
§1 DLX5 INTRO 1

(Downloaded from https://cs.stanford.edu/˜knuth/programs.html and typeset on May 28, 2023)

1. Intro. This program is part of a series of “exact cover solvers” that I’m putting together for my own
education as I prepare to write Section 7.2.2.1 of The Art of Computer Programming. My intent is to have
a variety of compatible programs on which I can run experiments, in order to learn how different approaches
work in practice.

The basic input format for all of these solvers is described at the beginning of program DLX1, and you
should read that description now if you are unfamiliar with it. You should in fact read the beginning of
DLX2, too, because it adds “color controls” to the repertoire of DLX1.

DLX5 extends DLX2 by allowing options to have nonnegative costs. The goal is to find a minimum-cost
solution (or, more generally, to find the k best solutions, in the sense that the sum of their costs is minimized).

The input format is extended so that entries such as |n can be appended to any option, to specify its
cost. If several such entries appear in the same option, the cost is their sum.

Whenever a solution is found whose cost is less than kth best seen so far, that solution is output. For
example, suppose the given problem has only ten solutions, whose costs happen to be (0, 0, 1, 1, 2, 2, 3, 3,
4, 4). We might discover them in any order, perhaps (3, 1, 4, 1, 2, 3, 2, 4, 0, 0). If k = 1 (the default), we’ll
output solutions of cost 3, 1, 0. If k = 3, we’ll output solutions of cost 3, 1, 4, 1, 2, 0, 0. If k = 5, we’ll
output solutions of cost 3, 1, 4, 1, 2, 3, 2, 0, 0. If k ≥ 8, we’ll output all ten solutions. Different values of k
might, however, affect the order of discovery.

This program internally assigns a “tax” to each item, and changes the cost of each option to its net cost,
which is the original cost minus the taxes on each of its items. For example, the net cost of option ‘a b c |7’
will be not $7 but $1, if the tax on each of a, b, and c is $2. This modification doesn’t change the problem
in any essential way, because the net cost of each solution is equal to the original cost of that solution minus
the total tax on all items (and that total tax is constant). Taxes are assessed in such a way that each item
belongs to at least one net-zero-cost option, yet all options have a nonnegative net cost. The point is that
options whose net cost is large cannot be used in solutions whose net cost is small.

If the input contains no cost specifications, the behavior of DLX5 will almost exactly match that of DLX2,
except for needing more time and space.

[Historical note: The simple cutoff rule in this program was used in one of the first computer codes for
min-cost exact cover; see Garfinkel and Nemhauser, Operations Research 17 (1969), 848–856.]

https://cs.stanford.edu/~knuth/programs.html

2 INTRO DLX5 §2

2. After this program finds its solutions, it normally prints their total number on stderr , together with
statistics about how many nodes were in the search tree, and how many “updates” and “cleansings” were
made. The running time in “mems” is also reported, together with the approximate number of bytes needed
for data storage. (An “update” is the removal of an option from its item list. A “cleansing” is the removal of
a satisfied color constraint from its option. One “mem” essentially means a memory access to a 64-bit word.
The reported totals don’t include the time or space needed to parse the input or to format the output.)

Here is the overall structure:

#define o mems ++ /∗ count one mem ∗/
#define oo mems += 2 /∗ count two mems ∗/
#define ooo mems += 3 /∗ count three mems ∗/
#define O "%" /∗ used for percent signs in format strings ∗/
#define mod % /∗ used for percent signs denoting remainder in C ∗/
#define max level 5000 /∗ at most this many options in a solution ∗/
#define max cols 100000 /∗ at most this many items ∗/
#define max nodes 10000000 /∗ at most this many nonzero elements in the matrix ∗/
#define bufsize (9 ∗max cols + 3) /∗ a buffer big enough to hold all item names ∗/
#define sortbufsize 32 /∗ for the z lookahead heuristic ∗/
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

typedef unsigned int uint; /∗ a convenient abbreviation ∗/
typedef unsigned long long ullng; /∗ ditto ∗/
〈Type definitions 11 〉;
〈Global variables 6 〉;
〈Subroutines 15 〉;
main (int argc , char ∗argv [])
{

register int cc , i, j, k, p, pp , q, r, s, t, cur node , best itm ;
register ullng tmpcost , curcost , mincost , nextcost ;

〈Process the command line 7 〉;
〈Do the input phase 3 〉;
〈Solve the problem 39 〉;

done : if (sanity checking) sanity ();
〈Bid farewell 4 〉;
}

3. 〈Do the input phase 3 〉 ≡
〈 Input the item names 19 〉;
〈 Input the options 22 〉;
〈Assign taxes 31 〉;
〈Sort the item lists 32 〉;
if (vbose & show basics) 〈Report the successful completion of the input phase 37 〉;
if (vbose & show tots) 〈Report the item totals 38 〉;
imems = mems ,mems = 0;

This code is used in section 2.

§4 DLX5 INTRO 3

4. 〈Bid farewell 4 〉 ≡
if (vbose & show tots) 〈Report the item totals 38 〉;
if (vbose & show profile) 〈Print the profile 61 〉;
if (vbose & show basics) {

fprintf (stderr , "Altogether "O"llu solution"O"s, "O"llu+"O"llu mems,", count ,
count ≡ 1 ? "" : "s", imems ,mems);

bytes = last itm ∗ sizeof (item) + last node ∗ sizeof (node) + maxl ∗ sizeof (int);
fprintf (stderr , " "O"llu updates, "O"llu cleansings,", updates , cleansings);
fprintf (stderr , " "O"llu bytes, "O"llu nodes.\n", bytes ,nodes);
}
if ((vbose & show opt costs) ∧ count) 〈Print the kthresh best costs found 9 〉;
〈Close the files 8 〉;

This code is used in section 2.

5. You can control the amount of output, as well as certain properties of the algorithm, by specifying
options on the command line:

• ‘v〈 integer 〉’ enables or disables various kinds of verbose output on stderr , given by binary codes such as
show choices ;

• ‘m〈 integer 〉’ causes every mth solution to be output (the default is m0, which merely counts them);
• ‘k〈positive integer 〉’ causes the algorithm to cut off solutions that don’t improve costwise on the k best

seen so far (the default is 1, and k must not exceed maxk);
• ‘Z〈 string 〉’ causes a warning to be printed if there’s an option that doesn’t have exactly one primary item

beginning with c, for each character c of the string (thereby allowing a special heuristic to be used for
cutting off false starts);

• ‘z〈positive integer 〉’ causes a warning to be printed if there’s an option that doesn’t have exactly this
many primary items in addition to those specified by Z (thereby allowing a special heuristic to be used for
cutting off false starts);

• ‘h〈positive integer 〉’ sets lenthresh , a heuristic that limits the amount of lookahead when we’re trying to
identify the best item for branching (default 10);

• ‘d〈 integer 〉’ sets delta , which causes periodic state reports on stderr after the algorithm has performed
approximately delta mems since the previous report (default 10000000000);

• ‘c〈positive integer 〉’ limits the levels on which choices are shown during verbose tracing;
• ‘C〈positive integer 〉’ limits the levels on which choices are shown in the periodic state reports;
• ‘l〈nonnegative integer 〉’ gives a lower limit, relative to the maximum level so far achieved, to the levels

on which choices are shown during verbose tracing;
• ‘t〈positive integer 〉’ causes the program to stop after this many solutions have been found;
• ‘T〈 integer 〉’ sets timeout (which causes abrupt termination if mems > timeout at the beginning of a level);
• ‘S〈filename 〉’ to output a “shape file” that encodes the search tree.

#define show basics 1 /∗ vbose code for basic stats; this is the default ∗/
#define show choices 2 /∗ vbose code for backtrack logging ∗/
#define show details 4 /∗ vbose code for further commentary ∗/
#define show taxes 8 /∗ vbose code to print all nonzero item taxes ∗/
#define show opt costs 16 /∗ vbose code to show the best k costs at end ∗/
#define show profile 128 /∗ vbose code to show the search tree profile ∗/
#define show full state 256 /∗ vbose code for complete state reports ∗/
#define show tots 512 /∗ vbose code for reporting item totals at start and end ∗/
#define show warnings 1024 /∗ vbose code for reporting options without primaries ∗/
#define maxk 15000 /∗ upper limit on parameter k ∗/

4 INTRO DLX5 §6

6. 〈Global variables 6 〉 ≡
int vbose = show basics + show opt costs + show warnings ; /∗ level of verbosity ∗/
int spacing ; /∗ solution t is output if t is a multiple of spacing ∗/
int show choices max = 1000000; /∗ above this level, show choices is ignored ∗/
int show choices gap = 1000000; /∗ below level maxl − show choices gap , show details is ignored ∗/
int show levels max = 1000000; /∗ above this level, state reports stop ∗/
int maxl = 0; /∗ maximum level actually reached ∗/
char buf [bufsize]; /∗ input buffer ∗/
ullng sortbuf [sortbufsize]; /∗ short buffer for sorting ∗/
ullng count ; /∗ solutions found so far ∗/
ullng options ; /∗ options seen so far ∗/
ullng imems , mems ; /∗ mem counts ∗/
ullng updates ; /∗ update counts ∗/
ullng cleansings ; /∗ cleansing counts ∗/
ullng bytes ; /∗ memory used by main data structures ∗/
ullng nodes ; /∗ total number of branch nodes initiated ∗/
ullng thresh = 10000000000; /∗ report when mems exceeds this, if delta 6= 0 ∗/
ullng delta = 10000000000; /∗ report every delta or so mems ∗/
ullng maxcount = #ffffffffffffffff; /∗ stop after finding this many solutions ∗/
ullng timeout = #1fffffffffffffff; /∗ give up after this many mems ∗/
FILE ∗shape file ; /∗ file for optional output of search tree shape ∗/
char ∗shape name ; /∗ its name ∗/
int kthresh = 1; /∗ this many mincost solutions will be found, if possible ∗/
int lenthresh = 10; /∗ at most this many options checked per item ∗/
int zgiven ; /∗ this many primary items per option, if specified ∗/
char Zchars [8]; /∗ prefix characters specified by parameter Z ∗/
int ppgiven ; /∗ desired footprint of primary items in every option ∗/

See also sections 13 and 41.

