81 DLX6 INTRO 1

(Downloaded from |ftps://cs.stanford.edu/ knuth/programs.htm] and typeset on May 28, 2023)

1. Intro. This program is part of a series of “exact cover solvers” that I'm putting together for my own
education as I prepare to write Section 7.2.2.1 of The Art of Computer Programming. My intent is to have
a variety of compatible programs on which I can run experiments, in order to learn how different approaches
work in practice.

The basic input format for all of these solvers is described at the beginning of programs DLX1 and DLX2;
you should read that description now if you are unfamiliar with it.

This program modifies DLX2 by caching the results of partial solutions. Its output is not a list of solutions,
but rather a ZDD that characterizes them. (The basic ideas are due to Masaaki Nishino, Norihito Yasuda,
Shin-ichi Minato, and Masaaki Nagata, whose paper “Dancing with decision diagrams” appeared in the 31st
AAAT Conference on Articial Intelligence (2017), pages 868-874. However, I've extended it from the exact
cover problem to the considerably more general MCC problem, by adding color constraints and multiplicities.)

The ZDD is output in the text format accepted by the ZDDREAD programs, which I prepared long ago
in connection with BDD15 and other software. A dummy node is placed at the root of the ZDD, so that
ZDDREAD will know where to start. This ZDD is not properly ordered, in general; but I think the ZDDREAD
programs will still work. (Knock on wood.)

https://cs.stanford.edu/~knuth/programs.html

2 INTRO DLX6 §2

2. After this program finds all solutions, it normally prints their total number on stderr, together with
statistics about how many nodes were in the search tree, how many “updates” and “cleansings” were made,
how many ZDD nodes were created, and how many cache memos were made. The running time in “mems”
is also reported, together with the approximate number of bytes needed for data storage. (An “update”
is the removal of an option from its item list. A “cleansing” is the removal of a satisfied color constraint
from its option. One “mem” essentially means a memory access to a 64-bit word. The reported totals don’t
include the time or space needed to parse the input or to format the output.)
Here is the overall structure:

#define o mems++ /* count one mem */

#define oo mems +=2 /* count two mems x/

#define ooo mems +=3 /* count three mems */

#define O ")" /* used for percent signs in format strings */

#define mod % /* used for percent signs denoting remainder in C */

#define maz_level 5000 /* at most this many options in a solution x/

#define maz_cols 100000 /* at most this many items x/

#define maz_nodes 10000000 /+ at most this many items and spacers in all options */
#define maz_inz 200000 /* at most this many items and item-color pairs */

#define maz_cache 2000000000 /* octabytes in the cache %/
/* N.B.: maz_cache must be less than 232, because of hashentry x/
#define loghashsize 30
#define hashsize (1 < loghashsize) /* octabytes in the hash table x/
#define bufsize (9 * max_cols + 3) /x a buffer big enough to hold all item names */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#include "gb_flip.h"
typedef unsigned int uint; /* a convenient abbreviation */
typedef unsigned long long ullng; /* ditto */

(Type definitions 6);
(Global variables 3);
(Subroutines 10);

main (int argc, char xargv|])

{

register int cc, i, 7, k, p, pp, q, v, t, cur_node, best_itm, znode, zsol, optionno, hit;

(Process the command line 4);
(Input the item names 14);
(Input the options 17);
(Initialize the memo cache 27);
if (vbose & show_basics) (Report the successful completion of the input phase 21);
if (vbose & show_tots) (Report the item totals 22);
imems = mems, mems = 0;
(Solve the problem 36);
done: if (sanity_checking) sanity();
if (spacing) printf (""O"x:,(7070:"O"x)\n", zddnodes, znode); /* the root of the ZDD x/
if (vbose & show_tots) (Report the item totals 22);
if (vbose & show_profile) (Print the profile 50);
if (vbose & show_basics) {
forintf (stderr, "Altogether,," O"1lu, solution"O"s,,"O"11lu+"O"11lu mens,", count,
count =17"" :"s" imems, mems);
bytes = last_itm * sizeof (item) + last_node * sizeof (node) + mazl * sizeof (int);

82 DLX6 INTRO 3

bytes += sigptr = sizeof (inz)+ cacheptr * sizeof (ullng);

bytes += (2 % hashcount > hashsize 7 hashsize : 2 x hashcount) x sizeof (hashentry);
forintf (stderr,","O"11u updates, "O"1llu cleansings,", updates, cleansings);
forintf (stderr, ","O"11lu bytes, " O"1lu search nodes,", bytes, nodes);

fprintf (stderr, " " O"u,ZDD node"O"s,,"O"u+"O"u signatures,,"O"11lu hits.\n",

zddnodes =2 7 1: zddnodes, zddnodes =27 "" : "s" memos — goodmemos, goodmemos + 1, hits);

/* T added 1 because the book says the all-zero signature is in the cache */

(Close the files 5);

4 INTRO DLX6 §3

3. You can control the amount of output, as well as certain properties of the algorithm, by specifying
options on the command line:

e ‘v(integer)’ enables or disables various kinds of verbose output on stderr, given by binary codes such as
show_choices;

e ‘m(integer)’, if nonzero, causes the ZDD to be output (the default is m0, which merely counts the solutions);

e ‘s(integer)’ causes the algorithm to make random choices in key places (thus providing some variety,
although the solutions are by no means uniformly random), and it also defines the seed for any random
numbers that are used;

e ‘d(integer)’ sets delta, which causes periodic state reports on stderr after the algorithm has performed
approximately delta mems since the previous report (default 10000000000);

e ‘c(positive integer)’ limits the levels on which choices are shown during verbose tracing;

e ‘C(positive integer)’ limits the levels on which choices are shown in the periodic state reports;

e ‘1(nonnegative integer)’ gives a lower limit, relative to the maximum level so far achieved, to the levels
on which choices are shown during verbose tracing;

e ‘t(positive integer)’ causes the program to stop searching for additional solutions, after this many have
been found;

e ‘T(integer)’ sets timeout (which causes abrupt termination if mems > timeout at the beginning of a level);

e ‘Z(positive integer)’ sets mazzdd (which causes early termination if zddnodes > mazzdd); Z0 will give
just the first solution;

e ‘S(filename)’ to output a “shape file” that encodes the search tree.

#define show_basics 1 /* wbose code for basic stats; this is the default */
#define show_choices 2 /* wvbose code for backtrack logging */

#define show_details 4 /% wbose code for further commentary */

#define show_hits 8 /* wbose code to show cache hits */

#define show_secondary_details 16 /x wbose code to show active secondary lists */
#define show_profile 128 /* wbose code to show the search tree profile */
#define show_full_state 256 /* wbose code for complete state reports */

#define show_tots 512 /* wvbose code for reporting item totals at start and end x/
#define show_warnings 1024 /* wvbose code for reporting options without primaries */
(Global variables 3) =

int random_seed = 0; /* seed for the random words of gb_rand =/

int randomizing; /* has ‘s’ been specified? */

int vbose = show_basics + show_warnings; /* level of verbosity */

int spacing; /* a ZDD is output if spacing # 0 x/

int show_choices-maz = 1000000; /* above this level, show_choices is ignored */

int show_choices_gap = 1000000; /* below level maxl — show_choices_gap, show_details is ignored */

int show_levels_maz = 1000000; /* above this level, state reports stop */

int mazl = 0; /* maximum level actually reached */

char buf [bufsize]; /* input buffer */

ullng count; /* solutions found so far %/

ullng options; /* options seen so far */

ullng imems, mems; /* mem counts x/

ullng updates; /x update counts x/

ullng cleansings; /* cleansing counts */

ullng bytes; /* memory used by main data structures */

ullng nodes; /* total number of branch nodes initiated */

ullng thresh = 10000000000; /* report when mems exceeds this, if delta #0 x/
ullng delta = 10000000000; /* report every delta or so mems x/

ullng mazcount = #*ffffFEfFEEFFELFL, /x stop after finding this many solutions */
ullng mazzdd = *ffEfffEfFFEEFELFS, /* stop after finding this many ZDD nodes */
ullng timeout = #1fffffFfFEFEFFET; /* give up after this many mems */

83 DLX6 INTRO

FILE xshape_file; /* file for optional output of search tree shape */
char xshape_name; /* its name x/
See also sections 8, 25, and 37.

