§1 DOMINATION INTRO 1

(See htips://cs.stanford.edu/ knuth/programs.htm] for date.)

1. Intro. A quick program to output the “domination” or “majorization” relation when it is defined on
permutations of multisets instead of on partitions. _ _

Let’s say that digits are permuted. Then z1...2, = y1 ...y, if and only if Zgzl[xi > k] > Zgzl[yi > k]
for all j and k.

This relation is self-dual in the sense that =1 ...z, = y1...y, if and only if z,,... 21 < y,...y1. And
if the digits consist of equal quantities of the numbers 1 through k, then x1...x, > y1 ...y, if and only if
T1...Tp X Y1..-Yn, where T =k +1—x.

It’s emphatically not a lattice, in most cases.

Here I just compute the relation and its transitive reduction by brute force. When I learn better algorithms
for transitive reduction, I can use this as an interesting example.

(Well, maybe not! In the examples I tried, we seem to have = covers y if and only if = differs from y
by a transposition and = has exactly one more inversion than y. Furthermore, it appears that the covering
relation on multiset permutations such as {1, 1,2, 2, 3} is obtained by taking the relation on set permutations
{1,1/,2,2', 3} and removing all cases in which 1’ occurs before 1 or 2’ before 2. Thus, some additional theory
apparently lurks in the background, making this whole program unnecessary — except as a way to confirm
the conjectures in further cases before T go ahead and find proofs.)

#define mazn 63 /* this many elements at most */
#define mazp 1000 /* this many perms at most x/
#include <stdio.h>

#include <string.h>

char perm[mazp][mazn + 1]; /* the permutations */
char work[mazn + 1J; /* where I generate new ones */
char rel[maxp][mazxp]; /* nonzero if <y */

char red[maxp|[mazp]; /* reduced relation */

main (int argc, char xargu[])
{
register int 4,7, k,[,ll,m,n, s, dom;
(Set work to the string that is to be permuted, and check it 2);
(Generate the rest of the permutations 3);
(Compute the dominance relation 4);
(Do transitive reduction 5);
(Print the results 6);

https://cs.stanford.edu/~knuth/programs.html

2 INTRO DOMINATION

2. (Set work to the string that is to be permuted, and check it 2) =
if (arge #2) {
forintf (stderr, "Usage: s digits_to_permute\n", argv[0]);
exit (—1);
}
for (j = 0; argu[1][j}; j++) {
if (j > mazn) {
forintf (stderr, "String too_long, (maxn=%d) !\n", mazn);
exit(—2);
}

if (argu[1][j] <>0” Vargu[1][j] > 97) {
forintf (stderr, "The,string %s should contain digits only!\n", argv[1]);
exit (—3);

}

if (j > 0Aargu(1][j — 1] > argv[1][5]) {
forintf (stderr, "The,string, %s should, be nondecreasing!\n", argv[l]);
exit (—4);

} work[j + 1] = argv[1][j];
n=j;

This code is used in section 1.

3. Here I use ye olde Algorithm 7.2.1.2L.

(Generate the rest of the permutations 3) =
m = 0;
I1: if (m = mazp) {
forintf (stderr, "Too_many, permutations,(maxp=%d) ! \n", mazp);
exit (—5);
}
for (j =0; j <n; j++) perm|[m|[j] = work[j + 1];
m-++;
12: for (j =n—1; work[j] > work[j +1]; j—) ;
if (=0) goto done;
13: for (I =n; work[j] > work[l]; 1—) ;
s = work[j], work[j] = work[l], work[l] = s;
l: for (k=j+11l=mn; k<l; k++,l—) s = work[k], work[k] = work[l], work[l] = s;
goto [1;
done:

This code is used in section 1.

§2

84 DOMINATION INTRO 3

4. We use the fact that dominance is a subset of (reverse) lexicographic order. In other words, if z; ...z,
is lexicographically less than y; ...y, we cannot have x1 ... 2, = Y1 ... Yn-

(Compute the dominance relation 4) =
for (I=0; Il <m; I++)
for (1 =14+1; Il <m; ll++) {
dom = 0;
for (k = work[n] + 1; k < work[1]; k++)
for (j =0; j <mn; j++) {

for (i=s=0; i <j; i++) s+= (perm[l|[{] > k7 1:0) — (perm[ll][i]] > k?1:0);
if (s > 0) goto fin;
if (s <0) dom =1;

if (dom) rel[l][ll] = 1;
fin: continue;

}

This code is used in section 1.

5. Hey, I'm just using brute force today.

(Do transitive reduction 5) =
for (1=0; I <m; l++)
for (Il =14+1; Il <m; ll++) {
if (rel[1][11]) {
for (j=1+1; j<ll; j++)
if (rel[l][j] A rel[4][ll]) goto nope;
red[[][ll] = 1;
}
nope: continue;

}

This code is used in section 1.

6. (Print the results 6) =
for 1=0; I <m; I++) {
printf ("hsu<", perm|l]);
for (Il =1+1; Ul <m; ll++)
if (red[N)[I1]) pringf ("L%hs", perm[ll]);
printf ("\n");
}

This code is used in section 1.

4 INDEX DOMINATION §7

7. Index.

arge: 1, 2.
argv: 1, 2
dom: 1, 4.
done: 3.
exvit: 2, 3.
4.
forintf: 2, 3.

s =y
=S

SRS TEry
= = = I
= los Ioe Igo fgo 1= 0 IR
=
ot
D

&

Ny

m:
main: 1
mazn: 1,
mazp: 1
n: 1.

nope: 5.
perm: 1
printf: 6.
red: 1, 5
rel: 1, 4
s 1.

stderr: 2, 3.

work: 1, 2, 3, 4.

DOMINATION NAMES OF THE SECTIONS 5

{ Compute the dominance relation 4) Used in section 1.

(Do transitive reduction 5) Used in section 1.

(Generate the rest of the permutations 3) Used in section 1.
(Print the results 6) Used in section 1.

(

Set work to the string that is to be permuted, and check it 2) Used in section 1.

DOMINATION

Section Page

	Intro
	Index
	Names of the sections
	Compute the dominance relation
	Do transitive reduction
	Generate the rest of the permutations
	Print the results
	Set work to the string that is to be permuted, and check it

