
§1 DLX3-MOTLEY INTRO 1

(Downloaded from https://cs.stanford.edu/˜knuth/programs.html and typeset on September 17, 2017)

1. Intro. This program is part of a series of “exact cover solvers” that I’m putting together for my own
education as I prepare to write Section 7.2.2.1 of The Art of Computer Programming. My intent is to have
a variety of compatible programs on which I can run experiments, in order to learn how different approaches
work in practice.

The basic input format for all of these solvers is described at the beginning of program DLX1, and you
should read that description now if you are unfamiliar with it. Please read also the opening paragraphs of
DLX2, which adds “color controls” to nonprimary columns.

DLX3 extends DLX2 by allowing the column totals to be more flexible: Instead of insisting that each
primary column occurs exactly once in the chosen rows, we prescribe an interval of permissible values
[aj . . bj] for each primary column j, and we find all solutions in which the sum s1s2 . . . sn of chosen rows
satisfies aj ≤ sj ≤ bj for such j. (In a sense this represents a generalization from sets to multisets, although
the rows themselves are still sets.)

These bounds appear in the first “column-naming” line of input: You can write ‘aj:bj|’ just before the
column name. But aj and the colon can be omitted if aj = bj ; both can be omitted if aj = bj = 1.

Here, for example, is a simple test case:

| A simple example of color controls

A B 2:3|C | X Y

A B X:0 Y:0

A C X:1 Y:1

C X:0

B X:1

C Y:1

The unique solution consists of rows A C X:1 Y:1, B X:1, C Y:1.
There’s a subtle distinction between a primary column with bounds [0 . . 1] and a secondary column with

no bounds, because every row is required to include at least one primary column.
If the input contains no column-bound specifications, the behavior of DLX3 will almost exactly match that

of DLX2, except for having a slightly longer program and taking a bit longer to input the rows.
[Historical note: My first program for multiset exact covering was MDANCE, written in August 2004

when I was thinking about packing various sizes of bricks into boxes. That program allowed users to specify
arbitrary column sums, and it had the same structure as this one, but it was less general than DLX3 because
it didn’t allow lower bounds to be less than upper bounds. Later I came gradually to realize that the ideas
have many, many other applications.]

2. The introduction of lower bounds adds a new twist. Suppose, for example, all lower bounds aj are zero,
while all upper bounds bj exceed or equal the number of rows using that column. Then the column doesn’t
impose any constraint whatsoever, and all 2m subsets of the m rows are solutions to the problem.

We can’t expect a user to be so foolish as to present us with such a case. But we might well end up with
a subproblem of that form; and then there seems to be no point in listing all of the solutions.

Thus we distinguish “core solutions” from “total solutions,” where the number of total solutions is the
sum of 2k over all core solutions that have k free rows.

https://cs.stanford.edu/~knuth/programs.html

2 INTRO DLX3-MOTLEY §3

3. After this program finds all solutions, it normally prints their total number on stderr , together with
statistics about how many nodes were in the search tree, and how many “updates” and “cleansings” were
made. The running time in “mems” is also reported, together with the approximate number of bytes needed
for data storage. (An “update” is the removal of a row from its column. A “cleansing” is the removal of
a satisfied color constraint from its row. One “mem” essentially means a memory access to a 64-bit word.
The reported totals don’t include the time or space needed to parse the input or to format the output.)

Here is the overall structure:

#define o mems ++ /∗ count one mem ∗/
#define oo mems += 2 /∗ count two mems ∗/
#define ooo mems += 3 /∗ count three mems ∗/
#define O "%" /∗ used for percent signs in format strings ∗/
#define mod % /∗ used for percent signs denoting remainder in C ∗/
#define max level 500 /∗ at most this many rows in a solution ∗/
#define max cols 1000 /∗ at most this many columns ∗/
#define max nodes 100000000 /∗ at most this many nonzero elements in the matrix ∗/
#define bufsize (9 ∗max cols + 3) /∗ a buffer big enough to hold all column names ∗/
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#include "gb_flip.h"

typedef unsigned int uint; /∗ a convenient abbreviation ∗/
typedef unsigned long long ullng; /∗ ditto ∗/
〈Type definitions 7 〉;
〈Global variables 4 〉;
〈Subroutines 11 〉;
main (int argc , char ∗argv [])
{

register int cc , i, j, k, p, pp , q, r, s, t, cur node , best col , stage , score , best s , best l ;

〈Process the command line 5 〉;
〈 Input the column names 15 〉;
〈 Input the rows 20 〉;
if (vbose & show basics) 〈Report the successful completion of the input phase 24 〉;
if (vbose & show tots) 〈Report the column totals 25 〉;
imems = mems ,mems = 0;
〈Solve the problem 26 〉;

done : if (vbose & show tots) 〈Report the column totals 25 〉;
if (vbose & show profile) 〈Print the profile 48 〉;
if (vbose & show basics) 〈Give statistics about the run 6 〉;
}

§4 DLX3-MOTLEY INTRO 3

4. You can control the amount of output, as well as certain properties of the algorithm, by specifying
options on the command line:

• ‘v〈 integer 〉’ enables or disables various kinds of verbose output on stderr , given by binary codes such as
show choices ;

• ‘m〈 integer 〉’ causes every mth solution to be output (the default is m0, which merely counts them);
• ‘s〈 integer 〉’ causes the algorithm to make random choices in key places (thus providing some variety,

although the solutions are by no means uniformly random), and it also defines the seed for any random
numbers that are used;

• ‘d〈 integer 〉’ to sets delta , which causes periodic state reports on stderr after the algorithm has performed
approximately delta mems since the previous report;

• ‘c〈positive integer 〉’ limits the levels on which choices are shown during verbose tracing;
• ‘C〈positive integer 〉’ limits the levels on which choices are shown in the periodic state reports;
• ‘l〈nonnegative integer 〉’ gives a lower limit, relative to the maximum level so far achieved, to the levels

on which choices are shown during verbose tracing;
• ‘t〈positive integer 〉’ causes the program to stop after this many solutions have been found;
• ‘T〈 integer 〉’ sets timeout (which causes abrupt termination if mems > timeout at the beginning of a level).

#define show basics 1 /∗ vbose code for basic stats; this is the default ∗/
#define show choices 2 /∗ vbose code for backtrack logging ∗/
#define show details 4 /∗ vbose code for further commentary ∗/
#define show profile 128 /∗ vbose code to show the search tree profile ∗/
#define show full state 256 /∗ vbose code for complete state reports ∗/
#define show tots 512 /∗ vbose code for reporting column totals at start and end ∗/
#define show warnings 1024 /∗ vbose code for reporting rows without primaries ∗/
〈Global variables 4 〉 ≡

int random seed = 0; /∗ seed for the random words of gb rand ∗/
int randomizing ; /∗ has ‘s’ been specified? ∗/
int vbose = show basics + show warnings ; /∗ level of verbosity ∗/
int spacing ; /∗ solution k is output if k is a multiple of spacing ∗/
int show choices max = 1000000; /∗ above this level, show choices is ignored ∗/
int show choices gap = 1000000; /∗ below level maxl − show choices gap , show details is ignored ∗/
int show levels max = 1000000; /∗ above this level, state reports stop ∗/
int maxl = 0; /∗ maximum level actually reached ∗/
char buf [bufsize]; /∗ input buffer ∗/
ullng count ; /∗ core solutions found so far ∗/
double totcount ; /∗ total solutions found so far ∗/
int noncore ; /∗ does totcount exceed count ? ∗/
ullng rows ; /∗ rows seen so far ∗/
ullng imems , mems ; /∗ mem counts ∗/
ullng updates ; /∗ update counts ∗/
ullng cleansings ; /∗ cleansing counts ∗/
ullng bytes ; /∗ memory used by main data structures ∗/
ullng nodes ; /∗ total number of branch nodes initiated ∗/
ullng thresh = 0; /∗ report when mems exceeds this, if delta 6= 0 ∗/
ullng delta = 0; /∗ report every delta or so mems ∗/
ullng maxcount = #ffffffffffffffff; /∗ stop after finding this many solutions ∗/
ullng timeout = #1fffffffffffffff; /∗ give up after this many mems ∗/

See also sections 9, 27, and 49*.