This code is used in section 2.

4. If an option appears more than once on the command line, the first appearance takes precedence.

(Process the command line 4) =
for (j = arge — 1,k =0; j; j—)
switch (argv[j][0]) {
case ’v’: k |= (sscanf (argv
case 'm’: k|= argu
case ’s’: k |= (sscanf (argv
case ’d’: k |= (sscanf (argv

((+1,"O"d", &vbose) — 1); break;
((
((
((
case ’c’: k|= (sscanf (argv
((
((
((
((

]
|+ 1,""O"a", &spacing) — 1); break;
|+ 1,""O"a", &random_seed) — 1), randomizing = 1; break;
]+ 1, "O"lld" ,&delta) — 1), thresh = delta; break;
j|+1,""O"a", &show_choices-maz) — 1); break;
case ’C’: k |=]+ 1,""O"a", &show_levels_maz) — 1); break;
case ’1’: k|= |+
case 't’: k|= argu[j]
]
]+
dl

sscanf (argu[j] + 1,""O"d", &show_choices_gap) — 1); break;
+1, ""O"lld" , &mazcount) — 1); break;
case ’T’: k |= (sscanf (argv[j] + 1,""O"11d", &timeout) — 1); break;
case ’Z’: k |= (sscanf (argv[j] +1,""O"11d", &mazzdd) — 1); break;
case ’S’: shape_name = argv[j| + 1, shape_file = fopen (shape_name, "w");
if (—shape_file)
forintf (stderr, "Sorry, I can’t open, file,‘"O"s’ for writing!\n", shape_name);
break;

default: k£ =1; /* unrecognized command-line option */

}
if (k) {
forintf (stderr, "Usage :," O"sy [v<n>] [m<n>] | [s<n>], [d<n>] " " [c<n>], [C<n>], [1<n\
>1u[t<n>], [T<n>], [S<bar>],[Z<n] < foo.d1lx\n", argu[0]);
exit(—1);

J
J
J
J
J
J
J
J
J
J

[
[
[
[
[
argu |
[
[
[
[

}

if (randomizing) gb_init_rand (random_seed);
else gb_init_rand (0);

This code is used in section 2.

5. (Close the files 5) =
if (shape_file) fclose(shape_file);

This code is used in section 2.

6 DATA STRUCTURES DLX6 56

6. Data structures. Each item of the input matrix is represented by an item struct, and each option
is represented as a list of node structs. There’s one node for each nonzero entry in the matrix.

More precisely, the nodes of individual options appear sequentially, with “spacer” nodes between them.
The nodes are also linked circularly with respect to each item, in doubly linked lists. The item lists each
include a header node, but the option lists do not. Item header nodes are aligned with an item struct, which
contains further info about the item.

Each node contains four important fields. Two are the pointers up and down of doubly linked lists, already
mentioned. A third points directly to the item containing the node. And the last specifies a color, or zero if
no color is specified.

A “pointer” is an array index, not a C reference (because the latter would occupy 64 bits and waste cache
space). The ¢l array is for item structs, and the nd array is for nodes. I assume that both of those arrays
are small enough to be allocated statically. (Modifications of this program could do dynamic allocation if
needed.) The header node corresponding to cl[c] is nd|c].

Notice that each node occupies two octabytes. We count one mem for a simultaneous access to the up
and down fields, or for a simultaneous access to the itm and color fields.

Although the item-list pointers are called up and down, they need not correspond to actual positions
of matrix entries. The elements of each item list can appear in any order, so that one option needn’t be
consistently “above” or “below” another. Indeed, when randomizing is set, we intentionally scramble each
item list.

This program doesn’t change the itm fields after they’ve first been set up. But the up and down fields
will be changed frequently, although preserving relative order.

Exception: In the node nd|c] that is the header for the list of item ¢, we use the itm field to hold the
length of that list (excluding the header node itself). We also might use its color field for special purposes.
The alternative names len for itm and aux for color are used in the code so that this nonstandard semantics
will be more clear.

A spacer node has itm < 0. Its up field points to the start of the preceding option; its down field points
to the end of the following option. Thus it’s easy to traverse an option circularly, in either direction.

The color field of a node is set to —1 when that node has been cleansed. In such cases its original color
appears in the item header. (The program uses this fact only for diagnostic outputs.)

#define len itm /* item list length (used in header nodes only) */
#define aux color /* an auxiliary quantity (used in header nodes only) */
(Type definitions 6) =

typedef struct node_struct {

int up, down; /* predecessor and successor in item list */
int itm; /* the item containing this node */
int color; /* the color specified by this node, if any */

} node;

See also sections 7, 23, and 24.

This code is used in section 2.

87 DLX6 DATA STRUCTURES 7

7. Each item struct contains five fields: The name is the user-specified identifier; next and prev point
to adjacent items, when this item is part of a doubly linked list; sig and offset are part of the memo-cache
mechanism explained below.

As backtracking proceeds, nodes will be deleted from item lists when their option has been hidden by other
options in the partial solution. But when backtracking is complete, the data structures will be restored to
their original state.

We count one mem for a simultaneous access to the prev and next fields; also one mem for a simultaneous
access to both sig and offset.

{ Type definitions 6) +=
typedef struct itm_struct {

char name[8]; /x symbolic identification of the item, for printing */

int prev, next; /* neighbors of this item =/

int sig, offset; /* fields for constructing signatures for the memo cache */
} item,;

8. (Global variables 3) +=

node nd[maz_nodes]; /* the master list of nodes */

int last_node; /* the first node in nd that’s not yet used */

item cl[maz_cols + 2J; /* the master list of items */

int second = maz_cols; /* boundary between primary and secondary items x/

int last_itm; /* the first item in ¢l that’s not yet used */

9. One item struct is called the root. It serves as the head of the list of items that need to be covered,
and is identifiable by the fact that its name is empty.

#define root 0 /*x cl[root] is the gateway to the unsettled items =/

8

10.

DATA STRUCTURES DLX6 810

An option is identified not by name but by the names of the items it contains. Here is a routine that

prints an option, given a pointer to any of its nodes. It also prints the position of the option in its item list.

(Subroutines 10) =
void print_option(int p, FILE xstream)

{

}

register int k, ¢, cc;

if (p < last_itm V p > last_node V nd[p].itm < 0) {
fprintf (stderr, "Illegal joption ,"O"d!\n",p);
return;
}
for (¢ =p, cc = nd[q].itm; ;) {
forintf (stream, ","O" .8s", cl[cc].name);
if (nd[q].color) fprintf (stream,":"O"c",
nd[q].color > 07 siginz[cl[cc].sig + nd]g].color].orig : siginz|[cl]cc].sig + nd[cc].color].orig);

q++;
cc = nd|q].itm;
if (cc <0) ¢ = nd[q].up, cc = nd[q].itm; /* —cc is actually the option number =/

if (¢ =p) break;
}
for (¢ = nd[nd[p].itm].down,k = 1; q # p; k++) {
if (¢ = nd[p].itm) {
forintf (stream, ",(?)\n"); return; /* option not in its item list! =/
} else ¢ = nd]q|.down;

forintf (stream, ", ("O"d of,"O"d)\n", k, nd[nd[p].itm].len);

void prow (int p)

{
}

print_option(p, stderr);

See also sections 11, 12, 39, 40, 43, 44, 48, and 49.

