTRO

8 INTRO

23. Complex addition, subtraction, and multiplication are easy.

(Subroutines 23) =
pair sum(pair a, pair b)
{
pair res;
res.x = a.x + b.x;
res.y = a.y + b.y;
return res;

¥
pair diff (pair a, pair b)
{
pair res;
res.x = a.x — b.x;
res.y = a.y — b.y;
return res;
¥

pair prod (pair a, pair b)

{

pair res;

res.x = a.x * b.x — a.y * b.y;
res.y = a.x * b.y + a.y x b.x;

return res;

}

See also section 24.

This code is used in section 2.

24. We also need complex division, but only when it is known to be exact.

#define norm(z) (z.x*xz.x + 2.y * 2.y)

(Subroutines 23) +=
pair quot(pair a, pair b)
{ .
pair res;
long n = norm(b);

res.z = (a.x * b.x + a.y x b.y)/n;
res.y = (—a.x *b.y + a.y * b.x) /n;

return res;

DRAGON-CALC

§23

625 DRAGON-CALC INTRO 9

25. (Cases for nontrivial commands 9) +=
case ’a’: (Make sure poly is uptodate 26);
Pt
must_see(?*’);
(Scan an integer to k 8);
w.x = k;
must_see(’,”);
(Scan an integer to k 8);
wy =k;
check_tile (w);
for (k=0; k<s; k++) {
v = poly K]
(Compute u = v *w 21);
printf ("u%ld,%1ld", u.x, u.y);
}
printf ("\n");
break;

26. (Make sure poly is uptodate 26) =
if (~poly[0].z) {
for (k=0,uz=uy=0; k<s; k++) {
v = u;
switch (dir[k]) {
case 0: u.x++; break;
case 1: u.y++; break;
case 2: u.x—; break;
case 3: u.y—; break;
}
poly[k] = sum (u,v);
}
¥

This code is used in sections 25, 32, and 33.

10 CONGRUENCE CLASSES DRAGON-CALC §27

27. Congruence classes. Finally we get to the most interesting part of the program, which determines
whether tiles are congruent.

Let Z = (24 2i)z = A+ Bi, and let D = ged(A4, B). The first task, when we want to find the congruence
class of a given tile w, is to reduce w modulo Z. To do this, we set up the congclass table as follows: We
essentially find p and ¢ such that pA +¢B = D. Then we let U = (A — Bi)Z/D = (A? + B?)/D and
V = (pi+q)Z = (¢A — pB) + Di. By subtracting an appropriate multiple of V' from w, we reduce its
imaginary part, mod D. Then we can reduce the real part, mod u. If the result is w’ = z + yi, the class
of w is stored in congclass[y > 1][z]. It’s OK to shift y right in this formula (saving a factor of 2 in space)
because = + y is always odd.

#define classof (w) congclassw.y > 1)[w.z]

(Make sure congclass is uptodate 27) =
if (congclass[0][0] < 0) {
(Compute U and V' 28);
for (j=0; j<ww.y>1; j++)
for (k=0; k < wu.x; k++) congclass[j|[k] = —1;
for (c=7=0; j<w.y>1; j++)
for (k=0; k < wu.x; k++)
if (congclass[j][k] < 0) {
congclass[j][k] = ¢;
vae=kovy=2xj+1—(k&*1);
for (d=1; d <4; d++) {
w = prod (v, ipower[d));
(Reduce w mod Z 29);
classof (w) = ¢;

c++;
}
}

This code is used in sections 30 and 33.

28. We essentially do Euclid’s algorithm on the imaginary parts here. The roles of D and (A% + B?)/D in
the formulas above are played by vv.y and uu.x, respectively.

(Compute U and V' 28) =

uu = prod(z, sqri8i), vv.x = —uu.y, Vv.Yy = UL.T;
if (vuy <0) vu.x =—uu.z, vu.y = —uu.y;
if (vw.y<0) wa=—w.x,wy=—v0.y;

while (uu.y) {
while (vv.y > wu.y) vv = diff (v, uu);
W= VU, 00 = uu, U = w;

}

if (vu.x <0) wu.z = —uu.x;

This code is used in section 27.

§29 DRAGON-CALC CONGRUENCE CLASSES 11

29. (Reduce w mod Z 29) =
{

if (wy <0) {
qq = (vv.y — 1 —w.y)/w.y;
w.r += qq * VU.T,W.Yy += qq * VV.Y;

} else {
qq = w.y/vv.y;
W.T —= qq * VU.T,W.Y —= qq * VV.Y;

if (w.z <0) {
qq = (wu.z — 1 —w.z)/uu.x;
W.T += qq * UU.T;

} else {
qq = w.x/uu.x;
W.T —= qq * UL.T;

}
}

This code is used in sections 27, 31, 33, and 35.