This code is used in section 3.

4 INTRO DLX3-MOTLEY §5

5. If an option appears more than once on the command line, the first appearance takes precedence.

〈Process the command line 5 〉 ≡
for (j = argc − 1, k = 0; j; j−−)

switch (argv [j][0]) {
case ’v’: k |= (sscanf (argv [j] + 1, ""O"d",&vbose)− 1); break;
case ’m’: k |= (sscanf (argv [j] + 1, ""O"d",&spacing)− 1); break;
case ’s’: k |= (sscanf (argv [j] + 1, ""O"d",&random seed)− 1), randomizing = 1; break;
case ’d’: k |= (sscanf (argv [j] + 1, ""O"lld",&delta)− 1), thresh = delta ; break;
case ’c’: k |= (sscanf (argv [j] + 1, ""O"d",&show choices max)− 1); break;
case ’C’: k |= (sscanf (argv [j] + 1, ""O"d",&show levels max)− 1); break;
case ’l’: k |= (sscanf (argv [j] + 1, ""O"d",&show choices gap)− 1); break;
case ’t’: k |= (sscanf (argv [j] + 1, ""O"lld",&maxcount)− 1); break;
case ’T’: k |= (sscanf (argv [j] + 1, ""O"lld",&timeout)− 1); break;
default: k = 1; /∗ unrecognized command-line option ∗/
}

if (k) {
fprintf (stderr , "Usage: "O"s [v<n>] [m<n>] [s<n>] [d<n>]"" [c<n>] [C<n>] [l<n\

>] [t<n>] [T<n>] < foo.dlx\n", argv [0]);
exit (−1);
}
if (randomizing) gb init rand (random seed);

This code is used in section 3.

6. The program doesn’t compute or report totcount unless necessary.

〈Give statistics about the run 6 〉 ≡
{

fprintf (stderr , "Altogether "O"llu solution"O"s", count , count ≡ 1 ? "" : "s");
if (noncore) fprintf (stderr , " ("O".12g total)", totcount);
fprintf (stderr , ", "O"llu+"O"llu mems,", imems ,mems);
fprintf (stderr , " "O"llu updates, "O"llu cleansings,", updates , cleansings);
bytes = last col ∗ sizeof (column) + last node ∗ sizeof (node) + maxl ∗ sizeof (int);
fprintf (stderr , " "O"llu bytes, "O"llu nodes.\n", bytes ,nodes);
}

This code is used in section 3.

§7 DLX3-MOTLEY DATA STRUCTURES 5

7. Data structures. Each column of the input matrix is represented by a column struct, and each row
is represented as a list of node structs. There’s one node for each nonzero entry in the matrix.

More precisely, the nodes of individual rows appear sequentially, with “spacer” nodes between them. The
nodes are also linked circularly within each column, in doubly linked lists. The column lists each include
a header node, but the row lists do not. Column header nodes are aligned with a column struct, which
contains further info about the column.

Each node contains four important fields. Two are the pointers up and down of doubly linked lists, already
mentioned. A third points directly to the column containing the node. And the last specifies a color, or zero
if no color is specified.

A “pointer” is an array index, not a C reference (because the latter would occupy 64 bits and waste cache
space). The cl array is for column structs, and the nd array is for nodes. I assume that both of those arrays
are small enough to be allocated statically. (Modifications of this program could do dynamic allocation if
needed.) The header node corresponding to cl [c] is nd [c].

Notice that each node occupies two octabytes. We count one mem for a simultaneous access to the up
and down fields, or for a simultaneous access to the col and color fields.

Although the column-list pointers are called up and down , they need not correspond to actual positions
of matrix entries. The elements of each column list can appear in any order, so that one row needn’t be
consistently “above” or “below” another. Indeed, when randomizing is set, we intentionally scramble each
column list.

This program doesn’t change the col fields after they’ve first been set up. But the up and down fields will
be changed frequently, although preserving relative order.

Exception: In the node nd [c] that is the header for the list of column c, we use the col field to hold the
length of that list (excluding the header node itself). We also might use its color field for special purposes.
The alternative names len for col and aux for color are used in the code so that this nonstandard semantics
will be more clear.

A spacer node has col ≤ 0. Its up field points to the start of the preceding row; its down field points to
the end of the following row. Thus it’s easy to traverse a row circularly, in either direction.

The color field of a node is set to −1 when that node has been cleansed. In such cases its original color
appears in the column header. (The program uses this fact only for diagnostic outputs.)

#define len col /∗ column list length (used in header nodes only) ∗/
#define aux color /∗ an auxiliary quantity (used in header nodes only) ∗/
〈Type definitions 7 〉 ≡

typedef struct node struct {
int up , down ; /∗ predecessor and successor in column ∗/
int col ; /∗ the column containing this node ∗/
int color ; /∗ the color specified by this node, if any ∗/
} node;

See also section 8.

This code is used in section 3.

6 DATA STRUCTURES DLX3-MOTLEY §8

8. Each column struct contains five fields: The name is the user-specified identifier; next and prev point
to adjacent columns, when this column is part of a doubly linked list; bound is the maximum number of
rows from this column that can be added to the current partial solution; slack is the difference between this
column’s given upper and lower bounds. As computation proceeds, bound might change but slack will not.

A column can be removed from the active list of “unfinished columns” when its bound field is reduced
to zero. A removed column is said to be “covered”; all of its remaining rows are then blocked from further
participation. Furthermore, we will remove a column when we find that it has no unblocked rows; that
situation can arise if bound ≤ slack .

As backtracking proceeds, nodes will be deleted from column lists when their row has been blocked by
other rows in the partial solution. But when backtracking is complete, the data structures will be restored
to their original state.

We count one mem for a simultaneous access to the prev and next fields, or for a simultaneous access to
bound and slack .

The bound and slack fields of secondary columns are not used.

〈Type definitions 7 〉 +≡
typedef struct col struct {

char name [8]; /∗ symbolic identification of the column, for printing ∗/
int prev , next ; /∗ neighbors of this column ∗/
int bound , slack ; /∗ residual capacity of this column ∗/
} column;

9. 〈Global variables 4 〉 +≡
node nd [max nodes]; /∗ the master list of nodes ∗/
int last node ; /∗ the first node in nd that’s not yet used ∗/
column cl [max cols + 2]; /∗ the master list of columns ∗/
int second = max cols ; /∗ boundary between primary and secondary columns ∗/
int last col ; /∗ the first column in cl that’s not yet used ∗/

10. One column struct is called the root. It serves as the head of the list of columns that need to be
covered, and is identifiable by the fact that its name is empty.