This code is used in section 2.

11.

When I'm debugging, I might want to look at one of the current item lists.

(Subroutines 10) +=
void print_itm (int c)

{

register int p;

if (¢ < root V ¢ > last_itm) {
forintf (stderr, "Illegal item,,"O"d!'\n",c);
return;

}

if (¢ < second)
fprintf (stderr, "Item " O".8s, length ,"O"d, neighbors,"O".8s,and, ,"O".8s:\n", cl[c].name,

nd[c].len, cl]cl[c].prev].name, cl[cl[c].next].name);
else fprintf (stderr,"Item " O".8s, length "O"d:\n", cl[c].name, nd[c].len);
for (p = nd[c].down; p > last_itm; p = nd[p].down) prow(p);

)

§12 DLX6 DATA STRUCTURES 9

12. Speaking of debugging, here’s a routine to check if redundant parts of our data structure have gone
awry.
#define sanity_checking 0 /* set this to 1 if you suspect a bug */

(Subroutines 10) +=
void sanity (void)

register int k, p, q, pp, qq, t;
for (¢ = root,p = clq].next; ; ¢ =p,p = cl[p].next) {
if (cl[p].prev # q) fprintf (stderr, "Bad prev field at,itm "O".8s!\n", cl[p].name);
if (p = root) break;
(Check item p 13);
}
}

13. (Check item p 13) =
for (gq = p,pp = nd[qq].down,k =0; ; qq¢ = pp, pp = nd[pp].down, k++) {
if (nd[ppl.up # qq) forintf (stderr, "Bad up,field at node "O"d!\n", pp);
if (pp =p) break;
if (nd[pp].itm # p) fprintf (stderr,"Bad, itm field,at node,"O"d!'\n", pp);

if (nd[p].len # k) fprintf (stderr,"Bad,len field in item " O".8s!\n", cl[p].name);

This code is used in section 12.

10 INPUTTING THE MATRIX DLX6 814

14. Inputting the matrix. Brute force is the rule in this part of the code, whose goal is to parse and
store the input data and to check its validity.
#define panic(m)
{ fprintf (stderr,""O"s'\n"O"d:,"O".99s\n",m,p, buf); exit(—666); }
(Input the item names 14) =
if (maz_nodes < 2 x maz_cols) {
forintf (stderr, "Recompile me: max_nodes must_ exceed twice max_cols!'\n");
exit (—999);
} /* every item will want a header node and at least one other node */
while (1) {
if (—fgets(buf, bufsize, stdin)) break;
if (o, buf [p = strlen(buf) — 1] # ’\n’) panic("Input, line way too long");
for (p = 0; o, isspace(buf [p]); p++) ;
if (buf[p] =1’ V —buf[p]) continue; /* bypass comment or blank line */
last_itm = 1;
break;

if (—last_itm) panic("No,items");
for (; o, buf[p];) {
for (j = 0; j <8A (o, isspace(buf[p+ j1)); j++) {
if (bufjp+j]=’:>Vbuflp+j]="’1’) panic("Illegal character in item name");
o, cl[last_itm].name[j] = buf [p + j;

if (j = 8 A —isspace(buf [p+ j])) panic("Item name too long");

(Check for duplicate item name 15);

(Initialize last_itm to a new item with an empty list 16);

for (p +=j+ 1; o, isspace(buf[p]); p++) ;

it (buf sl = 17) {
if (second # maz_cols) panic("Item name line contains,| twice");
second = last_itm;
for (p++; o,isspace(buf [p]); p++) ;

}

}

if (second = maz_cols) second = last_itm;

0o, cl[last_itm].prev = last_itm — 1, cl[last_itm — 1].next = last_itm;

00, cl[second].prev = last_itm, cl[last_itm].next = second;
/* this sequence works properly whether or not second = last_itm x*/

00, cl[root].prev = second — 1, cl[second — 1].next = root;

last_node = last_itm; /* reserve all the header nodes and the first spacer */
/* we have nd[last_node].itm = 0 in the first spacer */

This code is used in section 2.

15. (Check for duplicate item name 15) =
for (k =1; o, strncmp (cl[k].name, cl[last_itm].name, 8); k++) ;
if (k < last_itm) panic("Duplicate item name");

This code is used in section 14.

816 DLX6 INPUTTING THE MATRIX 11

16. (Initialize last_itm to a new item with an empty list 16) =
if (last_itm > mawx_cols) panic("Too many items");

0o, cl[last_itm — 1].next = last_itm, cl[last_itm].prev = last_itm — 1, /* nd[last_itm].len =0 */
o0, nd[last_itm].up = nd|[last_itm].down = last_itm;
last_itm ++;

This code is used in section 14.

17. D’'m putting the option number into the spacer that follows it, as a possible debugging aid. But the
program doesn’t currently use that information.
(Input the options 17) =
while (1) {
if (—fgets(buf, bufsize, stdin)) break;
if (o, buf [p = strlen(buf) — 1] # >\n’) panic("Option line too long");
for (p = 0; o, isspace(buf [p]); p++) ;
if (buf[p] =1’ V —buf[p]) continue; /* bypass comment or blank line x/
1 = last_node; /* remember the spacer at the left of this option */
for (pp = 0; buf[p];) {
for (j =0; j < 8A (o, ~isspace(buf [p + j])) A buf[p + 5] # > 275 j++)
o, cl[last_itm].name[j] = buf[p + j];
if (—j) panic("Empty,item name");
if (j =8 A —isspace(buf[p+ j]) Abuf[p+j] # ’:’) panic("Item name too long");
if (j <8) o,cl[last_itm].name[j] = >\0?;
(Create a node for the item named in buf [p] 18);
if (buflp+j]# ’:?) o,ndlast_node].color = 0;
else if (k > second) {
if ((o, isspace(buf[p+ 7+ 1])) V (o, ~isspace (buf [p + j + 2])))
panic("Color must be a single character");
0, nd [last_node].color = (unsigned char) buf[p + j + 1];
p+=2
} else panic("Primary,item must be uncolored");
for (p += 7+ 1; o, isspace(buf[p]); p++) ;

if (-pp) {
if (vbose & show_warnings) fprintf (stderr,"Option ignored (no primary items): "O"s", buf);
while (last_node > i) {
(Remove last_node from its item list 20);

last_node —;
} else {
0, nd[i].down = last_node;
last_node ++; /* create the next spacer */
if (last-node = max_nodes) panic("Too many nodes");
options ++;
o0, nd[last_node].up =i+ 1;
0, nd[last_node].itm = —options;

}
}

This code is used in section 2.

12 INPUTTING THE MATRIX DLX6 818

18. (Create a node for the item named in buf[p] 18) =
for (k =0; o, strncmp (cl[k].name, cl[last_itm].name, 8); k++) ;
if (k = last_itm) panic("Unknown, item name");
if (o, nd[k].auz > i) panic("Duplicate item name in this option");
last_node ++;
if (last_-node = maz_nodes) panic("Too many nodes");
o0, nd[last_node].itm = k;
if (k < second) pp = 1;
o,t = ndlk].len + 1;
(Insert node last-node into the list for item & 19);

This code is used in section 17.