This code is used in section 2.

§7 DLX5 INTRO 5

7. If an option appears more than once on the command line, the first appearance takes precedence.

〈Process the command line 7 〉 ≡
for (j = argc − 1, k = 0; j; j−−)

switch (argv [j][0]) {
case ’v’: k |= (sscanf (argv [j] + 1, ""O"d",&vbose)− 1); break;
case ’m’: k |= (sscanf (argv [j] + 1, ""O"d",&spacing)− 1); break;
case ’k’: k |= (sscanf (argv [j] + 1, ""O"d",&kthresh)− 1);

if (kthresh < 1 ∨ kthresh > maxk) {
fprintf (stderr , "Sorry, parameter k must be between 1 and "O"d!\n",maxk);
exit (−1);

}
break;

case ’Z’:
if (strlen (argv [j]) > 8) {

fprintf (stderr , "Sorry, parameter Z must specify at most 7 prefix characters!\n");
k |= 1;

} else sprintf (Zchars , "%s", argv [j] + 1);
break;

case ’z’: k |= (sscanf (argv [j] + 1, ""O"d",&zgiven)− 1); break;
case ’h’: k |= (sscanf (argv [j] + 1, ""O"d",&lenthresh)− 1); break;
case ’d’: k |= (sscanf (argv [j] + 1, ""O"lld",&delta)− 1), thresh = delta ; break;
case ’c’: k |= (sscanf (argv [j] + 1, ""O"d",&show choices max)− 1); break;
case ’C’: k |= (sscanf (argv [j] + 1, ""O"d",&show levels max)− 1); break;
case ’l’: k |= (sscanf (argv [j] + 1, ""O"d",&show choices gap)− 1); break;
case ’t’: k |= (sscanf (argv [j] + 1, ""O"lld",&maxcount)− 1); break;
case ’T’: k |= (sscanf (argv [j] + 1, ""O"lld",&timeout)− 1); break;
case ’S’: shape name = argv [j] + 1, shape file = fopen (shape name , "w");

if (¬shape file)
fprintf (stderr , "Sorry, I can’t open file ‘"O"s’ for writing!\n", shape name);

break;
default: k = 1; /∗ unrecognized command-line option ∗/
}

if (k) {
fprintf (stderr ,

"Usage: "O"s [v<n>] [m<n>] [k<n>] [Z<ABC>] [z<n>] [h<n>]"" [d<n>] [c<n>] [C<n\

>] [l<n>] [t<n>] [T<n>] [S<bar>] < foo.dlx\n", argv [0]);
exit (−1);
}

This code is used in section 2.

8. 〈Close the files 8 〉 ≡
if (shape file) fclose (shape file);

This code is used in section 4.

6 INTRO DLX5 §9

9. 〈Print the kthresh best costs found 9 〉 ≡
{

fprintf (stderr , "The optimum cost"O"s", kthresh ≡ 1 ? " is" : "s are:\n");
〈Sort the bestcost heap in preparation for final printing 57 〉;
for (k = 1, tmpcost = infcost ; k ≤ kthresh ∧ bestcost [k] < infcost ; k++) {

if (tmpcost ≡ totaltax + bestcost [k]) r++;
else {
〈Print a line (except the first time) 10 〉;
tmpcost = totaltax + bestcost [k], r = 0;

}
}
〈Print a line (except the first time) 10 〉;
}

This code is used in section 4.

10. 〈Print a line (except the first time) 10 〉 ≡
if (tmpcost 6= infcost) {

if (r) fprintf (stderr , " $"O"llu (repeated "O"d times)\n", tmpcost , r + 1);
else fprintf (stderr , " $"O"llu\n", tmpcost);
}

This code is used in section 9.

§11 DLX5 DATA STRUCTURES 7

11. Data structures. Each item of the input matrix is represented by an item struct, and each option
is represented as a list of node structs. There’s one node for each nonzero entry in the matrix.

More precisely, the nodes of individual options appear sequentially, with “spacer” nodes between them.
The nodes are also linked circularly with respect to each item, in doubly linked lists. The item lists each
include a header node, but the option lists do not. Item header nodes are aligned with an item struct, which
contains further info about the item.

Each node contains five important fields, and one other that’s unused but might be important in extensions
of this program. Two are the pointers up and down of doubly linked lists, already mentioned. A third points
directly to the item containing the node. A fourth specifies a color, or zero if no color is specified. A fifth
specifies the cost of the option in which this node occurs. A sixth points to the spacer at the end of the
option; that one is currently set, but not looked at.

A “pointer” is an array index, not a C reference (because the latter would occupy 64 bits and waste cache
space). The cl array is for item structs, and the nd array is for nodes. I assume that both of those arrays
are small enough to be allocated statically. (Modifications of this program could do dynamic allocation if
needed.) The header node corresponding to cl [c] is nd [c].

Notice that each node occupies three octabytes. We count one mem for a simultaneous access to the up
and down fields, or for a simultaneous access to the itm and color fields.

Although the item-list pointers are called up and down , they need not correspond to actual positions
of matrix entries. The elements of each item list can appear in any order, so that one option needn’t be
consistently “above” or “below” another. Indeed, we will sort each option list of a primary item from top to
bottom in order of nondecreasing cost.

This program doesn’t change the itm fields after they’ve first been set up. But the up and down fields
will be changed frequently, although preserving relative order.

Exception: In the node nd [c] that is the header for the list of item c, we use the cost field to hold the
“tax” on that item—for diagnostic purposes only, not as part of the algorithm’s decision-making. We also
might use its color field for special purposes. The alternative names len for itm , aux for color , and tax for
cost are used in the code so that this nonstandard semantics will be more clear.

A spacer node has itm ≤ 0. Its up field points to the start of the preceding option; its down field points
to the end of the following option. Thus it’s easy to traverse an option circularly, in either direction.

The color field of a node is set to −1 when that node has been cleansed. In such cases its original color
appears in the item header. (The program uses this fact only for diagnostic outputs.)

#define len itm /∗ item list length (used in header nodes only) ∗/
#define aux color /∗ an auxiliary quantity (used in header nodes only) ∗/
#define tax cost /∗ item tax (used in header nodes only) ∗/
〈Type definitions 11 〉 ≡

typedef struct node struct {
int up , down ; /∗ predecessor and successor in item list ∗/
int itm ; /∗ the item containing this node ∗/
int color ; /∗ the color specified by this node, if any ∗/
ullng cost ; /∗ the cost of the option containing this node ∗/
} node;

See also section 12.

This code is used in section 2.

8 DATA STRUCTURES DLX5 §12

12. Each item struct contains three fields: The name is the user-specified identifier; next and prev point
to adjacent items, when this item is part of a doubly linked list.

As backtracking proceeds, nodes will be deleted from item lists when their option has been hidden by other
options in the partial solution. But when backtracking is complete, the data structures will be restored to
their original state.

We count one mem for a simultaneous access to the prev and next fields.

〈Type definitions 11 〉 +≡
typedef struct itm struct {

char name [8]; /∗ symbolic identification of the item, for printing ∗/
int prev , next ; /∗ neighbors of this item ∗/
} item;

13. 〈Global variables 6 〉 +≡
node ∗nd ; /∗ the master list of nodes ∗/
int last node ; /∗ the first node in nd that’s not yet used ∗/
item cl [max cols + 2]; /∗ the master list of items ∗/
int second = max cols ; /∗ boundary between primary and secondary items ∗/
int last itm ; /∗ the first item in cl that’s not yet used ∗/
ullng totaltax ; /∗ the sum of all taxes assessed ∗/

14. One item struct is called the root. It serves as the head of the list of items that need to be covered,
and is identifiable by the fact that its name is empty.

#define root 0 /∗ cl [root] is the gateway to the unsettled items ∗/

§15 DLX5 DATA STRUCTURES 9

15. An option is identified not by name but by the names of the items it contains. Here is a routine that
prints an option, given a pointer to any of its nodes. It also prints the position of the option in its item list,
given a cost threshold to measure the length of that list.