#define root 0 /∗ cl [root] is the gateway to the unsettled columns ∗/

§11 DLX3-MOTLEY DATA STRUCTURES 7

11. A row is identified not by name but by the names of the columns it contains. Here is a routine that
prints a row, given a pointer to any of its nodes. It also prints the position of the row in its column, relative
to a given head location.

〈Subroutines 11 〉 ≡
void print row (int p,FILE ∗stream , int head , int score)
{

register int k, q;

if (p ≡ nd [head].col) fprintf (stream , " null "O".8s", cl [p].name);
else {

if (p < last col ∨ p ≥ last node ∨ nd [p].col ≤ 0) {
fprintf (stderr , "Illegal row "O"d!\n", p);
return;

}
for (q = p; ;) {

fprintf (stream , " "O".8s", cl [nd [q].col].name);
if (nd [q].color) fprintf (stream , ":"O"c",nd [q].color > 0 ? nd [q].color : nd [nd [q].col].color);
q++;
if (nd [q].col ≤ 0) q = nd [q].up ; /∗ −nd [q].col is actually the row number ∗/
if (q ≡ p) break;

}
}
for (q = head , k = 1; q 6= p; k++) {

if (q ≡ nd [p].col) {
fprintf (stream , " (?)\n"); return; /∗ row not in its column! ∗/

} else q = nd [q].down ;
}
fprintf (stream , " ("O"d of "O"d)\n", k, score);
}
void prow (int p)
{

print row (p, stderr ,nd [nd [p].col].down ,nd [nd [p].col].len);
}

See also sections 12, 13, 34, 35, 38, 39, 40, 41, 46, 47, 53*, and 54*.

This code is used in section 3.

8 DATA STRUCTURES DLX3-MOTLEY §12

12. When I’m debugging, I might want to look at one of the current column lists.

〈Subroutines 11 〉 +≡
void print col (int c)
{

register int p;

if (c < root ∨ c ≥ last col) {
fprintf (stderr , "Illegal column "O"d!\n", c);
return;

}
fprintf (stderr , "Column "O".8s", cl [c].name);
if (c < second) {

if (cl [c].slack ∨ cl [c].bound 6= 1)
fprintf (stderr , " ("O"d,"O"d)", cl [c].bound − cl [c].slack , cl [c].bound);

fprintf (stderr , ", length "O"d, neighbors "O".8s and "O".8s:\n",nd [c].len ,
cl [cl [c].prev].name , cl [cl [c].next].name);

} else fprintf (stderr , ", length "O"d:\n",nd [c].len);
for (p = nd [c].down ; p ≥ last col ; p = nd [p].down) prow (p);
}

13. Speaking of debugging, here’s a routine to check if redundant parts of our data structure have gone
awry.

#define sanity checking 0 /∗ set this to 1 if you suspect a bug ∗/
〈Subroutines 11 〉 +≡

void sanity (void)
{

register int k, p, q, pp , qq , t;

for (q = root , p = cl [q].next ; ; q = p, p = cl [p].next) {
if (cl [p].prev 6= q) fprintf (stderr , "Bad prev field at col "O".8s!\n", cl [p].name);
if (p ≡ root) break;
〈Check column p 14 〉;

}
}

14. 〈Check column p 14 〉 ≡
for (qq = p, pp = nd [qq].down , k = 0; ; qq = pp , pp = nd [pp].down , k++) {

if (nd [pp].up 6= qq) fprintf (stderr , "Bad up field at node "O"d!\n", pp);
if (pp ≡ p) break;
if (nd [pp].col 6= p) fprintf (stderr , "Bad col field at node "O"d!\n", pp);
}
if (nd [p].len 6= k) fprintf (stderr , "Bad len field in column "O".8s!\n", cl [p].name);

This code is used in section 13.

§15 DLX3-MOTLEY INPUTTING THE MATRIX 9

15. Inputting the matrix. Brute force is the rule in this part of the code, whose goal is to parse and
store the input data and to check its validity.

#define panic(m)
{ fprintf (stderr , ""O"s!\n"O"d: "O".99s\n",m, p, buf); exit (−666); }

〈 Input the column names 15 〉 ≡
if (max nodes ≤ 2 ∗max cols) {

fprintf (stderr , "Recompile me: max_nodes must exceed twice max_cols!\n");
exit (−999);
} /∗ every column will want a header node and at least one other node ∗/
while (1) {

if (¬fgets (buf , bufsize , stdin)) break;
if (o, buf [p = strlen (buf)− 1] 6= ’\n’) panic("Input line way too long");
for (p = 0; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’ ∨ ¬buf [p]) continue; /∗ bypass comment or blank line ∗/
last col = 1;
break;
}
if (¬last col) panic("No columns");
for (; o, buf [p];) {
〈Scan a column name, possibly prefixed by bounds 16 〉;
〈 Initialize last col to a new column with an empty list 19 〉;
for (p += j + 1; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’) {

if (second 6= max cols) panic("Column name line contains | twice");
second = last col ;
for (p++; o, isspace (buf [p]); p++) ;

}
}
if (second ≡ max cols) second = last col ;
o, cl [root].prev = second − 1; /∗ cl [second − 1].next = root since root = 0 ∗/
last node = last col ; /∗ reserve all the header nodes and the first spacer ∗/
o,nd [last node].col = 0;

This code is used in section 3.

10 INPUTTING THE MATRIX DLX3-MOTLEY §16

16. 〈Scan a column name, possibly prefixed by bounds 16 〉 ≡
if (second ≡ max cols) stage = 0; else stage = 2;

start name : for (j = 0; j < 8 ∧ (o,¬isspace (buf [p + j])); j++) {
if (buf [p + j] ≡ ’:’) {

if (stage) panic("Illegal ‘:’ in column name");
〈Convert the prefix to an integer, q 17 〉;
r = q, stage = 1;
goto start name ;

} else if (buf [p + j] ≡ ’|’) {
if (stage > 1) panic("Illegal ‘|’ in column name");
〈Convert the prefix to an integer, q 17 〉;
if (q ≡ 0) panic("Upper bound is zero");
if (stage ≡ 0) r = q;
else if (r > q) panic("Lower bound exceeds upper bound");
stage = 2;
goto start name ;

}
o, cl [last col].name [j] = buf [p + j];
}
switch (stage) {
case 1: panic("Lower bound without upper bound");
case 0: q = r = 1;
case 2: break;
}
if (j ≡ 0) panic("Column name empty");
if (j ≡ 8 ∧ ¬isspace (buf [p + j])) panic("Column name too long");
〈Check for duplicate column name 18 〉;

This code is used in section 15.

17. 〈Convert the prefix to an integer, q 17 〉 ≡
for (q = 0, pp = p; pp < p + j; pp ++) {

if (buf [pp] < ’0’ ∨ buf [pp] > ’9’) panic("Illegal digit in bound spec");
q = 10 ∗ q + buf [pp]− ’0’;
}
p = pp + 1;
while (j) cl [last col].name [−−j] = 0;

This code is used in section 16.

18. 〈Check for duplicate column name 18 〉 ≡
for (k = 1; o, strncmp(cl [k].name , cl [last col].name , 8); k++) ;
if (k < last col) panic("Duplicate column name");

This code is used in section 16.