19. Insertion of a new node is simple, unless we're randomizing. In the latter case, we want to put the
node into a random position of the list.

We store the position of the new node into nd[k].auz, so that the test for duplicate items above will be
correct.

As in other programs developed for TAOCP, I assume that four mems are consumed when 31 random bits
are being generated by any of the GB_FLIP routines.

(Insert node last_node into the list for item k 19) =
o,nd[k].len = t; /* store the new length of the list x/
nd[k].aux = last_-node; /* no mem charge for aux after len x/
if (—randomizing) {
o, = nd[k].up; /* the “bottom” node of the item list */
000, nd[r].down = nd[k].up = last_node, nd[last-node].up = r, nd[last_node].down = k;
} else {
mems += 4,t = gb_unif-rand (t); /* choose a random number of nodes to skip past */
for (0,7 =k; t; o,r = nd[r].down,t—) ;
000,q = nd[r].up, nd[q].down = nd[r].up = last_node;
o0, nd[last_node|.up = gq, nd[last_node].down = r;

}

This code is used in section 18.

20. (Remove last_node from its item list 20) =
0, k = nd[last_node].itm;
0o, nd[k].len —, nd[k].aux =i — 1;
0,q = nd|last-node].up,r = nd[last_node].down;
00, nd[q].down = r,nd[r].up = g;

This code is used in section 17.

21. (Report the successful completion of the input phase 21) =
forintf (stderr, " ("O"11d options, "O"d+"O"d_ items, ,"O"d entries successfully read)\n",
options, second — 1, last_itm — second, last_node — last_itm);

This code is used in section 2.

§22 DLX6 INPUTTING THE MATRIX 13

22. The item lengths after input should agree with the item lengths after this program has finished. I
print them (on request), in order to provide some reassurance that the algorithm isn’t badly screwed up.

(Report the item totals 22) =

forintf (stderr, "Item totals:");

for (k=1; k <last_itm; k++) {
if (k = second) fprintf (stderr,",1");
forintf (stderr,","O"d", nd|k].len);

}

forintf (stderr,"\n");

}

This code is used in section 2.

14 THE MEMO CACHE DLX6 §23

23. The memo cache. This program has special data structures by which we can tell if the current
covering-and-purification status matches a previous status. Each status is converted to a multibit signature,
with one bit for each primary item, and possibly several bits for each second item that can be colored in
several ways. Every potential contribution to the signature is specified by an 8-byte inx structure.

(Type definitions 6) +=
typedef struct inx_struct {
int hash; /* bits used to randomize the signature */
short code; /* what bits should be set in that octabyte? =/
char shift; /* by how much should be code be shifted? =/
char orig; /* the original character used for a color */
} inx;

24. A large hash table is used to help decide which signatures are currently known. Its entries are octabytes
with two fields:
(Type definitions 6) +=
typedef struct hash_struct {
int sig; /* where the signature can be found in the cache array =/
int zddref; /* the ZDD node that corresponds to this signature */
} hashentry;

25. A multibit signature consists of one or more octabytes, all but the last of which have the sign bit set.
It is preceded in cache by an octabyte that contains the count of all solutions represented by its ZDD node.

(Global variables 3) +=
inx siginx [maz_inz]; /* indexes for making signatures */
int sigptr; /* this many siginz entries are in use */
int sigsiz; /= this many octabytes per signature x/
hashentry xhash; /+ hash table for locating signatures */
int hashcount; /* this many items are in the hash table x/
ullng xcache; /* the memo cache */
unsigned int cacheptr; /* this many octabytes of cache are in use */
unsigned int oldcacheptr; /* this many were in use a moment ago */
unsigned int zddnodes = 2; /* total ZDD nodes created */
unsigned int memos; /+ this many configurations were cached */
unsigned int goodmemos; /* of which this many had solutions #*/
ullng hits; /* total number of cache hits */
char usedcolor[256], colormap|[256]; /* tables for color code renumbering */

26. The colors of a secondary item are mapped into small positive integers, so that the signature will be
compact. For example, if the colors are a and b, we’ll change them to 1 and 2; but the original names will
be remembered in the orig field. In this case there will be three code values, occupying two bits of the
signature: code = 1 when the item is unpurified; code = 2 when it has been purified to 1; code = 3 when it
has been purified to 2.

The siginz table entry for item k is accessed by cl[k].sig when k is primary, or by cl[k].sig + nd[k].color
when k is secondary. That entry will tell us what bits should be contributed to octabyte cl[k].offset of the
overall multibit signature, and it will also contribute to the 32-bit hash code of the full signature.

827 DLX6 THE MEMO CACHE 15

27. We give the smallest offsets to the items with the largest numbers, hoping that many of the signatures
will be cached after all of the small-numbered items have been covered.

#define overflow (p, pname)
{ fprintf (stderr,"0Overflow,in cache memory ("O"s="0"d)'\n", pname,p); exit(—667); }
(Initialize the memo cache 27) =
hash = (hashentry *) malloc(hashsize * sizeof (hashentry));
if (—hash) {
forintf (stderr, "Couldn’t allocate the hash table (hashsize="0"d) !\n", hashsize);
exit (—68);

cache = (ullng *) malloc(maz_cache sizeof (ullng));

if (—cache) {
forintf (stderr, "Couldn’t allocate the cache memory (max_cache="0"d) !\n", maz_cache);
exit (—69);

}
q=1,r=0; /* offset and position within the multibit signature */
for (k = last_itm — 1; k; k—)
if (k < second) (Prepare for a primary item signature 28)
else (Prepare for a secondary item signature 29);
stgsiz = q + 1;

This code is used in section 2.

28. (Prepare for a primary item signature 28) =
{
if (r=63) g+,r =0; /* the sign bit is used for continuations */
o, siginz [sigptr].shift = r, siginz [sigptr].code = 1;
mems += 4, siginz[sigptr]|.hash = gb_next_rand();
o, clk].sig = sigptr++, cl[k].offset = q;
if (sigptr > maz_inz) overflow (maz_inz, "max_inx");
T

}

This code is used in section 27.

16 THE MEMO CACHE DLX6 §29

29. (Prepare for a secondary item signature 29) =
{
if (o, nd[k].down = k) { /* unused secondary item x/
register [, r;
0,1 = cllk].prev,r = cl[k].next;
00, cl[l].next = r, cl[r].prev = ;
continue; /* it disappears */
}
o0, nd [k].color = 0;
cc=1;
for (p = nd[k].down; p > k; o,p = nd[p].down) {
0,1 = nd[p].color;
if (i) {
o0,t = usedcolor[i];
if (—t) oo, colormap|cc] = i, usedcolor|i| = cc++;
o0, nd [p].color = usedcolor|i]; /* the original color is permanently changed */
¥
)
for (t=1; cc > (1 <« t); t++) ; /x t =|lgecc] + 1 slots in the signature */
if (sigptr +t > maz_inz) overflow (maz_inz, "max_inx");
if (r+t>63) g++,r =0;
for (i=0; i < cc; i++) {
0, siginz [sigptr + i].shift = r, siginz [sigptr + i].code = 1 + 1;
00, siginx [sigptr + i].orig = colormap[i], usedcolor[colormap|i]] = 0;
mems += 4, siginz [sigptr + i].hash = gb_next_rand();
o, cl|k].sig = sigptr, cl[k].offset = g;
}
sigptr += cc,r +=1;
¥

This code is used in section 27.