〈Subroutines 15 〉 ≡
void print option (int p,FILE ∗stream ,ullng thresh)
{

register int c, j, k, q;
register ullng s;

c = nd [p].itm ;
if (p < last itm ∨ p ≥ last node ∨ c ≤ 0) {

fprintf (stderr , "Illegal option "O"d!\n", p);
return;

}
for (q = p, s = 0; ;) {

fprintf (stream , " "O".8s", cl [nd [q].itm].name);
if (nd [q].color) fprintf (stream , ":"O"c",nd [q].color > 0 ? nd [q].color : nd [nd [q].itm].color);
s += nd [nd [q].itm].tax ;
q++;
if (nd [q].itm ≤ 0) q = nd [q].up ; /∗ −nd [q].itm is actually the option number ∗/
if (q ≡ p) break;

}
for (q = nd [c].down , k = 1; q 6= p; k++) {

if (q ≡ c) {
fprintf (stream , " (?)"); goto finish ; /∗ option not in its item list! ∗/

} else q = nd [q].down ;
}
for (q = nd [c].down , j = 0; q ≥ last itm ; q = nd [q].down , j++)

if (nd [q].cost ≥ thresh) break;
fprintf (stream , " ("O"d of "O"d)", k, j);

finish : if (s + nd [p].cost) fprintf (stream , " $"O"llu ["O"llu]\n", s + nd [p].cost ,nd [p].cost);
else fprintf (stream , "\n");
}
void prow (int p)
{

print option (p, stderr , infcost);
}

See also sections 16, 17, 43, 44, 47, 48, 59, 60, and 62.

This code is used in section 2.

10 DATA STRUCTURES DLX5 §16

16. When I’m debugging, I might want to look at one of the current item lists.

〈Subroutines 15 〉 +≡
void print itm (int c)
{

register int p;

if (c < root ∨ c ≥ last itm) {
fprintf (stderr , "Illegal item "O"d!\n", c);
return;

}
if (c < second) fprintf (stderr , "Item "O".8s, neighbors "O".8s and "O".8s:\n", cl [c].name ,

cl [cl [c].prev].name , cl [cl [c].next].name);
else fprintf (stderr , "Item "O".8s:\n", cl [c].name);
for (p = nd [c].down ; p ≥ last itm ; p = nd [p].down) prow (p);
}

17. Speaking of debugging, here’s a routine to check if redundant parts of our data structure have gone
awry.

#define sanity checking 0 /∗ set this to 1 if you suspect a bug ∗/
〈Subroutines 15 〉 +≡

void sanity (void)
{

register int k, p, q, pp , qq , t;

for (q = root , p = cl [q].next ; ; q = p, p = cl [p].next) {
if (cl [p].prev 6= q) fprintf (stderr , "Bad prev field at itm "O".8s!\n", cl [p].name);
if (p ≡ root) break;
〈Check item p 18 〉;

}
}

18. 〈Check item p 18 〉 ≡
for (qq = p, pp = nd [qq].down , k = 0; ; qq = pp , pp = nd [pp].down , k++) {

if (nd [pp].up 6= qq) fprintf (stderr , "Bad up field at node "O"d!\n", pp);
if (pp ≡ p) break;
if (nd [pp].itm 6= p) fprintf (stderr , "Bad itm field at node "O"d!\n", pp);
if (qq > p ∧ nd [pp].cost < nd [qq].cost)

fprintf (stderr , "Costs out of order at node "O"d!\n", pp);
}
if (p < second ∧ nd [p].len 6= k) fprintf (stderr , "Bad len field in item "O".8s!\n", cl [p].name);

This code is used in section 17.

§19 DLX5 INPUTTING THE MATRIX 11

19. Inputting the matrix. Brute force is the rule in this part of the code, whose goal is to parse and
store the input data and to check its validity.

#define panic(m)
{ fprintf (stderr , ""O"s!\n"O"d: "O".99s\n",m, p, buf); exit (−666); }

〈 Input the item names 19 〉 ≡
nd = (node ∗) calloc(max nodes , sizeof (node));
if (¬nd) {

fprintf (stderr , "I couldn’t allocate space for "O"d nodes!\n",max nodes);
exit (−666);
}
if (max nodes ≤ 2 ∗max cols) {

fprintf (stderr , "Recompile me: max_nodes must exceed twice max_cols!\n");
exit (−999);
} /∗ every item will want a header node and at least one other node ∗/
while (1) {

if (¬fgets (buf , bufsize , stdin)) break;
if (o, buf [p = strlen (buf)− 1] 6= ’\n’) panic("Input line way too long");
for (p = 0; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’ ∨ ¬buf [p]) continue; /∗ bypass comment or blank line ∗/
last itm = 1;
break;
}
if (¬last itm) panic("No items");
for (; o, buf [p];) {

for (j = 0; j < 8 ∧ (o,¬isspace (buf [p + j])); j++) {
if (buf [p + j] ≡ ’:’ ∨ buf [p + j] ≡ ’|’) panic("Illegal character in item name");
o, cl [last itm].name [j] = buf [p + j];

}
if (j ≡ 8 ∧ ¬isspace (buf [p + j])) panic("Item name too long");
〈Check for duplicate item name 20 〉;
〈 Initialize last itm to a new item with an empty list 21 〉;
for (p += j + 1; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’) {

if (second 6= max cols) panic("Item name line contains | twice");
second = last itm ;
for (p++; o, isspace (buf [p]); p++) ;

}
}
if (second ≡ max cols) second = last itm ;
oo , cl [last itm].prev = last itm − 1, cl [last itm − 1].next = last itm ;
oo , cl [second].prev = last itm , cl [last itm].next = second ;
/∗ this sequence works properly whether or not second = last itm ∗/

oo , cl [root].prev = second − 1, cl [second − 1].next = root ;
last node = last itm ; /∗ reserve all the header nodes and the first spacer ∗/
/∗ we have nd [last node].itm = 0 in the first spacer ∗/

This code is used in section 3.

20. 〈Check for duplicate item name 20 〉 ≡
for (k = 1; o, strncmp(cl [k].name , cl [last itm].name , 8); k++) ;
if (k < last itm) panic("Duplicate item name");

This code is used in section 19.

12 INPUTTING THE MATRIX DLX5 §21

21. 〈 Initialize last itm to a new item with an empty list 21 〉 ≡
if (last itm > max cols) panic("Too many items");
oo , cl [last itm − 1].next = last itm , cl [last itm].prev = last itm − 1; /∗ nd [last itm].len = 0 ∗/
o,nd [last itm].up = nd [last itm].down = last itm ;
last itm ++;

This code is used in section 19.

22. I’m putting the option number into the spacer that follows it, as a possible debugging aid. But the
program doesn’t currently use that information.

〈 Input the options 22 〉 ≡
〈Set ppgiven from parameters Z and z 28 〉;
while (1) {

if (¬fgets (buf , bufsize , stdin)) break;
if (o, buf [p = strlen (buf)− 1] 6= ’\n’) panic("Option line too long");
for (p = 0; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’ ∨ ¬buf [p]) continue; /∗ bypass comment or blank line ∗/
i = last node ; /∗ remember the spacer at the left of this option ∗/
tmpcost = 0;
for (pp = 0; buf [p];) {

for (j = 0; j < 8 ∧ (o,¬isspace (buf [p + j])) ∧ buf [p + j] 6= ’:’; j++)
o, cl [last itm].name [j] = buf [p + j];

if (¬j) panic("Empty item name");
if (j ≡ 8 ∧ ¬isspace (buf [p + j]) ∧ buf [p + j] 6= ’:’) panic("Item name too long");
if (j < 8) o, cl [last itm].name [j] = ’\0’;
〈Create a node for the item named in buf [p] 25 〉;
if (buf [p + j] 6= ’:’) o,nd [last node].color = 0;
else if (k ≥ second) {

if ((o, isspace (buf [p + j + 1])) ∨ (o,¬isspace (buf [p + j + 2])))
panic("Color must be a single character");

o,nd [last node].color = buf [p + j + 1];
p += 2;

} else panic("Primary item must be uncolored");
〈Skip to next item, accruing cost information if any 23 〉;

}
if (¬pp) {

if (vbose & show warnings) fprintf (stderr , "Option ignored (no primary items): "O"s", buf);
while (last node > i) {
〈Remove last node from its item list 27 〉;
last node −−;

}
} else {
〈Check for consistency with parameters Z and z 29 〉;
〈 Insert the cost into each item of this option 24 〉;
o,nd [i].down = last node ;
last node ++; /∗ create the next spacer ∗/
if (last node ≡ max nodes) panic("Too many nodes");
options ++;
o,nd [last node].up = i + 1;
o,nd [last node].itm = −options ;

}
}

This code is used in section 3.

§23 DLX5 INPUTTING THE MATRIX 13

23. 〈Skip to next item, accruing cost information if any 23 〉 ≡
while (1) {

register ullng d;

for (p += j + 1; o, isspace (buf [p]); p++) ;
if (buf [p] 6= ’|’) break;
if (buf [p + 1] < ’0’ ∨ buf [p + 1] > ’9’) panic("Option cost should be a decimal number");
for (j = 1, d = 0; o,¬isspace (buf [p + j]); j++) {

if (buf [p + j] < ’0’ ∨ buf [p + j] > ’9’) panic("Illegal digit in option cost");
d = 10 ∗ d + buf [p + j]− ’0’;

}
tmpcost += d;
}

This code is used in section 22.