19. 〈 Initialize last col to a new column with an empty list 19 〉 ≡
if (last col > max cols) panic("Too many columns");
if (second ≡ max cols) oo , cl [last col − 1].next = last col , cl [last col].prev = last col − 1, o,

cl [last col].bound = q, cl [last col].slack = q − r;
else o, cl [last col].next = cl [last col].prev = last col ;
o,nd [last col].up = nd [last col].down = last col ; /∗ nd [last col].len = 0 ∗/
last col ++;

This code is used in section 15.

§20 DLX3-MOTLEY INPUTTING THE MATRIX 11

20. I’m putting the row number into the spacer that follows it, as a possible debugging aid. But the
program doesn’t currently use that information.

〈 Input the rows 20 〉 ≡
while (1) {

if (¬fgets (buf , bufsize , stdin)) break;
if (o, buf [p = strlen (buf)− 1] 6= ’\n’) panic("Row line too long");
for (p = 0; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’ ∨ ¬buf [p]) continue; /∗ bypass comment or blank line ∗/
i = last node ; /∗ remember the spacer at the left of this row ∗/
for (pp = 0; buf [p];) {

for (j = 0; j < 8 ∧ (o,¬isspace (buf [p + j])) ∧ buf [p + j] 6= ’:’; j++)
o, cl [last col].name [j] = buf [p + j];

if (¬j) panic("Empty column name");
if (j ≡ 8 ∧ ¬isspace (buf [p + j]) ∧ buf [p + j] 6= ’:’) panic("Column name too long");
if (j < 8) o, cl [last col].name [j] = ’\0’;
〈Create a node for the column named in buf [p] 21 〉;
if (buf [p + j] 6= ’:’) o,nd [last node].color = 0;
else if (k ≥ second) {

if ((o, isspace (buf [p + j + 1])) ∨ (o,¬isspace (buf [p + j + 2])))
panic("Color must be a single character");

o,nd [last node].color = buf [p + j + 1];
p += 2;

} else panic("Primary column must be uncolored");
for (p += j + 1; o, isspace (buf [p]); p++) ;

}
if (¬pp) {

if (vbose & show warnings) fprintf (stderr , "Row ignored (no primary columns): "O"s", buf);
while (last node > i) {
〈Remove last node from its column 23 〉;
last node −−;

}
} else {
o,nd [i].down = last node ;
last node ++; /∗ create the next spacer ∗/
if (last node ≡ max nodes) panic("Too many nodes");
rows ++;
o,nd [last node].up = i + 1;
o,nd [last node].col = −rows ;

}
}

This code is used in section 3.

12 INPUTTING THE MATRIX DLX3-MOTLEY §21

21. 〈Create a node for the column named in buf [p] 21 〉 ≡
for (k = 0; o, strncmp(cl [k].name , cl [last col].name , 8); k++) ;
if (k ≡ last col) panic("Unknown column name");
if (o,nd [k].aux ≥ i) panic("Duplicate column name in this row");
last node ++;
if (last node ≡ max nodes) panic("Too many nodes");
o,nd [last node].col = k;
if (k < second) pp = 1;
o, t = nd [k].len + 1;
〈 Insert node last node into the list for column k 22 〉;

This code is used in section 20.

22. Insertion of a new node is simple, unless we’re randomizing. In the latter case, we want to put the
node into a random position of the list.

We store the position of the new node into nd [k].aux , so that the test for duplicate columns above will be
correct.

As in other programs developed for TAOCP, I assume that four mems are consumed when 31 random bits
are being generated by any of the GB FLIP routines.

〈 Insert node last node into the list for column k 22 〉 ≡
o,nd [k].len = t; /∗ store the new length of the list ∗/
nd [k].aux = last node ; /∗ no mem charge for aux after len ∗/
if (¬randomizing) {
o, r = nd [k].up ; /∗ the “bottom” node of the column list ∗/
ooo ,nd [r].down = nd [k].up = last node ,nd [last node].up = r,nd [last node].down = k;
} else {

mems += 4, t = gb unif rand (t); /∗ choose a random number of nodes to skip past ∗/
for (o, r = k; t; o, r = nd [r].down , t−−) ;
ooo , q = nd [r].up ,nd [q].down = nd [r].up = last node ;
o,nd [last node].up = q,nd [last node].down = r;
}

This code is used in section 21.

23. 〈Remove last node from its column 23 〉 ≡
o, k = nd [last node].col ;
oo ,nd [k].len −−,nd [k].aux = i− 1;
o, q = nd [last node].up , r = nd [last node].down ;
oo ,nd [q].down = r,nd [r].up = q;

This code is used in section 20.

24. 〈Report the successful completion of the input phase 24 〉 ≡
fprintf (stderr , "("O"lld rows, "O"d+"O"d columns, "O"d entries successfully read)\n",

rows , second − 1, last col − second , last node − last col);

This code is used in section 3.

§25 DLX3-MOTLEY INPUTTING THE MATRIX 13

25. The column lengths after input should agree with the column lengths after this program has finished.
I print them (on request), in order to provide some reassurance that the algorithm isn’t badly screwed up.

〈Report the column totals 25 〉 ≡
{

fprintf (stderr , "Column totals:");
for (k = 1; k < last col ; k++) {

if (k ≡ second) fprintf (stderr , " |");
fprintf (stderr , " "O"d",nd [k].len);

}
fprintf (stderr , "\n");
}

This code is used in section 3.

14 THE DANCING DLX3-MOTLEY §26

26. The dancing. Our strategy for generating all exact covers will be to repeatedly choose an active
primary column and to branch on the ways to reduce the possibilities for covering that column. And we
explore all possibilities via depth-first search.

The neat part of this algorithm is the way the lists are maintained. Depth-first search means last-in-first-
out maintenance of data structures; and it turns out that we need no auxiliary tables to undelete elements
from lists when backing up. The nodes removed from doubly linked lists remember their former neighbors,
because we do no garbage collection.

The basic operation is “covering a column.” This means removing it from the list of columns needing to
be covered, and “blocking” its rows: removing nodes from other lists whenever they belong to a row of a
node in this column’s list. We cover the chosen column when it has bound = 1 and slack = 0.

There’s also an auxiliary operation called “tweaking a column,” used when covering is inappropriate. In
that case we simply block the topmost row in the column’s list; we also remove that row temporarily from
the list. (The tweaking operation, whose beauties will be described below, is a new dance step! It was
introduced in the MDANCE program of 2004.)

〈Solve the problem 26 〉 ≡
level = 0;

forward : nodes ++;
if (vbose & show profile) profile [level]++;
if (sanity checking) sanity ();
〈Do special things if enough mems have accumulated 28 〉;
〈Set best col to the best column for branching, and let score be its branching degree 42 〉;
if (score ≤ 0) goto backdown ; /∗ not enough rows left in this column ∗/
if (score ≡ infty) 〈Record a solution and goto backdown 43* 〉;
scor [level] = score ,first tweak [level] = 0; /∗ for diagnostics only, so no mems charged ∗/
oo , cur node = choice [level] = nd [best col].down ;
o, cl [best col].bound −−; /∗ one mem will be charged later ∗/
if (cl [best col].bound ≡ 0 ∧ cl [best col].slack ≡ 0) cover (best col , 1);
else {
o,first tweak [level] = cur node ;
if (cl [best col].bound ≡ 0) {

o, p = cl [best col].prev , q = cl [best col].next ;
oo , cl [p].next = q, cl [q].prev = p; /∗ deactivate best col ∗/

}
}

advance : 〈 If cur node is off limits, goto backup ; also tweak if needed 32 〉;
if ((vbose & show choices) ∧ level < show choices max) 〈Report the current move 30 〉;
if (cur node > last col) 〈Cover or partially cover all other columns of cur node ’s row 36 〉;
〈 Increase level and goto forward 29 〉;

backup : 〈Restore the original state of best col 33 〉;
backdown : if (level ≡ 0) goto done ;

level −−;
oo , cur node = choice [level], best col = nd [cur node].col , score = scor [level];
if (cur node < last col) 〈Reactivate best col and goto backup 31 〉;
〈Uncover or partially uncover all other columns of cur node ’s row 37 〉;
oo , cur node = choice [level] = nd [cur node].down ; goto advance ;

This code is used in section 3.