30. +#define signbit #8000000000000000

{Look for the current status in the memo cache 30) =
{
register ullng sigacc;
register unsigned int sighash;
register int off, sig, offset;

if (cacheptr + sigsiz > max_cache) overflow (maz_cache, "max_cache");
sighash = 0, off = 1, sigacc = 0;
for (o, k = clllast_itm].prev; k # last_itm; o,k = cl[k].prev)
(Contribute a secondary item to the signature 32);
for (o, k = cl[root].prev; k # root; o,k = cl[k].prev) (Contribute a primary item to the signature 31);
o, cache[cacheptr + off | = sigacc;
(Do the hash lookup 33);
¥

This code is used in section 36.

831 DLX6 THE MEMO CACHE 17

31. (Contribute a primary item to the signature 31) =

o, sig = cl[k].sig, offset = cl[k].offset;
while (off < offset) {
0, cache[cacheptr + off | = sigacc | signbit;
off ++, sigacc = 0;
}
o, sighash += siginz [sig].hash;
sigace += 1p1, < siginz [sig].shift; /x siginx[sig].code =1 x/

}

This code is used in section 30.

32. (Contribute a secondary item to the signature 32) =
{
if (0, nd[k].len = 0) continue;
o, sig = cl[k].sig, offset = cl[k].offset;
while (off < offset) {
o, cache[cacheptr + off | = sigacc | signbit;
off ++, sigacc = 0;

0, sig += ndlk].color;
o, sighash += siginz [sig].hash;
sigacc += ((long long) siginz[sig].code) < siginz[sig].shift;

This code is used in section 30.

18 THE MEMO CACHE DLX6 §33

33. Here I use Algorithm 6.4D in the hash table, “open addressing with double hashing,” because I want
to refresh my brain’s memory of that technique. (It conserves my computer’s memory nicely, and avoids the
primary clustering of simpler methods.)

#define hashmask ((1 < loghashsize) — 1)

(Do the hash lookup 33) =
{

register int h, hh, s, [;
hh = (sighash > (loghashsize — 1)) | 1;
for (h = sighash & hashmask; ; h = (h + hh) & hashmask) {
0,8 = hash[h].sig;
if (—s) break;
for 1=0; ; I++) {
if (oo, cache[s + 1] # cache[cacheptr +1+1]) break;
if (cache[s +1] & signbit) continue;
goto cache_hit;
}
}

if (++hashcount > hashsize) overflow(hashsize, "hashsize");
0, hash[h].sig = cacheptr + 1; /* cache|cacheptr] will hold a count */
oldcacheptr = cacheptr, cacheptr += q + 1;
memos ++;
0, hashloc[level] = h;
hit = 0;
goto cache_miss;
cache_hit: hit =1+ h;
cache_miss: ;

}

This code is used in section 30.

34. The following code is executed after completing the computation on a level that has found at least
one solution. The memo cache entry for that level is hashloc[level], and the ZDD node representing all those
solutions is znode.

(Cache the successful znode 34) =
{
register int h;
0, h = hashloc|level];
0, hash[h].zddref = znode;
goodmemos ++;
000, cachelhashlh].sig — 1] = count — entrycount[level];

}

This code is used in section 36.

835 DLX6 THE MEMO CACHE

35. To celebrate a cache hit, we emulate all of the relevant previous computation at high speed.

(Use previous ZDD data in place of this level’s computation 35) =

{
register ullng c;
0, znode = hash[hit — 1].zddref ;
if (vbose & show_hits) fprintf (stderr,"Hit [%x],(zdd="0"x, sols="0"11d)\n",
hash[hit — 1].sig — 1, znode, cache|hash[hit — 1].sig — 1]);
if (znode) {

0, c = cachelhash[hit — 1].sig — 1]; /* this many new solutions are hereby found =/
count += ¢;
if (count > mazcount) timeout = 0; /* exit as soon as possible x/

if (count < ¢) fprintf (stderr," (the solution count has overflowed!)\n");

}
hits ++;
goto backdown;

}

This code is used in section 36.

19

20 THE DANCING DLX6 §36

36. The dancing. Our strategy for generating all exact covers will be to repeatedly choose always the
item that appears to be hardest to cover, namely the item with shortest list, from all items that still need
to be covered. And we explore all possibilities via depth-first search.

The neat part of this algorithm is the way the lists are maintained. Depth-first search means last-in-first-
out maintenance of data structures; and it turns out that we need no auxiliary tables to undelete elements
from lists when backing up. The nodes removed from doubly linked lists remember their former neighbors,
because we do no garbage collection.

The basic operation is “covering an item.” This means removing it from the list of items needing to be
covered, and “hiding” its options: removing nodes from other lists whenever they belong to an option of a
node in this item’s list.

(Solve the problem 36) =
level = 0;
forward: nodes-++;
if (vbose & show_profile) profile[level]++;
if (sanity_checking) sanity();
(Do special things if enough mems have accumulated 38);
(Look for the current status in the memo cache 30);
if (hit) (Use previous ZDD data in place of this level’s computation 35);
o, entrycount[level] = count;
znode = 0;
(Set best_itm to the best item for branching 45);
cover (best_itm);
00, cur_node = choice|level] = nd[best_itm].down;
advance: if (cur_node = best_itm) goto backup;
if ((vbose & show_choices) A level < show_choices-maz) {
forintf (stderr,"L"O"d:", level);
print_option (cur_node, stderr);
}
(Cover all other items of cur_node 41);
if (o, cl[root].next = root) (Register a solution and goto recover 46);
0, savez[level] = znode;
if (++level > maxl) {
if (level > maz_level) {
forintf (stderr, "Too_many, ,levels!\n");
exit (—4);

mazl = level;
}
goto forward;
backup: uncover (best_itm);
if (znode) (Cache the successful znode 34);
backdown: if (level =0) goto done;
level —;
00, cur_node = choice|level], best_itm = nd[cur_node).itm;
0, zsol = znode, znode = savez[level];
recover: (Uncover all other items of cur_node 42);
if (zsol) (Make a new ZDD node 47);
if (timeout = 0) goto backup;
00, cur_node = choicellevel] = nd[cur_node].down; goto advance;

This code is used in section 2.

837 DLX6 THE DANCING

37. (Global variables 3) +=

int level; /* number of choices in current partial solution */

int choice[maz_level]; /* the node chosen on each level */

int savez|[max_level]; /* current znode on each level x/

ullng profile[maz_level]; /+ number of search tree nodes on each level */

ullng entrycount [maz_level]; /* count when a new level commences */

int hashloc[maz_level]; /* hash location for cached computations at each level */

38. (Do special things if enough mems have accumulated 38) =
if (delta A (mems > thresh)) {
thresh += delta;
if (vbose & show_full_state) print_state();
else print_progress();
}
if (mems > timeout) {
forintf (stderr, "TIMEQUT!\n");
timeout = 0;
}

This code is used in section 36.

21

22 THE DANCING DLX6 §39

39. When an option is hidden, it leaves all lists except the list of the item that is being covered. Thus a
node is never removed from a list twice.

Program DLX2 improved its performance by not removing nodes from secondary items that have been
purified. In DLX6 we don’t want to do this, because we want the len field of secondary items to drop to zero
when none of the active options use them. (Such items are irrelevant to the cached status.) But we can save
part of the work, by decreasing len without altering up or down.

Furthermore, when the len field of a secondary item does drop to zero, we want to remove it from the list
of “active” secondary items.