24. 〈 Insert the cost into each item of this option 24 〉 ≡
for (j = i + 1; j ≤ last node ; j++) o,nd [j].cost = tmpcost ;

This code is used in section 22.

25. 〈Create a node for the item named in buf [p] 25 〉 ≡
for (k = 0; o, strncmp(cl [k].name , cl [last itm].name , 8); k++) ;
if (k ≡ last itm) panic("Unknown item name");
if (o,nd [k].aux ≥ i) panic("Duplicate item name in this option");
last node ++;
if (last node ≡ max nodes) panic("Too many nodes");
o,nd [last node].itm = k;
if (k < second) 〈Adjust pp for parameters Z and z 30 〉;
o, t = nd [k].len + 1;
〈 Insert node last node into the list for item k 26 〉;

This code is used in section 22.

26. Insertion of a new node is simple. Before taxes have been computed, we set only the up links of each
item list.

We store the position of the new node into nd [k].aux , so that the test for duplicate items above will be
correct.

〈 Insert node last node into the list for item k 26 〉 ≡
o,nd [k].len = t; /∗ store the new length of the list ∗/
nd [k].aux = last node ; /∗ no mem charge for aux after len ∗/
o, r = nd [k].up ; /∗ the “bottom” node of the item list ∗/
oo ,nd [k].up = last node ,nd [last node].up = r;

This code is used in section 25.

27. 〈Remove last node from its item list 27 〉 ≡
o, k = nd [last node].itm ;
oo ,nd [k].len −−,nd [k].aux = i− 1;
oo ,nd [k].up = nd [last node].up ;

This code is used in section 22.

14 INPUTTING THE MATRIX DLX5 §28

28. When the user has used the Z parameter to specify special prefix characters, we want to check that
each option conforms to that specification.

The rightmost bits of variable pp will indicate which prefixes have been seen so far. The other bits of pp
will count active items that don’t have a Z-specified prefix.

〈Set ppgiven from parameters Z and z 28 〉 ≡
if (o,Zchars [0]) {

for (r = 1; Zchars [r]; r++) ;
ppgiven = (1� r)− 1 + (zgiven � 8);
} else ppgiven = zgiven � 8;

This code is used in section 22.

29. 〈Check for consistency with parameters Z and z 29 〉 ≡
if (ppgiven) {

if (zgiven ∧ ((pp � 8) 6= zgiven)) fprintf (stderr ,
"Option has "O"d non−Z primary items, not "O"d: "O"s", pp � 8, zgiven , buf);

if ((pp ⊕ ppgiven) & #ff) {
for (r = 0; Zchars [r]; r++)

if ((pp & (1� r)) ≡ 0) fprintf (stderr , "Option lacks a "O"c item: "O"s",Zchars [r], buf);
}
}

This code is used in section 22.

30. 〈Adjust pp for parameters Z and z 30 〉 ≡
{

for (r = 0; Zchars [r]; r++)
if (Zchars [r] ≡ cl [last itm].name [0]) break;

if (Zchars [r]) {
if (pp & (1� r)) fprintf (stderr , "Option has two "O"c items: "O"s",Zchars [r], buf);
else pp += 1� r;

} else pp += 1� 8;
}

This code is used in section 25.

§31 DLX5 INPUTTING THE MATRIX 15

31. We look at the option list for every primary item, in turn, to find an option with smallest cost. If
that cost minc is positive, we “tax” the item by minc , and subtract minc from the cost of all options that
contain this item.

If an item has no options, its tax is infinite. (But nobody ever gets to collect it.)

#define infcost ((ullng) −1) /∗ “infinite” cost ∗/
〈Assign taxes 31 〉 ≡

for (k = 1; k < second ; k++) {
register ullng minc ;

for (p = nd [k].up ,minc = infcost ; p > k ∧minc ; o, p = nd [p].up)
if (o,nd [p].cost < minc) minc = nd [p].cost ;

if (minc) {
if (vbose & show taxes) fprintf (stderr , " "O".8s tax=$"O"llu\n", cl [k].name ,minc);
totaltax += minc ;
for (p = nd [k].up ; p > k; o, p = nd [p].up) {

for (q = p + 1; ;) {
o, cc = nd [q].itm ;
if (cc ≤ 0) o, q = nd [q].up ;
else {

oo ,nd [q].cost −= minc ;
if (q ≡ p) break;
q++;

}
}

}
nd [k].tax = minc ; /∗ for documentation only, so no mem charged ∗/

}
}
if (totaltax ∧ (vbose & show taxes)) fprintf (stderr , " (total tax is $"O"llu)\n", totaltax);

This code is used in section 3.

32. We use the “natural list merge sort,” namely Algorithm 5.2.4L as modified by exercise 5.2.4–12.

〈Sort the item lists 32 〉 ≡
for (k = 1; k < last itm ; k++) {
l1 : o, p = nd [k].up , q = nd [p].up ;

for (o, t = root ; q > k; o, p = q, q = nd [p].up) /∗ one mem charged for nd [p].cost ∗/
if (o,nd [p].cost < nd [q].cost) nd [t].up = −q, t = p;

if (t 6= root) 〈Sort item list k 34 〉;
〈Make the down links consistent with the up links 33 〉;
}

This code is used in section 3.

33. 〈Make the down links consistent with the up links 33 〉 ≡
for (o, p = k, q = nd [p].up ; q > k; o, p = q, q = nd [p].up) o,nd [q].down = p;
oo ,nd [p].up = k,nd [k].down = p;

This code is used in section 32.

16 INPUTTING THE MATRIX DLX5 §34

34. The item list is now divided into sorted sublists, separated by links that have temporarily been negated.
The sorted sublists are merged, two by two. List t is “above” list s; hence the sorting is stable with respect

to nodes of equal cost.

〈Sort item list k 34 〉 ≡
{

oo ,nd [t].up = nd [p].up = 0; /∗ terminate the last two sublists with a null link ∗/
l2 : while (o,nd [root].up) { /∗ begin new pass ∗/

oo , s = k, t = root , p = nd [s].up , q = −nd [root].up ; /∗ mem charged for nd [p].cost ∗/
l3 : if (o,nd [p].cost < nd [q].cost) goto l6 ;
l4 : 〈Advance p 35 〉;
l6 : 〈Advance q 36 〉;
l8 : p = −p, q = −q;

if (q) goto l3 ;
oo ,nd [s].up = −p,nd [t].up = 0; /∗ end of pass ∗/

}
}

This code is used in section 32.

35. 〈Advance p 35 〉 ≡
o,nd [s].up = (nd [s].up ≤ 0 ? −p : p);
o, s = p, p = nd [p].up ;
if (p > 0) goto l3 ;

l5 : o,nd [s].up = q, s = t;
for (; q > 0; o, q = nd [q].up) t = q; /∗ move q to the end of its sublist ∗/
goto l8 ; /∗ both sublists have now been merged ∗/

This code is used in section 34.

36. 〈Advance q 36 〉 ≡
o,nd [s].up = (nd [s].up ≤ 0 ? −q : q);
o, s = q, q = nd [q].up ;
if (q > 0) goto l3 ;

l7 : o,nd [s].up = p, s = t;
for (; p > 0; o, p = nd [p].up) t = p; /∗ move p to the end of its sublist ∗/
goto l8 ; /∗ both sublists have now been merged ∗/

This code is used in section 34.

37. 〈Report the successful completion of the input phase 37 〉 ≡
fprintf (stderr , "("O"lld options, "O"d+"O"d items, "O"d entries successfully read)\n",

options , second − 1, last itm − second , last node − last itm);
This code is used in section 3.

38. The item lengths after input should agree with the item lengths after this program has finished. I
print them (on request), in order to provide some reassurance that the algorithm isn’t badly screwed up.

〈Report the item totals 38 〉 ≡
{

fprintf (stderr , "Item totals:");
for (k = 1; k < last itm ; k++) {

if (k ≡ second) fprintf (stderr , " |");
fprintf (stderr , " "O"d",nd [k].len);

}
fprintf (stderr , "\n");
}

This code is used in sections 3 and 4.

§39 DLX5 THE DANCING 17

39. The dancing. Our strategy for generating all exact covers will be to repeatedly choose always the
item that appears to be hardest to cover, namely the item with shortest list, from all items that still need
to be covered. And we explore all possibilities via depth-first search.

The neat part of this algorithm is the way the lists are maintained. Depth-first search means last-in-first-
out maintenance of data structures; and it turns out that we need no auxiliary tables to undelete elements
from lists when backing up. The nodes removed from doubly linked lists remember their former neighbors,
because we do no garbage collection.

The basic operation is “covering an item.” This means removing it from the list of items needing to be
covered, and “hiding” its options: removing nodes from other lists whenever they belong to an option of a
node in this item’s list.