§27 DLX3-MOTLEY THE DANCING 15

27. 〈Global variables 4 〉 +≡
int level ; /∗ number of choices in current partial solution ∗/
int choice [max level]; /∗ the node chosen on each level ∗/
ullng profile [max level]; /∗ number of search tree nodes on each level ∗/
int first tweak [max level]; /∗ original top of column before tweaking ∗/
int scor [max level]; /∗ for reports of progress ∗/

28. 〈Do special things if enough mems have accumulated 28 〉 ≡
if (delta ∧ (mems ≥ thresh)) {

thresh += delta ;
if (vbose & show full state) print state ();
else print progress ();
}
if (mems ≥ timeout) {

fprintf (stderr , "TIMEOUT!\n"); goto done ;
}

This code is used in section 26.

29. 〈 Increase level and goto forward 29 〉 ≡
if (++level > maxl) {

if (level ≥ max level) {
fprintf (stderr , "Too many levels!\n");
exit (−4);

}
maxl = level ;
}
goto forward ;

This code is used in section 26.

30. 〈Report the current move 30 〉 ≡
{

fprintf (stderr , "L"O"d:", level);
if (cl [best col].bound ≡ 0 ∧ cl [best col].slack ≡ 0)

print row (cur node , stderr ,nd [best col].down , score);
else print row (cur node , stderr ,first tweak [level], score);
}

This code is used in section 26.

31. 〈Reactivate best col and goto backup 31 〉 ≡
{

best col = cur node ;
o, p = cl [best col].prev , q = cl [best col].next ;
oo , cl [p].next = cl [q].prev = best col ; /∗ reactivate best col ∗/
goto backup ;
}

This code is used in section 26.

16 THE DANCING DLX3-MOTLEY §32

32. In the normal cases treated by DLX1 and DLX2, we want to back up after trying all rows in the column;
this happens when cur node has advanced to best col , the column’s header node.

In the other cases, we’ve been tweaking this column. Then we back up when fewer than bound + 1− slack
rows remain in the column’s list. (The current value of bound is one less than its original value on entry to
this level.)

Notice that we might reach a situation where the list is empty (that is, cur node = best col), yet we don’t
want to back up. This can happen when bound − slack < 0. In such cases the move at this level is null: No
row is added to the solution, and the column becomes inactive.

〈 If cur node is off limits, goto backup ; also tweak if needed 32 〉 ≡
if ((o, cl [best col].bound ≡ 0) ∧ (cl [best col].slack ≡ 0)) {

if (cur node ≡ best col) goto backup ;
} else if (oo ,nd [best col].len ≤ cl [best col].bound − cl [best col].slack) goto backup ;
else if (cur node 6= best col) tweak (cur node);
else if (cl [best col].bound 6= 0) {
o, p = cl [best col].prev , q = cl [best col].next ;
oo , cl [p].next = q, cl [q].prev = p; /∗ deactivate best col ∗/
}

This code is used in section 26.

33. 〈Restore the original state of best col 33 〉 ≡
if ((o, cl [best col].bound ≡ 0) ∧ (cl [best col].slack ≡ 0)) uncover (best col , 1);
else o, untweak (best col ,first tweak [level]);
oo , cl [best col].bound ++;

This code is used in section 26.

§34 DLX3-MOTLEY THE DANCING 17

34. When a row is blocked, it leaves all lists except the list of the column that is being covered. Thus a
node is never removed from a list twice.

We can save time by not removing nodes from secondary columns that have been purified. (Such nodes
have color < 0. Note that color and col are stored in the same octabyte; hence we pay only one mem to
look at them both.)

〈Subroutines 11 〉 +≡
void cover (int c, int deact)
{

register int cc , l, r, rr , nn , uu , dd , t;

if (deact) {
o, l = cl [c].prev , r = cl [c].next ;
oo , cl [l].next = r, cl [r].prev = l;

}
updates ++;
for (o, rr = nd [c].down ; rr ≥ last col ; o, rr = nd [rr].down)

for (nn = rr + 1; nn 6= rr ;) {
if (o,nd [nn].color ≥ 0) {
o, uu = nd [nn].up , dd = nd [nn].down ;
cc = nd [nn].col ;
if (cc ≤ 0) {

nn = uu ;
continue;

}
oo ,nd [uu].down = dd ,nd [dd].up = uu ;
updates ++;
o, t = nd [cc].len − 1;
o,nd [cc].len = t;
}
nn ++;

}
}

18 THE DANCING DLX3-MOTLEY §35

35. I used to think that it was important to uncover a column by processing its rows from bottom to top,
since covering was done from top to bottom. But while writing this program I realized that, amazingly, no
harm is done if the rows are processed again in the same order. So I’ll go downward again, just to prove the
point. Whether we go up or down, the pointers execute an exquisitely choreographed dance that returns
them almost magically to their former state.

〈Subroutines 11 〉 +≡
void uncover (int c, int deact)
{

register int cc , l, r, rr , nn , uu , dd , t;

for (o, rr = nd [c].down ; rr ≥ last col ; o, rr = nd [rr].down)
for (nn = rr + 1; nn 6= rr ;) {

if (o,nd [nn].color ≥ 0) {
o, uu = nd [nn].up , dd = nd [nn].down ;
cc = nd [nn].col ;
if (cc ≤ 0) {

nn = uu ;
continue;

}
oo ,nd [uu].down = nd [dd].up = nn ;
o, t = nd [cc].len + 1;
o,nd [cc].len = t;

}
nn ++;
}

if (deact) {
o, l = cl [c].prev , r = cl [c].next ;
oo , cl [l].next = cl [r].prev = c;

}
}

36. 〈Cover or partially cover all other columns of cur node ’s row 36 〉 ≡
for (pp = cur node + 1; pp 6= cur node ;) {
o, cc = nd [pp].col ;
if (cc ≤ 0) o, pp = nd [pp].up ;
else {

if (cc < second) {
oo , cl [cc].bound −−;
if (cl [cc].bound ≡ 0) cover (cc , 1);

} else {
if (¬nd [pp].color) cover (cc , 1);
else if (nd [pp].color > 0) purify (pp);

}
pp ++;

}
}

This code is used in section 26.