(Subroutines 10) +=
void cover (int ¢)

{
register int cc, I, v, rr, nn, uu, dd, t;
0,1l = clc].prev,r = cl[c].next;
0o, cl[l].next = r,cl[r].prev = ;
updates ++;
for (o, rr = nd[c].down; rr > last_itm; o,rr = nd[rr].down)
for (nn=rr+1; nn#rr;) {
0, cc = nd[nn].itm;
if (cc <0) {
0,nn = nd[nn].up; continue;
}
if (nd[nn].color > 0) {
o0, uu = nd[nn].up, dd = nd[nn].down;
00, nd[uu].down = dd,nd[dd].up = uu;
}
updates ++;
o,t = nd[ec].len — 1;
o,nd[cc).len = t;
if (t=0A cc > second) {
0,1 = cl[cc].prev,r = cl[ec].next;
00, cl[l].next = r, cl[r].prev = ;
}

nn++;

840 DLX6 THE DANCING 23

40. Here we uncover an item by processing its options from bottom to top, thus undoing in the reverse
order of doing.

(Subroutines 10) +=
void uncover(int c)
{
register int cc, I, v, rr, nn, uu, dd, t;
for (o, rr = ndcl.up; rr > last_itm; o,rr = nd[rr].up)
for (nn = —1; nn #rr;) {
o, cc = nd[nn].itm;
if (cc <0) {
o,nn = nd[nn].down; continue;

if (nd[nn].color > 0) {
o0, uu = nd[nn].up, dd = nd[nn].down;
00, nd[uu].down = nd[dd].up = nn;

o,t = nd[cc].len + 1;
o,nd[cc].len = t;
if (t=1A cc> second) {
0,1l = cl[cc].prev,r = cl|ec].next;
0o, cl[l].next = clr].prev = cc;
}
nn——;
}
0,1 = cl[c].prev,r = cl[c].next;
oo, cl[l].next = cl[r].prev = ¢;

}

41. A subtle point arises here: When best_itm was covered, or when a previous item in the option for
cur_node was covered or purified, we may have removed all of the remaining nodes for some secondary item,
and deleted that item from the list of active secondaries. We don’t want to cover or purify it in such cases,
since that would delete it twice.

(Cover all other items of cur_node 41) =
for (pp = cur_node + 1; pp # cur_node;) {
0, cc = nd[pp].itm;
if (cc <0) o,pp = nd[pp].up;
else {
if (cc < second V (o, nd[cc].len)) {
if (—nd[pp].color) cover(cc);
else if (nd[pp].color > 0) purify(pp);
}
pp++;
}
}

This code is used in section 36.

24 THE DANCING DLX6 §42

42. We must go leftward as we uncover the items, because we went rightward when covering them.
And the logic above requires another subtle point: We must not allow purify(pp) to change the length of
nd[pp].itm from nonzero to zero. (Otherwise we couldn’t unpurify it.)
(Uncover all other items of cur_node 42) =
for (pp = cur_node — 1; pp # cur_node;) {
o, cc = nd[pp].itm;
if (cc <0) o, optionno =1 — cc, pp = nd[pp].down;
else {
if (cc < second V (o, nd[cc].len)) {
if (—nd[pp].color) uncover(cc);
else if (nd[pp].color > 0) unpurify(pp);
}
pp—;
}
}

This code is used in section 36.

843 DLX6 THE DANCING 25

43. When we choose an option that specifies colors in one or more items, we “purify” those items by
removing all incompatible options. All options that want the chosen color in a purified item are temporarily
given the color code —1 so that they won’t be purified again.

The purified item’s list stays intact, so that we can unpurify it later. But we adjust the len, so that only
active options are counted.

(Subroutines 10) +=
void purify (int p)

register int cc, rr, nn, uu, dd, t, x, tt;
o, cc = nd[p|.itm,x = nd|[p|.color;
0, nd|[cc].color = x;
o, tt = nd[cc].len;
cleansings ++;
for (o, rr = nd[cc].down; rr > last_itm; o, rr = nd[rr].down) {
if (rr =p) fprintf (stderr,"confusion!\n");
if (o, nd[rr].color # x) {
tt—;
for (nn =1 +1; nn £ rr;) {
0, c¢c = nd[nn].itm;
if (cc <0) {
o,nn = nd[nn].up; continue;

if (nd[nn].color > 0) {
o, uu = nd[nn).up, dd = nd[nn].down;
00, nd[uu].down = dd,nd[dd].up = uu;
}
updates ++;
o,t = ndlec].len — 1;
o,nd[ec].len = t;
if (t=0A cc > second) {
register int [, r;
0,1l = cl[cc].prev,r = cl[cc].next;
0o, cl[l].next =, cl[r].prev = ;

}

nn++;
} else cleansings++, 0, nd[rr].color = —1,
}
if (1t > 0) o, cc = nd[p].itm, nd[cc|.len = tt; /* no mem for fetching cc again x/
else {

register int [, r;

o0, cc = nd|[p|.itm,nd|[cc].len = —1; /* store a signal for unpurification */
0,1 = cllec].prev,r = cl[cc].next;

oo, cl[l].next = r, cllr].prev = ;

}

26 THE DANCING DLX6 §44

44. Just as purify is analogous to cover, the inverse process is analogous to uncover.

(Subroutines 10) +=
void unpurify(int p)

{

register int cc, rr, nn, wu, dd, t, x, tt;
00, cc = nd[pl.itm,x = ndp].color, nd[cc].color = 0;
o, tt = nd[cc].len;
if (it <0) {
register int [, r;
tt = 0; /= tt was artificially negative, to give a signal x/
0,1 = cl[cc].prev,r = cl[ec].next;
00, cl[l].next = cl[r].prev = cc;

for (o, rr = nd|[cc).up; rr > last_itm; o,rr = nd[rr].up) {
if (rr =p) fprintf (stderr,"confusion!\n");
if (o, nd[rr].color < 0) o, nd[rr].color = x;
else {
it ++;
for (nn =1 —1; nn £ rr;) {
o0, cc = nd[nn].itm;
if (cc <0) {

o,nn = nd[nn].down; continue;

if (nd[nn].color > 0) {
o, uu = nd[nn].up, dd = nd[nn].down;
00, nd[uu].down = nd[dd].up = nn;

o,t = nd[cc].len + 1;
o,nd[cc].len = t;
if (t=1Acc > second) {
register int [, r;
0,1 = cl[ec].prev,r = cl[cc].next;
00, cl[l].next = cl[r].prev = cc;
}
nn——;
}
¥
}
0, cc = nd[p].itm, nd[cc].len = tt;

}

845 DLX6 THE DANCING 27

45. The “best item” is considered to be an item that minimizes the number of remaining choices. If there
are several candidates, we choose the leftmost — unless we’re randomizing, in which case we select one of
them at random.

(Set best_itm to the best item for branching 45) =
t = max_nodes;
if ((vbose & show_details) A level < show_choices_maz A level > maxl — show_choices_gap) {
forintf (stderr, "Level ,"O"d:", level);
if (vbose & show_hits) fprintf (stderr," ["O"x]", oldcacheptr);
¥
for (o,k = cllroot].next; t Ak # root; o,k = cl[k].next) {
if ((vbose & show_details) A level < show_choices_maz A level > maxl — show_choices_gap)
forintf (stderr,","O".8s("O"d) ", cl[k].name, nd[k].len);
if (o, nd[k].len <1t) {
if (nd[k].len <t) best_itm = k,t = nd[k].len,p = 1;
else {
D+t /* this many items achieve the min */
if (randomizing A (mems += 4, ~gb_unif-rand (p))) best_itm = k;
}
¥

if ((vbose & show_secondary-details) A level < show_choices_max A level > maxl — show_choices_gap) {
forintf (stderr,";");
for (k = cl[last_itm].next; k # last_itm; k = cl[k].next)
forintf (stderr, ", "O".8s("O"d)", cl[k].name, nd[k].len);

if ((vbose & show_details) A level < show_choices_max A level > maxl — show_choices_gap)
forintf (stderr, " _branching on,"O".8s("O"d)\n", cl[best_itm].name, t);

if (shape_file) {
forintf (shape_file, ""O"d,"O" .8s\n", t, cl[best_itm].name);
fflush (shape_file);

This code is used in section 36.