〈Solve the problem 39 〉 ≡
〈 Initialize for level 0 40 〉;

forward : nodes ++;
if (vbose & show profile) profile [level]++;
if (sanity checking) sanity ();
〈Do special things if enough mems have accumulated 42 〉;
〈 If the remaining cost is clearly too high, goto backdown 49 〉;
〈Set best itm to the best item for branching, or goto backdown 53 〉;
o, partcost [level] = curcost ;
oo , cur node = choice [level] = nd [best itm].down ;
o,nextcost = curcost + nd [cur node].cost ;
o, coverthresh0 [level] = cutoffcost − nextcost ; /∗ known to be positive ∗/
cover (best itm , coverthresh0 [level]);

advance : if ((vbose & show choices) ∧ level < show choices max) {
fprintf (stderr , "L"O"d:", level);
print option (cur node , stderr , cutoffcost − curcost);
}
〈Cover all other items of cur node 45 〉;
if (o, cl [root].next ≡ root) 〈Visit a solution and goto recover 55 〉;
if (++level > maxl) {

if (level ≥ max level) {
fprintf (stderr , "Too many levels!\n");
exit (−4);

}
maxl = level ;
}
curcost = nextcost ;
goto forward ;

backup : o, uncover (best itm , coverthresh0 [level]);
backdown : if (level ≡ 0) goto done ;

level −−;
oo , cur node = choice [level], best itm = nd [cur node].itm ;
o, curcost = partcost [level];

recover : 〈Uncover all other items of cur node 46 〉;
oo , cur node = choice [level] = nd [cur node].down ;
if (cur node ≡ best itm) goto backup ;
o,nextcost = curcost + nd [cur node].cost ;
if (nextcost ≥ cutoffcost) goto backup ;
goto advance ;

This code is used in section 2.

18 THE DANCING DLX5 §40

40. 〈 Initialize for level 0 40 〉 ≡
if (zgiven) {

for (r = 0; Zchars [r]; r++) ;
if ((second − 1) mod (zgiven + r)) {

fprintf (stderr , "There are "O"d primary items, but z="O"d and Z="O"s!\n", second − 1,
zgiven ,Zchars);

goto done ;
}
}
level = 0;
for (k = 0; k < kthresh ; k++) o, bestcost [k] = infcost ;
cutoffcost = infcost ;
curcost = 0;

This code is used in section 39.

41. 〈Global variables 6 〉 +≡
int level ; /∗ number of choices in current partial solution ∗/
int choice [max level]; /∗ the node chosen on each level ∗/
ullng profile [max level]; /∗ number of search tree nodes on each level ∗/
ullng partcost [max level]; /∗ the net cost so far, on each level ∗/
ullng coverthresh0 [max level], coverthresh [max level]; /∗ historic thresholds ∗/
ullng bestcost [maxk + 1]; /∗ the best kthresh net costs known so far ∗/
ullng cutoffcost ; /∗ bestcost [0], the cost we need to beat ∗/
ullng cumcost [7]; /∗ accumulated costs for the Z prefix characters ∗/
int solutionsize ; /∗ the number of options per solution, if fixed and known ∗/

42. 〈Do special things if enough mems have accumulated 42 〉 ≡
if (delta ∧ (mems ≥ thresh)) {

thresh += delta ;
if (vbose & show full state) print state ();
else print progress ();
}
if (mems ≥ timeout) {

fprintf (stderr , "TIMEOUT!\n"); goto done ;
}

This code is used in section 39.

§43 DLX5 THE DANCING 19

43. When an option is hidden, it leaves all lists except the list of the item that is being covered. Thus a
node is never removed from a list twice.

We can save time by not removing nodes from secondary items that have been purified. (Such nodes have
color < 0. Note that color and itm are stored in the same octabyte; hence we pay only one mem to look at
them both.)

We save even more time by not updating the len fields of secondary items.
It’s not necessary to hide all the options of the list being covered. Only the options whose cost is below a

given threshold will ever be relevant, since we seek only minimum-cost solutions.

〈Subroutines 15 〉 +≡
void cover (int c,ullng thresh)
{

register int cc , l, r, rr , nn , uu , dd , t;

o, l = cl [c].prev , r = cl [c].next ;
oo , cl [l].next = r, cl [r].prev = l;
updates ++;
for (o, rr = nd [c].down ; rr ≥ last itm ; o, rr = nd [rr].down) {

if (o,nd [rr].cost ≥ thresh) break;
for (nn = rr + 1; nn 6= rr ;) {

if (o,nd [nn].color ≥ 0) {
o, uu = nd [nn].up , dd = nd [nn].down ;
cc = nd [nn].itm ;
if (cc ≤ 0) {

nn = uu ; continue;
}
oo ,nd [uu].down = dd ,nd [dd].up = uu ;
updates ++;
if (cc < second) oo ,nd [cc].len −−;
}
nn ++;

}
}
}

20 THE DANCING DLX5 §44

44. I used to think that it was important to uncover an item by processing its options from bottom to top,
since covering was done from top to bottom. But while writing this program I realized that, amazingly, no
harm is done if the options are processed again in the same order. It’s easier to go down than up, because of
the cutoff threshold; hence that observation is good news. Whether we go up or down, the pointers execute
an exquisitely choreographed dance that returns them almost magically to their former state.

Of course we must be careful to use exactly the same thresholds when uncovering as we did when covering,
even though the cutoffcost in this program is a moving target.

〈Subroutines 15 〉 +≡
void uncover (int c,ullng thresh)
{

register int cc , l, r, rr , nn , uu , dd , t;

for (o, rr = nd [c].down ; rr ≥ last itm ; o, rr = nd [rr].down) {
if (o,nd [rr].cost ≥ thresh) break;
for (nn = rr + 1; nn 6= rr ;) {

if (o,nd [nn].color ≥ 0) {
o, uu = nd [nn].up , dd = nd [nn].down ;
cc = nd [nn].itm ;
if (cc ≤ 0) {

nn = uu ; continue;
}
oo ,nd [uu].down = nd [dd].up = nn ;
if (cc < second) oo ,nd [cc].len ++;
}
nn ++;

}
}
o, l = cl [c].prev , r = cl [c].next ;
oo , cl [l].next = cl [r].prev = c;
}

45. 〈Cover all other items of cur node 45 〉 ≡
o, coverthresh [level] = cutoffcost − nextcost ;
for (pp = cur node + 1; pp 6= cur node ;) {
o, cc = nd [pp].itm ;
if (cc ≤ 0) o, pp = nd [pp].up ;
else {

if (¬nd [pp].color) cover (cc , coverthresh [level]);
else if (nd [pp].color > 0) purify (pp , coverthresh [level]);
pp ++;

}
}

This code is used in section 39.

§46 DLX5 THE DANCING 21

46. We must go leftward as we uncover the items, because we went rightward when covering them.

〈Uncover all other items of cur node 46 〉 ≡
o; /∗ charge one mem for putting coverthresh [level] in a register ∗/
for (pp = cur node − 1; pp 6= cur node ;) {
o, cc = nd [pp].itm ;
if (cc ≤ 0) o, pp = nd [pp].down ;
else {

if (¬nd [pp].color) uncover (cc , coverthresh [level]);
else if (nd [pp].color > 0) unpurify (pp , coverthresh [level]);
pp −−;

}
}

This code is used in section 39.

47. When we choose an option that specifies colors in one or more items, we “purify” those items by
removing all incompatible options. All options that want the chosen color in a purified item are temporarily
given the color code −1 so that they won’t be purified again.

〈Subroutines 15 〉 +≡
void purify (int p,ullng thresh)
{

register int cc , rr , nn , uu , dd , t, x;

o, cc = nd [p].itm , x = nd [p].color ;
nd [cc].color = x; /∗ no mem charged, because this is for print option only ∗/
cleansings ++;
for (o, rr = nd [cc].down ; rr ≥ last itm ; o, rr = nd [rr].down) {

if (o,nd [rr].cost ≥ thresh) break;
if (o,nd [rr].color 6= x) {

for (nn = rr + 1; nn 6= rr ;) {
if (o,nd [nn].color ≥ 0) {

o, uu = nd [nn].up , dd = nd [nn].down ;
cc = nd [nn].itm ;
if (cc ≤ 0) {

nn = uu ; continue;
}
oo ,nd [uu].down = dd ,nd [dd].up = uu ;
updates ++;
if (cc < second) oo ,nd [cc].len −−;

}
nn ++;
}

} else if (rr 6= p) cleansings ++, o,nd [rr].color = −1;
}
}

22 THE DANCING DLX5 §48

48. Just as purify is analogous to cover , the inverse process is analogous to uncover .

〈Subroutines 15 〉 +≡
void unpurify (int p,ullng thresh)
{

register int cc , rr , nn , uu , dd , t, x;

o, cc = nd [p].itm , x = nd [p].color ; /∗ there’s no need to clear nd [cc].color ∗/
for (o, rr = nd [cc].down ; rr ≥ last itm ; o, rr = nd [rr].down) {

if (o,nd [rr].cost ≥ thresh) break;
if (o,nd [rr].color < 0) o,nd [rr].color = x;
else if (rr 6= p) {

for (nn = rr + 1; nn 6= rr ;) {
if (o,nd [nn].color ≥ 0) {
o, uu = nd [nn].up , dd = nd [nn].down ;
cc = nd [nn].itm ;
if (cc ≤ 0) {

nn = uu ; continue;
}
oo ,nd [uu].down = nd [dd].up = nn ;
if (cc < second) oo ,nd [cc].len ++;

}
nn ++;
}

}
}
}

49. Here’s where we use the Z and z heuristics to provide lower bounds that don’t apply in general.

〈 If the remaining cost is clearly too high, goto backdown 49 〉 ≡
if (ppgiven ∧ cutoffcost 6= infcost) {

if (zgiven > 1) {
if (second − level ∗ zgiven ≤ sortbufsize + 1) pp = zgiven ;
else if (ppgiven & #ff) pp = 0;
else pp = −1;

} else pp = zgiven ;
if (pp ≥ 0) 〈Go to backdown if the remaining min costs are too high 50 〉
}

This code is used in section 39.

