§1  DOMINATION INTRO 1

(See htips://cs.stanford.edu/ knuth/programs.htm] for date.)

1. Intro. A quick program to output the “domination” or “majorization” relation when it is defined on
permutations of multisets instead of on partitions. _ _

Let’s say that digits are permuted. Then z1...2, = y1 ...y, if and only if Zgzl[xi > k] > Zgzl[yi > k]
for all j and k.

This relation is self-dual in the sense that =1 ...z, = y1...y, if and only if z,,... 21 < y,...y1. And
if the digits consist of equal quantities of the numbers 1 through k, then x1...x, > y1 ...y, if and only if
T1...Tp X Y1..-Yn, where T =k +1—x.

It’s emphatically not a lattice, in most cases.

Here I just compute the relation and its transitive reduction by brute force. When I learn better algorithms
for transitive reduction, I can use this as an interesting example.

(Well, maybe not! In the examples I tried, we seem to have = covers y if and only if = differs from y
by a transposition and = has exactly one more inversion than y. Furthermore, it appears that the covering
relation on multiset permutations such as {1, 1,2, 2, 3} is obtained by taking the relation on set permutations
{1,1/,2,2', 3} and removing all cases in which 1’ occurs before 1 or 2’ before 2. Thus, some additional theory
apparently lurks in the background, making this whole program unnecessary — except as a way to confirm
the conjectures in further cases before T go ahead and find proofs.)

#define mazn 63 /* this many elements at most */
#define mazp 1000 /* this many perms at most x/
#include <stdio.h>

#include <string.h>

char perm[mazp][mazn + 1]; /* the permutations */
char work[mazn + 1J; /* where I generate new ones */
char rel[maxp][mazxp]; /* nonzero if <y */

char red[maxp|[mazp]; /* reduced relation */

main (int argc, char xargu[])
{
register int 4,7, k,[,ll,m,n, s, dom;
(Set work to the string that is to be permuted, and check it 2);
( Generate the rest of the permutations 3);
( Compute the dominance relation 4);
(Do transitive reduction 5 );
(Print the results 6 );
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2. (Set work to the string that is to be permuted, and check it 2) =
if (arge #2) {
forintf (stderr, "Usage: s digits_to_permute\n", argv[0]);
exit (—1);
}
for (j = 0; argu[1][j}; j++) {
if (j > mazn) {
forintf (stderr, "String too_long, (maxn=%d) !\n", mazn);
exit(—2);
}

if (argu[1][j] <>0” Vargu[1][j] > 97) {
forintf (stderr, "The,string %s should contain digits only!\n", argv[1]);
exit (—3);

}

if (j > 0Aargu(1][j — 1] > argv[1][5]) {
forintf (stderr, "The,string, %s should, be nondecreasing!\n", argv[l]);
exit (—4);

} work[j + 1] = argv[1][j];
n=j;

This code is used in section 1.

3. Here I use ye olde Algorithm 7.2.1.2L.

( Generate the rest of the permutations 3) =
m = 0;
I1: if (m = mazp) {
forintf (stderr, "Too_many, permutations,(maxp=%d) ! \n", mazp);
exit (—5);
}
for (j =0; j <n; j++) perm|[m|[j] = work[j + 1];
m-++;
12: for (j =n—1; work[j] > work[j +1]; j—) ;
if (=0) goto done;
13: for (I =n; work[j] > work[l]; 1—) ;
s = work[j], work[j] = work[l], work[l] = s;
l: for (k=j+11l=mn; k<l; k++,l—) s = work[k], work[k] = work[l], work[l] = s;
goto [1;
done:

This code is used in section 1.
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4. We use the fact that dominance is a subset of (reverse) lexicographic order. In other words, if z; ...z,
is lexicographically less than y; ...y, we cannot have x1 ... 2, = Y1 ... Yn-

( Compute the dominance relation 4) =
for (I=0; Il <m; I++)
for (1 =14+1; Il <m; ll++) {
dom = 0;
for (k = work[n] + 1; k < work[1]; k++)
for (j =0; j <mn; j++) {

for (i=s=0; i <j; i++) s+= (perm[l|[{] > k7 1:0) — (perm[ll][i]] > k?1:0);
if (s > 0) goto fin;
if (s <0) dom =1;

if (dom) rel[l][ll] = 1;
fin: continue;

}

This code is used in section 1.

5. Hey, I'm just using brute force today.

(Do transitive reduction 5) =
for (1=0; I <m; l++)
for (Il =14+1; Il <m; ll++) {
if (rel[1][11]) {
for (j=1+1; j<ll; j++)
if (rel[l][j] A rel[4][ll]) goto nope;
red[[][ll] = 1;
}
nope: continue;

}

This code is used in section 1.

6. (Print the results 6) =
for 1=0; I <m; I++) {
printf ("hsu<", perm|l]);
for (Il =1+1; Ul <m; ll++)
if (red[N)[I1]) pringf ("L%hs", perm[ll]);
printf ("\n");
}

This code is used in section 1.
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7. Index.

arge: 1, 2.
argv: 1, 2
dom: 1, 4.
done: 3.
exvit: 2, 3.
4.
forintf: 2, 3.
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m:
main: 1
mazn: 1,
mazp: 1
n: 1.

nope: 5.
perm: 1
printf: 6.
red: 1, 5
rel: 1, 4
s 1.

stderr: 2, 3.

work: 1, 2, 3, 4.
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{ Compute the dominance relation 4) Used in section 1.

(Do transitive reduction 5) Used in section 1.

( Generate the rest of the permutations 3) Used in section 1.
(Print the results 6) Used in section 1.

(

Set work to the string that is to be permuted, and check it 2) Used in section 1.
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