28 THE DANCING DLX6

46. (Register a solution and goto recover 46) =
{
nodes ++; /* a solution is a special node, see 7.2.2—-(4) */
hits ++; /* Algorithm 7.2.2.17 treats this as a hit at level +1 x/
if (vbose & show_hits) fprintf (stderr,"Solution\n");
if (level +1 > maxl) {
if (level +1 > max_level) {
forintf (stderr, "Too_many levels!\n");
exit (—5);
}

maxl = level + 1;

if (vbose & show_profile) profile[level + 1]++;
if (shape_file) {
forintf (shape_file, "sol\n"); fflush(shape_file);

zsol = 1; /* the goal node of a ZDD x/

count ++;

if (count > mazcount) timeout = 0; /* exit as soon as possible */
goto recover;

}

This code is used in section 36.

47. (Make a new ZDD node 47) =
{
if (spacing) printf (""O"x:,(""O"d?"O"x:"O"x)\n", zddnodes, optionno, znode, zsol);
znode = zddnodes ++;
if (—zddnodes) { /* wow */
forintf (stderr, "Too_many,,ZDD_nodes,(4294967296) !\n");
exit (—232);
}

if (zddnodes > mazzdd) timeout = 0; /* exit as soon as possible */

}

This code is used in section 36.

48. (Subroutines 10) +=
void print_state(void)
{
register int [;
forintf (stderr, "Current_state,(level ,"O"d) :\n", level);
for (1=0; I < level; I++) {
print_option (choice[l], stderr);
if (I > show_levels_maz) {
forintf (stderr, ... \n");
break;
}
}

forintf (stderr, ","O"11d,solutions,,"O"11d hits,,"O"11d mems,", count, hits, mems);
forintf (stderr, " ,and, max level ,"O"d so far.\n", mazl);

}

§46

849 DLX6 THE DANCING 29

49. During a long run, it’s helpful to have some way to measure progress. The following routine prints a
string that indicates roughly where we are in the search tree. The string consists of character pairs, separated
by blanks, where each character pair represents a branch of the search tree. When a node has d descendants
and we are working on the kth, the two characters respectively represent k and d in a simple code; namely,
the values 0, 1, ..., 61 are denoted by

All values greater than 61 are shown as ‘*’. Notice that as computation proceeds, this string will increase
lexicographically.

Following that string, a fractional estimate of total progress is computed, based on the naive assumption
that the search tree has a uniform branching structure. If the tree consists of a single node, this estimate
is .5; otherwise, if the first choice is ‘k of d’, the estimate is (k—1)/d plus 1/d times the recursively evaluated
estimate for the kth subtree. (This estimate might obviously be very misleading, in some cases, but at least
it grows monotonically.)

{ Subroutines 10) +=
void print_progress(void)
{
register int [, k, d, c, p;
register double f, fd;

forintf (stderr, "Lafter"O"11d mems: " O"11ld, sols,,"O"11d hits,", mems, count, hits);
for (f =0.0,fd =1.0,l =0; | < level; I++) {
¢ = nd[choicell]].itm,d = nd]c].len;
for (k = 1,p = ndlc].down; p # choicell]; k++,p = nd[p].down) ;
fdx=d, f +=(k—1)/fd; /* choice l is k of d */
forintf (stderr,","O"c"O"c", k<107 °0° +k: k<3672’ +k—10: k<627 °A +k—36: %",
d<107°0°4+d:d<367’a’ +d—10:d <627 °A> +d—36:7%");
if (I > show_levels_maz) {
forintf (stderr,"...");
break;
}
}
forintf (stderr,","O".5f\n", f + 0.5/fd);
¥

50. (Print the profile 50) =

{

forintf (stderr, "Profile:\n");
for (level = 0; level < maxl; level++) fprintf (stderr,""O"3d:,"O"11d\n", level, profile[level]);

}

This code is used in section 2.

30 INDEX

51. Index.

advance: 36.

arge: 2, 4.

argv: 2, 4.

auzr: 6, 18, 19, 20.

backdown: 35, 36.

backup: 36.

best_itm: 2, 36, 41, 45.

buf: 3, 14, 17.

bufsize: 2, 3, 14, 17.

bytes: 2, 3.

c: 11, 35, 39, 40, 49.

cache: 24, 25, 27, 30, 31, 32, 33, 34, 35.

cache_hit: 33.

cache_miss: 33.

cacheptr: 2, 25, 30, 31, 32, 33.

ce: 2, 10, 29, 39, 40, 41, 42, 43, 44.

choice: 36, 37, 48, 49.

c: 6,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 26,
28, 29, 30, 31, 32, 36, 39, 40, 43, 44, 45.

cleansings: 2, 3, 43.

code: 23, 26, 28, 29, 31, 32.

color: 6, 10, 17, 26, 29, 32, 39, 40, 41, 42, 43, 44.

colormap: 25, 29.

count: 2, 3, 34, 35, 36, 37, 46, 48, 49.
cover: 36, 39, 41, 44.

cur_node: 2, 36, 41, 42.

d: 49.

dd: 39, 40, 43, 44.

delta: 3, 4, 38.

done: 2, 36.

down: 6, 10, 11, 13, 16, 17, 19, 20, 29, 36, 39,
40, 42, 43, 44, 49.

entrycount: 34, 36, 37.

erit: 4, 14, 27, 36, 46, 47.

f: 49.

fclose: 5.

fd: 49.

fflush: 45, 46.

fgets: 14, 17.

fopen: 4.

forward: 36.

forintf: 2,4, 10, 11, 12, 13, 14, 17, 21, 22, 27, 35,
36, 38, 43, 44, 45, 46, 47, 48, 49, 50.

gb_init_rand: 4.

gb_next_rand: 28, 29.
gb_rand: 3.
gb_unif-rand: 19, 45.
goodmemos: 2, 25, 34.
h: 33, 34.

hash: 23, 25, 27, 28, 29, 31, 32, 33, 34, 35.
hash_struct: 24.

DLX6 §51

hashcount: 2, 25, 33.
hashentry: 2, 24, 25, 27.
hashloc: 33, 34, 37.
hashmask: 33.

hashsize: 2, 27, 33.

hh: 33.

hit: 2, 33, 35, 36.

hits: 2, 25, 35, 46, 48, 49.

i 2.

immems: 2, 3.

inx: 2, 23, 25.

inx_struct: 23.

1sspace: 14, 17.

item: 2, 7,8, 9.

itm: 6, 10, 13, 14, 17, 18, 20, 36, 39, 40, 41,
42, 43, 44, 49.

itm_struct: 7.