30. (Cases for nontrivial commands 9) +=
case ’c’: (Make sure congclass is uptodate 27);
Pt
while (xp =) p++;
if (xp = ’\n’) (Show congruence classes for all of poly 32)

else {
(Scan an integer to k 8);
w.x = k;

must_see(?,”);

(Scan an integer to k 8);

w.y = k;

(Show the congruence class and type of w 31);

¥
break;

31. (Show the congruence class and type of w 31) =
v =w;
(Reduce w mod Z 29);
printf ("u%ld,hlduisykd_%d\n",v.x, v.y, classof (w), typ (v));

This code is used in sections 30 and 32.

32. (Show congruence classes for all of poly 32) =
{
(Make sure poly is uptodate 26);
for (k=0; k <s; k++) {
w = poly[k);
(Show the congruence class and type of w 31);
}
¥

This code is used in section 30.

12 CONGRUENCE CLASSES DRAGON-CALC 833

33. A plane-filling path has the property that s = |2|? and all of its tiles are incongruent. In such cases
we set fill[j] = k when poly[k] has class j.

(Make sure fill is uptodate 33) =
if (fill[0] < O A (norm(z) =s)) {
{ Make sure poly is uptodate 26);
(Make sure congclass is uptodate 27);
for (j=1; j <s; j++) fill[j] = -1,
for (k=0; k<s; k++) {
w = poly[k);
(Reduce w mod Z 29);
if (fill[classof (w)] > 0) {
fll[0] = —1;
break; /* abort, since it’s not plane-filling */
¥
fill[classof (w)] = k;
}
}

This code is used in section 34.

34. (Cases for nontrivial commands 9) +=
case 'f’: case ’'F’: q = p++;
(Make sure fill is uptodate 33);
it (fill[0] < 0) {
printf ("Sorry, the current path isn’t_ plane-filling!\n");
break;
}
(Scan an integer to k 8);
u.x = k;
must_see(?,’);
(Scan an integer to k 8);
w.y = k;
check_tile (u);
cyc[0] = u, cyeptr = 1;
while (1) {
(Factor u 35);
if (xg=’f’) break;
(If we're in a cycle, break 36);
u = w;
}
break;

35. See my diamonds-and-dragons notes for the theory used here.

(Factor u 35) =
w = u;
(Reduce w mod Z 29);
v = poly|fill[classof (w)]];
k= (typ(u) — typ(v)) & #3;
e = quot (diff (u, prod (v, ipower[(—k) & #3])), 2);
w = sum (e, ipower[(—k) & #3]);
printf ("U%1d,%1d=0%1d, %h1d *%1d, %1ld\n", u.z, u.y, V.2, V.Y, 0.2, w.Y);

This code is used in section 34.

636 DRAGON-CALC CONGRUENCE CLASSES 13

36. The element in cyc[0] always has the smallest magnitude we’ve seen so far. If |w| = 1, we're done,
because 1 * w = w in that case.
(If we're in a cycle, break 36) =
if (norm(w) =1) break;
if (norm(w) < norm(cyc[0])) cycl0] = w, cyeptr = 1;
else {
for (k =0, cyc[cycptr] = w; w.a # cyclk]l.x Vw.y # cyclkl.y; k++) ;
if (k < cycptr) break;
cycptr ++;
}

This code is used in section 34.

14 GRAPHIC OUTPUT DRAGON-CALC 837

37. Graphic output. Finally, we have a rudimentary way to visualize general dragon curves, via
METAPOST.

(Cases for nontrivial commands 9) +=
case ’m’: (Make sure that outfile is open 38);
count ++, p++;
fprintf (outfile, "\nbeginfig(%d) \n 0", count);
for (k=0; k<s—1; k++) {
if (k%32 =31) fprintf (outfile,"\n");
forintf (outfile, " Lhe", fold[k]);
}
forintf (outfile, " ; \nendfig;\n");
break;

38. (Make sure that outfile is open 38) =
if (—outfile) {
outfile = fopen(metapost_name, "w");
if (—outfile) {
forintf (stderr, "Oops, I can’t open, %s for output! Have to,quit...\n", metapost_name);
exit(—99);
}
forintf (outfile, " %%, 0utput, from DRAGON-CALC\n");
forintf (outfile, "numeric, dd; pair,rr,ww,zz; rr=(10bp,0) ; %%,adjust rr if desired!\n");
forintf (outfile, "def, D =,dd:=dd+90; yww:=2zz; zz:=ww+rr rotated dd; draw_ww--zz;_enddef;\n");
forintf (outfile, "def U =,dd:=dd-90; ww:=2zz; zz:=ww+rr rotated dd; draw_ww--zz;_enddef;\n");
forintf (outfile, "def ,0,=,zz:=origin; dd:=-90; D;_enddef;\n");
}

This code is used in section 37.

39. (Make sure that outfile is closed 39) =
if (outfile) {
forintf (outfile, "\nbye.\n");
felose (outfile);
forintf (stderr, "METAPOST output_for %d_paths written on_%s.\n", count, metapost_name);
outfile = A;
¥

This code is used in section 2.