§37 DLX3-MOTLEY THE DANCING 19

37. We must go leftward as we uncover the columns, because we went rightward when covering them.

〈Uncover or partially uncover all other columns of cur node ’s row 37 〉 ≡
for (pp = cur node − 1; pp 6= cur node ;) {
o, cc = nd [pp].col ;
if (cc ≤ 0) o, pp = nd [pp].down ;
else {

if (cc < second) {
if (o, cl [cc].bound ≡ 0) uncover (cc , 1);
o, cl [cc].bound ++;

} else {
if (¬nd [pp].color) uncover (cc , 1);
else if (nd [pp].color > 0) unpurify (pp);

}
pp −−;

}
}

This code is used in section 26.

38. When we choose a row that specifies colors in one or more columns, we “purify” those columns by
removing all incompatible rows. All rows that want the chosen color in a purified column are temporarily
given the color code −1 so that they won’t be purified again.

〈Subroutines 11 〉 +≡
void purify (int p)
{

register int cc , rr , nn , uu , dd , t, x;

o, cc = nd [p].col , x = nd [p].color ;
nd [cc].color = x; /∗ no mem charged, because this is for print row only ∗/
cleansings ++;
for (o, rr = nd [cc].down ; rr ≥ last col ; o, rr = nd [rr].down) {

if (o,nd [rr].color 6= x) {
for (nn = rr + 1; nn 6= rr ;) {
o, uu = nd [nn].up , dd = nd [nn].down ;
o, cc = nd [nn].col ;
if (cc ≤ 0) {

nn = uu ; continue;
}
if (nd [nn].color ≥ 0) {

oo ,nd [uu].down = dd ,nd [dd].up = uu ;
updates ++;
o, t = nd [cc].len − 1;
o,nd [cc].len = t;

}
nn ++;
}

} else if (rr 6= p) cleansings ++, o,nd [rr].color = −1;
}
}

20 THE DANCING DLX3-MOTLEY §39

39. Just as purify is analogous to cover , the inverse process is analogous to uncover .

〈Subroutines 11 〉 +≡
void unpurify (int p)
{

register int cc , rr , nn , uu , dd , t, x;

o, cc = nd [p].col , x = nd [p].color ; /∗ there’s no need to clear nd [cc].color ∗/
for (o, rr = nd [cc].up ; rr ≥ last col ; o, rr = nd [rr].up) {

if (o,nd [rr].color < 0) o,nd [rr].color = x;
else if (rr 6= p) {

for (nn = rr − 1; nn 6= rr ;) {
o, uu = nd [nn].up , dd = nd [nn].down ;
o, cc = nd [nn].col ;
if (cc ≤ 0) {

nn = dd ; continue;
}
if (nd [nn].color ≥ 0) {

oo ,nd [uu].down = nd [dd].up = nn ;
o, t = nd [cc].len + 1;
o,nd [cc].len = t;

}
nn −−;
}

}
}
}

40. Now let’s look at tweaking, which is deceptively simple. When this subroutine is called, node n is the
topmost in its column. Tweaking is important because the column remains active and on a par with all
other active columns.

〈Subroutines 11 〉 +≡
void tweak (int n)
{

register int cc , nn , uu , dd , t;

for (nn = n + 1; ;) {
if (o,nd [nn].color ≥ 0) {

o, uu = nd [nn].up , dd = nd [nn].down ;
cc = nd [nn].col ;
if (cc ≤ 0) {

nn = uu ;
continue;
}
oo ,nd [uu].down = dd ,nd [dd].up = uu ;
updates ++;
o, t = nd [cc].len − 1;
o,nd [cc].len = t;

}
if (nn ≡ n) break;
nn ++;

}
}

§41 DLX3-MOTLEY THE DANCING 21

41. The punch line occurs when we consider untweaking. Consider, for example, a column c whose rows
from top to bottom are x, y, z. Then the up fields for (c, x, y, z) are initially (z, c, x, y), and the down fields
are (x, y, z, c). After we’ve tweaked x, they’ve become (z, c, c, y) and (y, y, z, c); after we’ve subsequently
tweaked y, they’ve become (z, c, c, c) and (z, y, z, c). Notice that x still points to y, and y still points to z.
So we can restore the original state if we restore the up pointers in y and z, as well as the down pointer in c.
The value of x has been saved in the first tweak array for the current level; and that’s sufficient to solve the
puzzle.

We also have to resuscitate the rows by reinstating them in their columns. That can be done top-down,
as in uncover ; in essence, a sequence of tweaks is like a partial covering.

〈Subroutines 11 〉 +≡
void untweak (int c, int x)
{

register int z, cc , nn , uu , dd , t, k, rr , qq ;

oo , z = nd [c].down ,nd [c].down = x;
for (rr = x, k = 0, qq = c; rr 6= z; o, qq = rr , rr = nd [rr].down) {

o,nd [rr].up = qq , k++;
for (nn = rr + 1; nn 6= rr ;) {

if (o,nd [nn].color ≥ 0) {
o, uu = nd [nn].up , dd = nd [nn].down ;
cc = nd [nn].col ;
if (cc ≤ 0) {

nn = uu ;
continue;

}
oo ,nd [uu].down = nd [dd].up = nn ;
o, t = nd [cc].len + 1;
o,nd [cc].len = t;
}
nn ++;

}
}
o,nd [rr].up = qq ; /∗ rr = z ∗/
oo ,nd [c].len += k;
}

22 THE DANCING DLX3-MOTLEY §42

42. The “best column” is considered to be a column that minimizes the branching degree. If there are
several candidates, we choose the leftmost — unless we’re randomizing, in which case we select one of them
at random.

Consider a column that has four rows {w, x, y, z}, and suppose its bound is 3. If the slack is zero, we’ve
got to choose either w or x, so the branching degree is 2. But if slack = 1, we have three choices, w or x or
y; if slack = 2, there are four choices; and if slack ≥ 3, there are five, including the “null” choice.

In general, the branching degree turns out to be l + s− b+ 1, where l is the length of the column, b is the
current bound, and s is the minimum of b and the slack. This formula gives degree ≤ 0 if and only if l is
too small to satisfy the column constraint; in such cases we will backtrack immediately. (It would have been
possible to detect this condition early, before updating all the data structures and increasing level . But that
would make the downdating process much more difficult and error-prone. Therefore I wait to discover such
anomalies until column-choosing time.)

Let’s assign the score l + s− b + 1 to each column. If two columns have the same score, I prefer the one
with smaller s, because slack columns are less constrained. If two columns with the same s have the same
score, I (counterintuitively) prefer the one with larger b (hence larger l), because that tends to reduce the
size of the final search tree.

Consider, for instance, the following example taken from MDANCE: If we want to choose 2 rows from 4 in
one column, and 3 rows from 5 in another, where all slacks are zero, and if the columns are otherwise
independent, it turns out that the number of nodes per level if we choose the smaller column first is
(1, 3, 6, 6 · 3, 6 · 6, 6 · 10). But if we choose the larger column first it is (1, 3, 6, 10, 10 · 3, 10 · 6), which is
smaller in the middle levels.

Another special case also deserves mention: A column is completely unconstrained when s = b ≥ l. Such
columns are never selected as “best”; if all columns have this property, we’ve found a core solution, as
mentioned above.