§50 DLX5 THE DANCING 23

50. 〈Go to backdown if the remaining min costs are too high 50 〉 ≡
{

register ullng newcost , oldcost , acccost ;

acccost = curcost ;
for (r = 0; Zchars [r]; r++) o, cumcost [r] = curcost ;
for (o, k = cl [root].next , t = 0; k 6= root ; o, k = cl [k].next) {
o, p = nd [k].down ;
if (p < last itm) {

if (explaining)
fprintf (stderr , "(Level "O"d, "O".8s’s list is empty)\n", level , cl [k].name);

goto backdown ;
}
oo , cc = cl [k].name [0], tmpcost = nd [p].cost ;
for (r = 0; Zchars [r]; r++)

if (Zchars [r] ≡ cc) break;
if (Zchars [r]) 〈 Include tmpcost in cumcost [r] 51 〉
else if (pp) 〈 Include tmpcost in acccost 52 〉;

}
}

This code is used in section 49.

51. 〈 Include tmpcost in cumcost [r] 51 〉 ≡
{

if (o, cumcost [r] + tmpcost ≥ cutoffcost) {
if (explaining)

fprintf (stderr , "(Level "O"d, "O".8s’s cost overflowed)\n", level , cl [k].name);
goto backdown ;

}
o, cumcost [r] += tmpcost ;
}

This code is used in section 50.

24 THE DANCING DLX5 §52

52. At this point pp = zgiven is a positive number z, and cl [k] is one of the pp active items that doesn’t
begin with a Z-specified prefix. We also know that exactly kz = second − 1 − level ∗ z primary items are
active, and that exactly k more levels must be completed before we have a solution.

The situation is simple when z = 1. But when z > 1, suppose the minimum net costs of active items are
c1 ≤ c2 ≤ · · · ≤ ckz. Then we’ll spend at least cz + c2z + · · ·+ ckz while covering them. A cute little online
algorithm computes this lower bound nicely.

〈 Include tmpcost in acccost 52 〉 ≡
{

if (pp ≡ 1) {
if (acccost + tmpcost ≥ cutoffcost) {

if (explaining)
fprintf (stderr , "(Level "O"d, "O".8s’s cost overflowed)\n", level , cl [k].name);

goto backdown ;
}
acccost += tmpcost ;

} else { /∗ we’ll sort tmpcost into sortbuf , which has t costs already ∗/
for (p = t, oldcost = 0; p; p−−, oldcost = newcost) {
o,newcost = sortbuf [sortbufsize − p];
if (tmpcost ≤ newcost) break;
if ((p mod pp) ≡ 0) {

acccost += newcost − oldcost ;
if (acccost ≥ cutoffcost) {

if (explaining)
fprintf (stderr , "(Level "O"d, "O".8s’s cost overflowed)\n", level , cl [k].name);

goto backdown ;
}
}
o, sortbuf [sortbufsize − p− 1] = newcost ; /∗ it had been oldcost ∗/

}
if ((p mod pp) ≡ 0) {

acccost += tmpcost − oldcost ;
if (acccost ≥ cutoffcost) {

if (explaining) fprintf (stderr , "("O".8s’s cost caused overflow)\n", cl [k].name);
goto backdown ;
}

}
o, sortbuf [sortbufsize − p− 1] = tmpcost ; /∗ it had been oldcost ∗/
t++;

}
}

This code is used in section 50.

§53 DLX5 THE DANCING 25

53. The “best item” is considered to be an item that minimizes the number of remaining choices. If there
are several candidates, we choose the leftmost one that has maximum minimum net cost (because that cost
must be paid somehow).

(This part of the program, whose logic is justified by the sorting that was done during the input phase,
represents the most significant changes between DLX5 and DLX2. I imagine that the heuristics used here
might be significantly improvable, especially for certain classes of problems. For example, it may be better
to do a 5-way branch on expensive choices than a 2-way branch on cheap ones, because the expensive
choices might quickly peter out. And more elaborate ways to derive lower bounds on the cost of covering
the remaining primary items might be based on the minimum cost per item in the remaining options. For
example, we could give each node a new field optref , which points to the spacer following its option. Then
the length of this option would readily be obtained from that spacer, nd [nd [p].optref]. One could use the
currently dormant cost and optref fields of each spacer to maintain a doubly linked list of options in order
of their cost/item. But I don’t have time to investigate such ideas myself.)

#define explaining ((vbose & show details)∧ level < show choices max ∧ level ≥ maxl − show choices gap)

〈Set best itm to the best item for branching, or goto backdown 53 〉 ≡
t = max nodes , tmpcost = 0;
if (explaining) fprintf (stderr , "Level "O"d:", level);
for (o, k = cl [root].next ; k 6= root ; o, k = cl [k].next) {
o, p = nd [k].down ;
if (p ≡ k) { /∗ the item list is empty, we must backtrack ∗/

if (explaining) fprintf (stderr , " "O".8s(0)", cl [k].name);
t = 0, best itm = k;
break;

}
o,mincost = nd [p].cost ;
if (mincost ≥ cutoffcost − curcost) { /∗ no usable items, we must backtrack ∗/

if (explaining) fprintf (stderr , " "O".8s(0$"O"llu)", cl [k].name ,mincost);
t = 0, best itm = k;
break;

}
〈Look at the least-cost options for item k, possibly updating best itm 54 〉;
}
if (explaining) fprintf (stderr , " branching on "O".8s("O"d)\n", cl [best itm].name , t);
if (shape file) {

fprintf (shape file , ""O"d "O".8s\n", t, cl [best itm].name);
fflush (shape file);
}
if (t ≡ 0) goto backdown ;

This code is used in section 39.

26 THE DANCING DLX5 §54

54. At this point we know that t ≥ 1, p = nd [k].down 6= k, and mincost = nd [p].cost < cutoffcost −
curcost . Therefore k might turn out to be the new best itm .

〈Look at the least-cost options for item k, possibly updating best itm 54 〉 ≡
for (o, s = 1, p = nd [p].down ; ; o, p = nd [p].down , s++) {

if (p < last itm ∨ (o,nd [p].cost ≥ cutoffcost − curcost)) {
if (explaining) fprintf (stderr , " "O".8s("O"d$"O"llu)", cl [k].name , s,mincost);
break; /∗ there are s usable options in k’s item list ∗/

}
if (s ≡ t) { /∗ there are more than t usable options ∗/

if (explaining) fprintf (stderr , " "O".8s(>"O"d)", cl [k].name , t);
goto no change ;

}
if (s ≥ lenthresh) { /∗ let’s not search too far down the list ∗/

o, s = nd [k].len ; /∗ be content with an upper bound ∗/
if (explaining) fprintf (stderr , " "O".8s("O"d?$"O"llu)", cl [k].name , s,mincost);
break;

}
}
if (s < t ∨ (s ≡ t ∧mincost > tmpcost)) t = s, best itm = k, tmpcost = mincost ;
no change :

This code is used in section 53.

55. 〈Visit a solution and goto recover 55 〉 ≡
{

nodes ++; /∗ a solution is a special node, see 7.2.2–(4) ∗/
if (level + 1 > maxl) {

if (level + 1 ≥ max level) {
fprintf (stderr , "Too many levels!\n");
exit (−5);

}
maxl = level + 1;

}
if (vbose & show profile) profile [level + 1]++;
if (shape file) {

fprintf (shape file , "sol\n"); fflush (shape file);
}
〈Update cutoffcost 56 〉;
〈Record solution and goto recover 58 〉;
}

This code is used in section 39.

§56 DLX5 THE DANCING 27

56. We remember the kthresh best costs found so far in a heap, with bestcost [h] ≥ bestcost [h + h + 1] and
bestcost [h] ≥ bestcost [h + h + 2]. In particular, bestcost [0] = cutoffcost is the largest of these net costs, and
we remove it from the heap when a new solution has been found.

When kthresh is even, this code uses the fact that bestcost [kthresh] = 0.