840 DRAGON-CALC

40. Index.

a: 23, 24.

b: 23, 24.

bad_command: 20.
bad_path: 9.

buf: 2, 5, 6, 7, 20.
bufsize: 2, 5, 6.

c 2.

check_tile: 20, 25, 34.
classof: 27, 31, 33, 35.
congclass: 2, 4, 27.
count: 2, 37, 39.

cyc: 2, 34, 36.

cycptr: 2, 34, 36.

d: 2.

diff : 23, 28, 35.

dir: 2, 11, 13, 15, 16, 26.
done: 2, 7.

e: 2.

exit: 38.

felose: 39.

fflush: 5.

fgets: 5, 6.

fill: 2,4, 33, 34, 35.
finish_dirs: 9, 19.
finish_folds: 14, 18.

fold: 2,10, 13, 14, 16, 18, 19, 37.
fopen: 7, 38.

forintf: 37, 38, 39.
including: 2, 6, 7, 20.
infile: 2, 6, 7.

ipower: 2, 21, 22, 27, 35.
Jr 2.
k: 2.

, 9, 11, 14, 18, 19.
mazxp: 2.

metapost_-name: 2, 38, 39.
must_see: 20, 25, 30, 34.
n: 24.

neg: 2, 8.

norm: 24, 33, 36.

outfile: 2, 37, 38, 39.

p: 2.

pair: 2, 23, 24.
pair_struct: 2.

poly: 2, 4, 25, 26, 32, 33, 35.
print_path_params: 9, 14.

printf: 2, 5,7,9,10, 12, 15, 17, 20, 25, 31, 34, 35.

prod: 21, 23, 27, 28, 35.
q 2.

INDEX

qq: 2, 29.
quot: 24, 35.
res: 23, 24.
s 2.

sqri8i: 2, 28.
stderr: 38, 39.
stdin: 5.
stdout: 5.

sum: 21, 22, 23, 26, 35.
too_long: 9, 14, 18, 19.
typ: 22, 31, 35.

u: 2.

wu: 2, 27, 28, 29.

v 2.

vbose: 2, 7, 10, 15, 20.
verbose_dirs: 2, 15.
verbose_echo: 2, 7, 20.
verbose_folds: 2, 10.
vo: 2, 27, 28, 29.

Ne R g
I 18D 180 1o

15

16 NAMES OF THE SECTIONS DRAGON-CALC

(Cases for nontrivial commands 9, 14, 17, 20, 25, 30, 34, 37) Used in section 7.
(Clear the current auxiliary tables 4) Used in sections 3 and 9.
(Compute u = v *w 21) Used in sections 20 and 25.
(Compute U and V' 28) Used in section 27.

(Convert the directions to folds 13) Used in section 9.

(Convert the folds to directions 16) Used in sections 14 and 19.
(Do the command in buf 7) Used in section 2.

(Factor w 35) Used in section 34.

(If we're in a cycle, break 36) Used in section 34.
(Make sure that outfile is closed 39) Used in section 2.
(Make sure that outfile is open 38) Used in section 37.
(Make sure congclass is uptodate 27) Used in sections 30 and 33.
(Make sure fill is uptodate 33) Used in section 34.
(Make sure poly is uptodate 26) Used in sections 25, 32, and 33.
(Multiply by a direction sequence 19) Used in section 17.
(Multiply by a folding sequence 18) Used in section 17.
(Print the complex number z 12) Used in section 9.
(Print the current directions 15) Used in sections 14 and 19.

(Print the current folds 10) Used in sections 9 and 18.

(Prompt the user for a new command 5) Used in section 2.

(Read a new command from infile 6) Used in section 2.

(Reduce w mod Z 29) Used in sections 27, 31, 33, and 35.

(Reset the current path to the unit path 3) Used in sections 2 and 9.

(Scan an integer to k 8) Used in sections 7, 20, 25, 30, and 34.

(Set dir[s] and update z 11) Used in section 9.

(Set d to the type of w and e to the triply even neighbor 22) Used in section 21.
(Show congruence classes for all of poly 32) Used in section 30.

(Show the congruence class and type of w 31) Used in sections 30 and 32.
(Subroutines 23, 24) Used in section 2.

DRAGON-CALC

Section Page

0T o O 1 1
CONGIUENCE ClASSES . . . ittt ittt e e e e e e e e e e e e 27 10
Graphic OULDULo 37 14

I .o 40 15

	Intro
	Congruence classes
	Graphic output
	Index
	Names of the sections
	Cases for nontrivial commands
	Clear the current auxiliary tables
	Compute u=v*w
	Compute U and V
	Convert the directions to folds
	Convert the folds to directions
	Do the command in buf
	Factor u
	If we're in a cycle, break
	Make sure that outfile is closed
	Make sure that outfile is open
	Make sure congclass is uptodate
	Make sure fill is uptodate
	Make sure poly is uptodate
	Multiply by a direction sequence
	Multiply by a folding sequence
	Print the complex number z
	Print the current directions
	Print the current folds
	Prompt the user for a new command
	Read a new command from infile
	Reduce w mod Z
	Reset the current path to the unit path
	Scan an integer to k
	Set dir[s] and update z
	Set d to the type of w and e to the triply even neighbor
	Show congruence classes for all of poly
	Show the congruence class and type of w
	Subroutines