#define infty max nodes /∗ the “score” of a completely unconstrained column ∗/
〈Set best col to the best column for branching, and let score be its branching degree 42 〉 ≡

score = infty ;
if ((vbose & show details) ∧ level < show choices max ∧ level ≥ maxl − show choices gap)

fprintf (stderr , "Level "O"d:", level);
for (o, k = cl [root].next ; k 6= root ; o, k = cl [k].next) {
o, s = cl [k].slack ; if (s > cl [k].bound) s = cl [k].bound ;
if ((vbose & show details) ∧ level < show choices max ∧ level ≥ maxl − show choices gap) {

if (cl [k].bound 6= 1 ∨ s 6= 0) fprintf (stderr , " "O".8s("O"d:"O"d,"O"d)", cl [k].name ,
cl [k].bound − s, cl [k].bound ,nd [k].len + s− cl [k].bound + 1);

else fprintf (stderr , " "O".8s("O"d)", cl [k].name ,nd [k].len);
}
if ((o,nd [k].len > cl [k].bound) ∨ (s < cl [k].bound)) {

t = nd [k].len + s− cl [k].bound + 1;
if (t ≤ score) {

if (t < score ∨ s < best s ∨ (s ≡ best s ∧ nd [k].len > best l))
score = t, best col = k, best s = s, best l = nd [k].len , p = 1;

else if (s ≡ best s ∧ nd [k].len ≡ best l) {
p++; /∗ this many columns achieve the min ∗/
if (randomizing ∧ (mems += 4,¬gb unif rand (p))) best col = k;
}

}
}
}
if ((vbose & show details) ∧ level < show choices max ∧ level ≥ maxl − show choices gap) {

if (score < infty) fprintf (stderr , " branching on "O".8s("O"d)\n", cl [best col].name , score);
else fprintf (stderr , " core solution\n");
}

§42 DLX3-MOTLEY THE DANCING 23

This code is used in section 26.

24 THE DANCING DLX3-MOTLEY §43

43*. 〈Record a solution and goto backdown 43* 〉 ≡
{

count ++;
〈Set p to the number of rows remaining 44 〉;
if (p ∧ ¬noncore) noncore = 1, totcount = count − 1;
if (noncore) {

register double f = 1.0;

while (p > 60) f ∗= 1LL � 60, p −= 60;
f ∗= 1LL � p;
totcount += f ;

}
if (spacing ∧ (count mod spacing ≡ 0)) {

register c, h, i, j, m = 0, n = 0, p, q, t, xa , xb , yc , yd , sum = 0;

printf (""O"lld:", count);
for (k = 0; k < level ; k++) {
p = choice [k];
c = p < last col ? p : nd [p].col ;
h = first tweak [k] ? first tweak [k] : nd [c].down ;
if (p ≡ nd [h].col) continue; /∗ null choice ∗/
for (q = p; ; q++) {
c = nd [q].col ;
if (c ≤ 0) {

q = nd [q].up − 1;
continue;

}
if (cl [c].name [0] ≡ ’x’ ∧ cl [c].name [2]) {

xa = decode (cl [c].name [1]);
xb = decode (cl [c].name [2]);
q++;
c = nd [q].col ;
if (cl [c].name [0] 6= ’y’) confusion ("xab not followed by ycd");
yc = decode (cl [c].name [1]);
yd = decode (cl [c].name [2]);
for (i = xa ; i < xb ; i++)

for (j = yc ; j < yd ; j++) board [i][j] = (sum < 10 ? sum + ’0’ : sum − 10 + ’a’);
sum ++;
break;

}
}

}
for (i = 0; board [i][0]; i++) {

if (i) printf ("|");
for (j = 0; board [i][j]; j++) printf ("%c", board [i][j]);
n = j;

}
m = i;
printf ("(%d)", sum);
if (m ≡ n) {
〈Check for transposition symmetries 50* 〉;
〈Check for 90-degree rotation symmetry 51* 〉;

}
〈Check for 180-degree rotation symmetry 52* 〉;

§43 DLX3-MOTLEY THE DANCING 25

printf ("\n");
fflush (stdout);

}
if (count ≥ maxcount) goto done ;
goto backdown ;
}

This code is used in section 26.

44. 〈Set p to the number of rows remaining 44 〉 ≡
for (o, p = 0, cc = cl [root].next ; cc 6= root ; o, cc = cl [cc].next) {
o, p += nd [cc].len ;
cover (cc , 0);
}
for (cc = cl [root].prev ; cc 6= root ; o, cc = cl [cc].prev) uncover (cc , 0);

This code is used in section 43*.

45. 〈Print the free rows 45 〉 ≡
{

printf (" and "O"d free row"O"s:\n", p, p ≡ 1 ? "" : "s");
for (cc = cl [root].next ; cc 6= root ; cc = cl [cc].next) {

for (r = nd [cc].down ; r 6= cc ; r = nd [r].down) print row (r, stdout ,nd [cc].down ,nd [cc].len);
cover (cc , 0);

}
for (cc = cl [root].prev ; cc 6= root ; cc = cl [cc].prev) uncover (cc , 0);
}

46. 〈Subroutines 11 〉 +≡
void print state (void)
{

register int l, p, c, q;

fprintf (stderr , "Current state (level "O"d):\n", level);
for (l = 0; l < level ; l++) {
p = choice [l];
c = (p < last col ? p : nd [p].col);
if (¬first tweak [l]) print row (p, stderr ,nd [c].down , scor [l]);
else print row (p, stderr ,first tweak [l], scor [l]);
if (l ≥ show levels max) {

fprintf (stderr , " ...\n");
break;

}
}
fprintf (stderr , " "O"lld "O"ssols, "O"lld mems, and max level "O"d so far.\n", count ,

noncore ? "core " : "",mems ,maxl);
}

26 THE DANCING DLX3-MOTLEY §47

47. During a long run, it’s helpful to have some way to measure progress. The following routine prints a
string that indicates roughly where we are in the search tree. The string consists of character pairs, separated
by blanks, where each character pair represents a branch of the search tree. When a node has d descendants
and we are working on the kth, the two characters respectively represent k and d in a simple code; namely,
the values 0, 1, . . . , 61 are denoted by

0, 1, . . . , 9, a, b, . . . , z, A, B, . . . , Z.

All values greater than 61 are shown as ‘*’. Notice that as computation proceeds, this string will increase
lexicographically.

Following that string, a fractional estimate of total progress is computed, based on the näıve assumption
that the search tree has a uniform branching structure. If the tree consists of a single node, this estimate
is .5; otherwise, if the first choice is ‘k of d’, the estimate is (k−1)/d plus 1/d times the recursively evaluated
estimate for the kth subtree. (This estimate might obviously be very misleading, in some cases, but at least
it grows monotonically.)

〈Subroutines 11 〉 +≡
void print progress (void)
{

register int l, k, d, c, p;
register double f, fd ;

fprintf (stderr , " after "O"lld mems: "O"lld sols,",mems , count);
for (f = 0.0, fd = 1.0, l = 0; l < level ; l++) {
p = choice [l], d = scor [l];
c = (p < last col ? p : nd [p].col);
if (¬first tweak [l]) p = nd [c].down ;
else p = first tweak [l];
for (k = 1; p 6= choice [l]; k++, p = nd [p].down) ;
fd ∗= d, f += (k − 1)/fd ; /∗ choice l is k of d ∗/
fprintf (stderr , " "O"c"O"c", k < 10 ? ’0’ + k : k < 36 ? ’a’ + k − 10 : k < 62 ? ’A’ + k − 36 : ’*’,

d < 10 ? ’0’ + d : d < 36 ? ’a’ + d− 10 : d < 62 ? ’A’ + d− 36 : ’*’);
if (l ≥ show levels max) {

fprintf (stderr , "...");
break;

}
}
fprintf (stderr , " "O".5f\n", f + 0.5/fd);
}

48. 〈Print the profile 48 〉 ≡
{

fprintf (stderr , "Profile:\n");
for (level = 0; level ≤ maxl ; level ++) fprintf (stderr , ""O"3d: "O"lld\n", level , profile [level]);
}

This code is used in section 3.