Jr 2.

k: 2, 10, 12, 49.

l: ﬁ, g) @7 @7 g) M) @7 @

last_itm: 2, 8, 10, 11, 14, 15, 16, 17, 18, 21, 22,
27, 30, 39, 40, 43, 44, 45.

last_node: 2, 8, 10, 14, 17, 18, 19, 20, 21.

len: 6,10, 11, 13, 16, 18, 19, 20, 22, 32, 39, 40,
41, 42, 43, 44, 45, 49.

level: 33, 34, 36, 37, 45, 46, 48, 49, 50.

loghashsize: 2, 33.

main: 2.

malloc: 2T7.

mazx_cache: 2, 27, 30.

maz_cols: 2, 8, 14, 16.

maz_inz: 2, 25, 28, 29.

mazx_level: 2, 36, 37, 46.

maz_nodes: 2, 8, 14, 17, 18, 45.

mazcount: 3, 4, 35, 46.

mazl: 2, 3, 36, 45, 46, 48, 50.

mazzdd: 3, 4, 47.

memos: 2, 25, 33.

mems: 2, 3, 19, 28, 29, 38, 45, 48, 49.

mod: 2.

name: 7,9, 10, 11, 12, 13, 14, 15, 17, 18, 45.

nd: 6,8, 10, 11, 13, 14, 16, 17, 18, 19, 20, 22, 26,
29, 32, 36, 39, 40, 41, 42, 43, 44, 45, 49.

next: 7,11,12, 14, 16, 29, 36, 39, 40, 43, 44, 45.

nn: 39, 40, 43, 44.

node: 2, 6, 8.

node_struct: 6.

nodes: 2, 3, 36, 46.

O: 2.

2

o: 2.
off : 30, 31, 32.

851 DLX6

offset: 7, 26, 28, 29, 30, 31, 32.
oldcacheptr: 25, 33, 45.

oo: 2,14, 16, 20, 29, 33, 36, 39, 40, 43, 44.
ooo: 2, 19, 34.

optionno: 2, 42, 47.

options: 3, 17, 21.

orig: 10, 23, 26, 29.

overflow: 27, 28, 29, 30, 33.

p: 2, 10, 11, 12, 43, 44, 49.

panic: 14, 15, 16, 17, 18.

pname: 27.

pp: 2, 12, 13, 17, 18, 41, 42.

prev: 7,11, 12, 14, 16, 29, 30, 39, 40, 43, 44.
print_itm: 11,

print_option: 10, 36, 48.

print_progress: 38, 49.
print_state: 38, 48.
printf: 2, 47.

profile: 36, 37, 46, 50.
prow: 10, 11.

purify: 41, 42, 43, 44.
¢ 2, 10, 12.

qq: 12, 13.

r: 2, 29, 39, 40, 43, 44.
random_seed: 3, 4.
randomizing: 3, 4, 6, 19, 45.
recover: 36, 46.

root: 9, 11, 12, 14, 30, 36, 45.
rr: 39, 40, 43, 44.

s 33.

sanity: 2, 12, 36.

sanity_checking: 2, 12, 36.

savez: 36, 37.

second: 8, 11, 14, 17, 18, 21, 22, 27, 39, 40,
41, 42, 43, 44.

shape_file: 3, 4, 5, 45, 46.

shape_name: 3, 4.

shift: 23, 28, 29, 31, 32.
show_basics: 2, 3.
show_choices: 3, 36.
show_choices_gap: 3, 4, 45.
show_choices.max: 3, 4, 36, 45.
show_details: 3, 45.
show_full_state: 3, 38.
show_hits: 3, 35, 45, 46.
show_levels_mazx: 3, 4, 48, 49.
show_profile: 2, 3, 36, 46.
show_secondary_details: 3, 45.
show_tots: 2, 3.
show_warnings: 3, 17.

sig: 7,10, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35.

sigacc: 30, 31, 32.

sighash:

$19IN :
signbit
sigptr:
519812 :

spacing:

INDEX 31

30, 31, 32, 33.
10, 25, 26, 28, 29, 31, 32.
. 30, 31, 32, 33.
2, 25, 28, 29.
25, 27, 30.

2, 3, 4, 47.

sscanf: 4.

stderr:
35
stdin:
stream
strlen:

strncmp:

t: 2,

2,3, 4,10, 11, 12, 13, 14, 17, 21, 22, 27,
, 36, 38, 43, 44, 45, 46, 47, 48, 49, 50.
14, 17.
. 10.
14, 17.
15, 18.

thresh:
timeou

3, 4, 38.
t: 3,4, 35, 36, 38, 46, 47.

tt: 43, 44.

uint:
ullng:
uncove

unpurify:

up: 6

updates:
usedcolor:

2.
2, 3, 25, 27, 30, 35, 37.
ri 36, 40, 42, 44.
42, 44.
, 10, 13, 16, 17, 19, 20, 39, 40, 41, 43, 44.
2, 3, 39, 43.
25, 29.

uu: 39, 40, 43, 44.

vbose:

2, 3, 4, 17, 35, 36, 38, 45, 46.

z: 43, 44.

zddnodes:
zddref

znode:
zsol:

2, 3, 25, 47.
24, 34, 35.
2, 34, 35, 36, 37, 47
2, 36, 46, 47.

32 NAMES OF THE SECTIONS

Cache the successful znode 34) Used in section 36.

Check for duplicate item name 15) Used in section 14.

Check item p 13) Used in section 12.

Close the files 5) Used in section 2.

Contribute a primary item to the signature 31) Used in section 30.
Contribute a secondary item to the signature 32) Used in section 30.
Cover all other items of cur_node 41) Used in section 36.

Create a node for the item named in buf[p] 18) Used in section 17.
Do special things if enough mems have accumulated 38) Used in section 36.
Do the hash lookup 33) Used in section 30.

Global variables 3, 8, 25, 37> Used in section 2.

Initialize the memo cache 27) Used in section 2.

Initialize last_itm to a new item with an empty list 16) Used in section 14.
Input the item names 14) Used in section 2.

Input the options 17) Used in section 2.

Insert node last_node into the list for item k& 19) Used in section 18.
Look for the current status in the memo cache 30) Used in section 36.
Make a new ZDD node 47) Used in section 36.

Prepare for a primary item signature 28) Used in section 27.

Prepare for a secondary item signature 29) Used in section 27.

Print the profile 50) Used in section 2.

Process the command line 4) Used in section 2.

Register a solution and goto recover 46) Used in section 36.

Remove last_-node from its item list 20) Used in section 17.

Report the item totals 22) Used in section 2.

Report the successful completion of the input phase 21) Used in section 2.
Set best_itm to the best item for branching 45) Used in section 36.
Solve the problem 36) Used in section 2.

Subroutines 10, 11, 12, 39, 40, 43, 44, 48, 49) Used in section 2.

Type definitions 6, 7, 23, 24) Used in section 2.

Uncover all other items of cur_node 42) Used in section 36.

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

Use previous ZDD data in place of this level’s computation 35) Used in section 36.

DLX6

DLX6

Section Page

IO e 1 1
Data Structures 6 6
Inputting the matrix 14 10
The memo cache e 23 14
The dancing 36 20

IdeX .o 51 30

	Intro
	Data structures
	Inputting the matrix
	The memo cache
	The dancing
	Index
	Names of the sections
	Cache the successful znode
	Check for duplicate item name
	Check item p
	Close the files
	Contribute a primary item to the signature
	Contribute a secondary item to the signature
	Cover all other items of cur_node
	Create a node for the item named in buf[p]
	Do special things if enough mems have accumulated
	Do the hash lookup
	Global variables
	Initialize the memo cache
	Initialize last_itm to a new item with an empty list
	Input the item names
	Input the options
	Insert node last_node into the list for item k
	Look for the current status in the memo cache
	Make a new ZDD node
	Prepare for a primary item signature
	Prepare for a secondary item signature
	Print the profile
	Process the command line
	Register a solution and goto recover
	Remove last_node from its item list
	Report the item totals
	Report the successful completion of the input phase
	Set best_itm to the best item for branching
	Solve the problem
	Subroutines
	Type definitions
	Uncover all other items of cur_node
	Use previous ZDD data in place of this level's computation