〈Update cutoffcost 56 〉 ≡
{

register int h, hh ; /∗ a hole in the heap, and its larger successor ∗/
tmpcost = cutoffcost ;
for (h = 0, hh = 2; hh ≤ kthresh ; hh = h + h + 2) {

if (oo , bestcost [hh] > bestcost [hh − 1]) {
if (nextcost < bestcost [hh]) o, bestcost [h] = bestcost [hh], h = hh ;
else break;

} else if (nextcost < bestcost [hh − 1]) o, bestcost [h] = bestcost [hh − 1], h = hh − 1;
else break;

}
o, bestcost [h] = nextcost ;
o, cutoffcost = bestcost [0];
}

This code is used in section 55.

57. 〈Sort the bestcost heap in preparation for final printing 57 〉 ≡
for (p = kthresh ; p > 2; p−−) {

register int h, hh ; /∗ a hole in the heap, and its larger successor ∗/
nextcost = bestcost [p− 1], bestcost [p− 1] = 0, bestcost [p] = bestcost [0];
for (h = 0, hh = 2; hh < p; hh = h + h + 2) {

if (bestcost [hh] > bestcost [hh − 1]) {
if (nextcost < bestcost [hh]) bestcost [h] = bestcost [hh], h = hh ;
else break;

} else if (nextcost < bestcost [hh − 1]) bestcost [h] = bestcost [hh − 1], h = hh − 1;
else break;

}
bestcost [h] = nextcost ;
}
bestcost [p] = bestcost [0]; /∗ at this point p = 1 or p = 2 ∗/
/∗ now bestcost [1] ≤ bestcost [2] ≤ · · · ≤ bestcost [kthresh] ∗/

This code is used in section 9.

58. 〈Record solution and goto recover 58 〉 ≡
{

count ++;
if (spacing ∧ (count mod spacing ≡ 0)) {

printf (""O"lld: (total cost $"O"llu)\n", count , totaltax + nextcost);
for (k = 0; k ≤ level ; k++) print option (choice [k], stdout , tmpcost − partcost [k]);
fflush (stdout);

}
if (count ≥ maxcount) goto done ;
goto recover ;
}

This code is used in section 55.

28 THE DANCING DLX5 §59

59. 〈Subroutines 15 〉 +≡
void print state (void)
{

register int l;

fprintf (stderr , "Current state (level "O"d):\n", level);
for (l = 0; l < level ; l++) {

print option (choice [l], stderr , cutoffcost − partcost [l]);
if (l ≥ show levels max) {

fprintf (stderr , " ...\n");
break;

}
}
if (cutoffcost < infcost) fprintf (stderr ,

" "O"lld solutions, $"O"llu, "O"lld mems, and max level "O"d so far.\n", count ,
cutoffcost + totaltax ,mems ,maxl);

else fprintf (stderr , " "O"lld solutions, "O"lld mems, and max level "O"d so far.\n",
count ,mems ,maxl);

}

§60 DLX5 THE DANCING 29

60. During a long run, it’s helpful to have some way to measure progress. The following routine prints a
string that indicates roughly where we are in the search tree. The string consists of character pairs, separated
by blanks, where each character pair represents a branch of the search tree. When a node has d descendants
and we are working on the kth, the two characters respectively represent k and d in a simple code; namely,
the values 0, 1, . . . , 61 are denoted by

0, 1, . . . , 9, a, b, . . . , z, A, B, . . . , Z.

All values greater than 61 are shown as ‘*’. Notice that as computation proceeds, this string will increase
lexicographically.

Following that string, a fractional estimate of total progress is computed, based on the näıve assumption
that the search tree has a uniform branching structure. If the tree consists of a single node, this estimate
is .5; otherwise, if the first choice is ‘k of d’, the estimate is (k−1)/d plus 1/d times the recursively evaluated
estimate for the kth subtree. (This estimate might obviously be very misleading, in some cases, but at least
it grows monotonically.)

〈Subroutines 15 〉 +≡
void print progress (void)
{

register int l, k, d, c, p;
register double f, fd ;

if (cutoffcost < infcost) fprintf (stderr , " after "O"lld mems: "O"lld sols, $"O"llu,",mems ,
count , cutoffcost + totaltax);

else fprintf (stderr , " after "O"lld mems: "O"lld sols,",mems , count);
for (f = 0.0, fd = 1.0, l = 0; l < level ; l++) {
c = nd [choice [l]].itm ;
for (k = 1, p = nd [c].down ; p 6= choice [l]; k++, p = nd [p].down) ;
for (d = k − 1; p ≥ last itm ; p = nd [p].down , d++)

if (nd [p].cost ≥ cutoffcost − partcost [l]) break;
fd ∗= d, f += (k − 1)/fd ; /∗ choice l is k of d ∗/
fprintf (stderr , " "O"c"O"c", k < 10 ? ’0’ + k : k < 36 ? ’a’ + k − 10 : k < 62 ? ’A’ + k − 36 : ’*’,

d < 10 ? ’0’ + d : d < 36 ? ’a’ + d− 10 : d < 62 ? ’A’ + d− 36 : ’*’);
if (l ≥ show levels max) {

fprintf (stderr , "...");
break;

}
}
fprintf (stderr , " "O".5f\n", f + 0.5/fd);
}

61. 〈Print the profile 61 〉 ≡
{

fprintf (stderr , "Profile:\n");
for (level = 0; level ≤ maxl ; level ++) fprintf (stderr , ""O"3d: "O"lld\n", level , profile [level]);
}

This code is used in section 4.

62. 〈Subroutines 15 〉 +≡
int confusioncount ;

void confusion (char ∗id)
{ /∗ an assertion has failed ∗/

if (confusioncount ++ ≡ 0) /∗ can fiddle with debugger ∗/
fprintf (stderr , "This can’t happen (%s)!\n", id);

}

30 INDEX DLX5 §63

63. Index.

acccost : 50, 52.
advance : 39.
argc : 2, 7.
argv : 2, 7.
aux : 11, 25, 26, 27.
backdown : 39, 50, 51, 52, 53.
backup : 39.
best itm : 2, 39, 53, 54.
bestcost : 9, 40, 41, 56, 57.
buf : 6, 19, 22, 23, 29, 30.
bufsize : 2, 6, 19, 22.
bytes : 4, 6.
c: 15, 16, 43, 44, 60.
calloc : 19.
cc : 2, 31, 43, 44, 45, 46, 47, 48, 50.
choice : 39, 41, 58, 59, 60.
cl : 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25,

30, 31, 39, 43, 44, 50, 51, 52, 53, 54.
cleansings : 4, 6, 47.
color : 11, 15, 22, 43, 44, 45, 46, 47, 48.
confusion : 62.
confusioncount : 62.
cost : 11, 15, 18, 24, 31, 32, 34, 39, 43, 44, 47,

48, 50, 53, 54, 60.
count : 4, 6, 58, 59, 60.
cover : 39, 43, 45, 48.
coverthresh : 41, 45, 46.
coverthresh0 : 39, 41.
cumcost : 41, 50, 51.
cur node : 2, 39, 45, 46.
curcost : 2, 39, 40, 50, 53, 54.
cutoffcost : 39, 40, 41, 44, 45, 49, 51, 52, 53,

54, 56, 59, 60.
d: 23, 60.
dd : 43, 44, 47, 48.
delta : 5, 6, 7, 42.
done : 2, 39, 40, 42, 58.
down : 11, 15, 16, 18, 21, 22, 33, 39, 43, 44, 46,

47, 48, 50, 53, 54, 60.
exit : 7, 19, 39, 55.
explaining : 50, 51, 52, 53, 54.
f : 60.
fclose : 8.
fd : 60.
fflush : 53, 55, 58.
fgets : 19, 22.
finish : 15.
fopen : 7.
forward : 39.
fprintf : 4, 7, 9, 10, 15, 16, 17, 18, 19, 22, 29,

30, 31, 37, 38, 39, 40, 42, 50, 51, 52, 53, 54,

55, 59, 60, 61, 62.
h: 56, 57.
hh : 56, 57.
i: 2.
id : 62.
imems : 3, 4, 6.
infcost : 9, 10, 15, 31, 40, 49, 59, 60.
isspace : 19, 22, 23.
item: 4, 12, 13, 14.
itm : 11, 15, 18, 19, 22, 25, 27, 31, 39, 43, 44,

45, 46, 47, 48, 60.
itm struct: 12.
j: 2, 15.
k: 2, 15, 17, 60.
kthresh : 6, 7, 9, 40, 41, 56, 57.
l: 43, 44, 59, 60.
last itm : 4, 13, 15, 16, 19, 20, 21, 22, 25, 30, 32,

37, 38, 43, 44, 47, 48, 50, 54, 60.
last node : 4, 13, 15, 19, 22, 24, 25, 26, 27, 37.
len : 11, 18, 21, 25, 26, 27, 38, 43, 44, 47, 48, 54.
lenthresh : 5, 6, 7, 54.
level : 39, 40, 41, 45, 46, 49, 50, 51, 52, 53, 55,

58, 59, 60, 61.
l1 : 32.
l2 : 34.
l3 : 34, 35, 36.
l4 : 34.
l5 : 35.
l6 : 34.
l7 : 36.
l8 : 34, 35, 36.
main : 2.
max cols : 2, 13, 19, 21.
max level : 2, 39, 41, 55.
max nodes : 2, 19, 22, 25, 53.
maxcount : 6, 7, 58.
maxk : 5, 7, 41.
maxl : 4, 6, 39, 53, 55, 59, 61.
mems : 2, 3, 4, 5, 6, 42, 59, 60.
minc : 31.
mincost : 2, 53, 54.
mod: 2, 40, 52, 58.
name : 12, 14, 15, 16, 17, 18, 19, 20, 22, 25, 30,

31, 50, 51, 52, 53, 54.
nd : 11, 13, 15, 16, 18, 19, 21, 22, 24, 25, 26,

27, 31, 32, 33, 34, 35, 36, 38, 39, 43, 44, 45,
46, 47, 48, 50, 53, 54, 60.

newcost : 50, 52.
next : 12, 16, 17, 19, 21, 39, 43, 44, 50, 53.
nextcost : 2, 39, 45, 56, 57, 58.
nn : 43, 44, 47, 48.

§63 DLX5 INDEX 31

no change : 54.
node: 4, 11, 13, 19.
node struct: 11.
nodes : 4, 6, 39, 55.
O: 2.
o: 2.
oldcost : 50, 52.
oo : 2, 19, 21, 26, 27, 31, 33, 34, 39, 43, 44,

47, 48, 50, 56.
ooo : 2.
options : 6, 22, 37.
optref : 53.
p: 2, 15, 16, 17, 47, 48, 60.
panic : 19, 20, 21, 22, 23, 25.
partcost : 39, 41, 58, 59, 60.
pp : 2, 17, 18, 22, 28, 29, 30, 45, 46, 49, 50, 52.
ppgiven : 6, 28, 29, 49.
prev : 12, 16, 17, 19, 21, 43, 44.
print itm : 16.
print option : 15, 39, 47, 58, 59.
print progress : 42, 60.
print state : 42, 59.
printf : 58.
profile : 39, 41, 55, 61.
prow : 15, 16.
purify : 45, 47, 48.
q: 2, 15, 17.
qq : 17, 18.
r: 2, 43, 44.
recover : 39, 58.
root : 14, 16, 17, 19, 32, 34, 39, 50, 53.
rr : 43, 44, 47, 48.
s: 2, 15.
sanity : 2, 17, 39.
sanity checking : 2, 17, 39.
second : 13, 16, 18, 19, 22, 25, 31, 37, 38, 40,

43, 44, 47, 48, 49, 52.
shape file : 6, 7, 8, 53, 55.
shape name : 6, 7.
show basics : 3, 4, 5, 6.
show choices : 5, 6, 39.
show choices gap : 6, 7, 53.
show choices max : 6, 7, 39, 53.
show details : 5, 6, 53.
show full state : 5, 42.
show levels max : 6, 7, 59, 60.
show opt costs : 4, 5, 6.
show profile : 4, 5, 39, 55.
show taxes : 5, 31.
show tots : 3, 4, 5.
show warnings : 5, 6, 22.
solutionsize : 41.

sortbuf : 6, 52.
sortbufsize : 2, 6, 49, 52.
spacing : 6, 7, 58.
sprintf : 7.
sscanf : 7.
stderr : 2, 4, 5, 7, 9, 10, 15, 16, 17, 18, 19, 22,

29, 30, 31, 37, 38, 39, 40, 42, 50, 51, 52, 53,
54, 55, 59, 60, 61, 62.

stdin : 19, 22.
stdout : 58.
stream : 15.
strlen : 7, 19, 22.
strncmp : 20, 25.
t: 2, 17, 43, 44, 47, 48.
tax : 11, 15, 31.
thresh : 6, 7, 15, 42, 43, 44, 47, 48.
timeout : 5, 6, 7, 42.
tmpcost : 2, 9, 10, 22, 23, 24, 50, 51, 52, 53,

54, 56, 58.
totaltax : 9, 13, 31, 58, 59, 60.
uint: 2.
ullng: 2, 6, 11, 13, 15, 23, 31, 41, 43, 44, 47, 48, 50.
uncover : 39, 44, 46, 48.
unpurify : 46, 48.
up : 11, 15, 18, 21, 22, 26, 27, 31, 32, 33, 34, 35,

36, 43, 44, 45, 47, 48.
updates : 4, 6, 43, 47.
uu : 43, 44, 47, 48.
vbose : 3, 4, 5, 6, 7, 22, 31, 39, 42, 53, 55.
x: 47, 48.
Zchars : 6, 7, 28, 29, 30, 40, 50.
zgiven : 6, 7, 28, 29, 40, 49, 52.

32 NAMES OF THE SECTIONS DLX5

〈Adjust pp for parameters Z and z 30 〉 Used in section 25.

〈Advance p 35 〉 Used in section 34.

〈Advance q 36 〉 Used in section 34.

〈Assign taxes 31 〉 Used in section 3.

〈Bid farewell 4 〉 Used in section 2.

〈Check for consistency with parameters Z and z 29 〉 Used in section 22.

〈Check for duplicate item name 20 〉 Used in section 19.

〈Check item p 18 〉 Used in section 17.

〈Close the files 8 〉 Used in section 4.

〈Cover all other items of cur node 45 〉 Used in section 39.

〈Create a node for the item named in buf [p] 25 〉 Used in section 22.

〈Do special things if enough mems have accumulated 42 〉 Used in section 39.

〈Do the input phase 3 〉 Used in section 2.

〈Global variables 6, 13, 41 〉 Used in section 2.

〈Go to backdown if the remaining min costs are too high 50 〉 Used in section 49.

〈 If the remaining cost is clearly too high, goto backdown 49 〉 Used in section 39.

〈 Include tmpcost in acccost 52 〉 Used in section 50.

〈 Include tmpcost in cumcost [r] 51 〉 Used in section 50.

〈 Initialize for level 0 40 〉 Used in section 39.

〈 Initialize last itm to a new item with an empty list 21 〉 Used in section 19.

〈 Input the item names 19 〉 Used in section 3.

〈 Input the options 22 〉 Used in section 3.

〈 Insert node last node into the list for item k 26 〉 Used in section 25.

〈 Insert the cost into each item of this option 24 〉 Used in section 22.

〈Look at the least-cost options for item k, possibly updating best itm 54 〉 Used in section 53.

〈Make the down links consistent with the up links 33 〉 Used in section 32.

〈Print a line (except the first time) 10 〉 Used in section 9.

〈Print the profile 61 〉 Used in section 4.

〈Print the kthresh best costs found 9 〉 Used in section 4.

〈Process the command line 7 〉 Used in section 2.

〈Record solution and goto recover 58 〉 Used in section 55.

〈Remove last node from its item list 27 〉 Used in section 22.

〈Report the item totals 38 〉 Used in sections 3 and 4.

〈Report the successful completion of the input phase 37 〉 Used in section 3.

〈Set best itm to the best item for branching, or goto backdown 53 〉 Used in section 39.

〈Set ppgiven from parameters Z and z 28 〉 Used in section 22.

〈Skip to next item, accruing cost information if any 23 〉 Used in section 22.

〈Solve the problem 39 〉 Used in section 2.

〈Sort item list k 34 〉 Used in section 32.

〈Sort the item lists 32 〉 Used in section 3.

〈Sort the bestcost heap in preparation for final printing 57 〉 Used in section 9.

〈Subroutines 15, 16, 17, 43, 44, 47, 48, 59, 60, 62 〉 Used in section 2.

〈Type definitions 11, 12 〉 Used in section 2.

〈Uncover all other items of cur node 46 〉 Used in section 39.

〈Update cutoffcost 56 〉 Used in section 55.

〈Visit a solution and goto recover 55 〉 Used in section 39.

DLX5

Section Page
Intro . 1 1
Data structures . 11 7
Inputting the matrix . 19 11
The dancing . 39 17
Index . 63 30

	Intro
	Data structures
	Inputting the matrix
	The dancing
	Index
	Names of the sections
	Adjust pp for parameters Z and z
	Advance p
	Advance q
	Assign taxes
	Bid farewell
	Check for consistency with parameters Z and z
	Check for duplicate item name
	Check item p
	Close the files
	Cover all other items of cur_node
	Create a node for the item named in buf[p]
	Do special things if enough mems have accumulated
	Do the input phase
	Global variables
	Go to backdown if the remaining min costs are too high
	If the remaining cost is clearly too high, goto backdown
	Include tmpcost in acccost
	Include tmpcost in cumcost[r]
	Initialize for level 0
	Initialize last_itm to a new item with an empty list
	Input the item names
	Input the options
	Insert node last_node into the list for item k
	Insert the cost into each item of this option
	Look at the least-cost options for item k, possibly updating best_itm
	Make the down links consistent with the up links
	Print a line (except the first time)
	Print the profile
	Print the kthresh best costs found
	Process the command line
	Record solution and goto recover
	Remove last_node from its item list
	Report the item totals
	Report the successful completion of the input phase
	Set best_itm to the best item for branching, or goto backdown
	Set ppgiven from parameters Z and z
	Skip to next item, accruing cost information if any
	Solve the problem
	Sort item list k
	Sort the item lists
	Sort the bestcost heap in preparation for final printing
	Subroutines
	Type definitions
	Uncover all other items of cur_node
	Update cutoffcost
	Visit a solution and goto recover