49*. 〈Global variables 4 〉 +≡
char board [64][64];

§50 DLX3-MOTLEY THE DANCING 27

50*. 〈Check for transposition symmetries 50* 〉 ≡
for (i = 0; i < n; i++)

for (j = 1; j < n; j++)
if ((board [i][j] ≡ board [i][j − 1]) 6= (board [j][i] ≡ board [j − 1][i])) goto no T ;

printf ("\\"); /∗ symmetric about main diagonal ∗/
no T :

for (i = 0; i < n; i++)
for (j = 1; j < n; j++)

if ((board [i][j] ≡ board [i][j − 1]) 6= (board [n− 1− j][n− 1− i] ≡ board [n− j][n− 1− i])) goto no U ;
printf ("/"); /∗ symmetric about other diagonal ∗/

no U : ;

This code is used in section 43*.

51*. 〈Check for 90-degree rotation symmetry 51* 〉 ≡
for (i = 0; i < n; i++)

for (j = 1; j < n; j++)
if ((board [i][j] ≡ board [i][j − 1]) 6= (board [j][n− 1− i] ≡ board [j − 1][n− 1− i])) goto no Q ;

printf ("!"); /∗ symmetric under a quarter turn ∗/
no Q : ;

This code is used in section 43*.

52*. 〈Check for 180-degree rotation symmetry 52* 〉 ≡
for (i = 0; i < m; i++)

for (j = 1; j < n; j++)
if ((board [i][j] ≡ board [i][j− 1]) 6= (board [m− 1− i][n− 1− j] ≡ board [m− 1− i][n− j])) goto no S ;

for (i = 1; i < m; i++)
for (j = 0; j < n; j++)

if ((board [i][j] ≡ board [i− 1][j]) 6= (board [m− 1− i][n− 1− j] ≡ board [m− i][n− 1− j])) goto no S ;
printf ("#"); /∗ symmetric under 180-degree rotation ∗/

no S : ;

This code is used in section 43*.

53*. 〈Subroutines 11 〉 +≡
void confusion (char ∗s)
{

fprintf (stderr , "I’m confused: %s!\n", s);
}

54*. 〈Subroutines 11 〉 +≡
int decode (char c)
{

if (c ≤ ’9’) {
if (c ≥ ’0’) return c− ’0’;

} else if (c ≥ ’a’) {
if (c ≤ ’z’) return c + 10− ’a’;

} else if (c ≥ ’A’ ∧ c ≤ ’Z’) return c + 36− ’A’;
else confusion ("bad code");
}

28 INDEX DLX3-MOTLEY §55

55*. Index.

The following sections were changed by the change file: 43, 49, 50, 51, 52, 53, 54, 55.

advance : 26.
argc : 3, 5.
argv : 3, 5.
aux : 7, 21, 22, 23.
backdown : 26, 43*.
backup : 26, 31, 32.
best col : 3, 26, 30, 31, 32, 33, 42.
best l : 3, 42.
best s : 3, 42.
board : 43*, 49*, 50*, 51*, 52*.
bound : 8, 12, 19, 26, 30, 32, 33, 36, 37, 42.
buf : 4, 15, 16, 17, 20.
bufsize : 3, 4, 15, 20.
bytes : 4, 6.
c: 12, 34, 35, 41, 43*, 46, 47, 54*.
cc : 3, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45.
choice : 26, 27, 43*, 46, 47.
cl : 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

26, 30, 31, 32, 33, 34, 35, 36, 37, 42, 43*, 44, 45.
cleansings : 4, 6, 38.
col : 7, 11, 14, 15, 20, 21, 23, 26, 34, 35, 36, 37,

38, 39, 40, 41, 43*, 46, 47.
col struct: 8.
color : 7, 11, 20, 34, 35, 36, 37, 38, 39, 40, 41.
column: 6, 8, 9, 10.
confusion : 43*, 53*, 54*.
count : 4, 6, 43*, 46, 47.
cover : 26, 34, 36, 39, 44, 45.
cur node : 3, 26, 30, 31, 32, 36, 37.
d: 47.
dd : 34, 35, 38, 39, 40, 41.
deact : 34, 35.
decode : 43*, 54*.
delta : 4, 5, 28.
done : 3, 26, 28, 43*.
down : 7, 11, 12, 14, 19, 20, 22, 23, 26, 30, 34, 35,

37, 38, 39, 40, 41, 43*, 45, 46, 47.
exit : 5, 15, 29.
f : 43*, 47.
fd : 47.
fflush : 43*.
fgets : 15, 20.
first tweak : 26, 27, 30, 33, 41, 43*, 46, 47.
forward : 26, 29.
fprintf : 5, 6, 11, 12, 13, 14, 15, 20, 24, 25, 28,

29, 30, 42, 46, 47, 48, 53*.
gb init rand : 5.
gb rand : 4.
gb unif rand : 22, 42.
h: 43*.

head : 11.
i: 3, 43*.
imems : 3, 4, 6.
infty : 26, 42.
isspace : 15, 16, 20.
j: 3, 43*.
k: 3, 11, 13, 41, 47.
l: 34, 35, 46, 47.
last col : 6, 9, 11, 12, 15, 16, 17, 18, 19, 20, 21, 24,

25, 26, 34, 35, 38, 39, 43*, 46, 47.
last node : 6, 9, 11, 15, 20, 21, 22, 23, 24.
len : 7, 11, 12, 14, 19, 21, 22, 23, 25, 32, 34, 35,

38, 39, 40, 41, 42, 44, 45.
level : 26, 27, 29, 30, 33, 42, 43*, 46, 47, 48.
m: 43*.
main : 3.
max cols : 3, 9, 15, 16, 19.
max level : 3, 27, 29.
max nodes : 3, 9, 15, 20, 21, 42.
maxcount : 4, 5, 43*.
maxl : 4, 6, 29, 42, 46, 48.
mems : 3, 4, 6, 22, 28, 42, 46, 47.
mod: 3, 43*.
n: 40, 43*.
name : 8, 10, 11, 12, 13, 14, 16, 17, 18, 20,

21, 42, 43*.
nd : 7, 9, 11, 12, 14, 15, 19, 20, 21, 22, 23, 25,

26, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43*, 44, 45, 46, 47.

next : 8, 12, 13, 15, 19, 26, 31, 32, 34, 35, 42, 44, 45.
nn : 34, 35, 38, 39, 40, 41.
no Q : 51*.
no S : 52*.
no T : 50*.
no U : 50*.
node: 6, 7, 9.
node struct: 7.
nodes : 4, 6, 26.
noncore : 4, 6, 43*, 46.
O: 3.
o: 3.
oo : 3, 19, 23, 26, 31, 32, 33, 34, 35, 36, 38,

39, 40, 41.
ooo : 3, 22.
p: 3, 11, 12, 13, 38, 39, 43*, 46, 47.
panic : 15, 16, 17, 18, 19, 20, 21.
pp : 3, 13, 14, 17, 20, 21, 36, 37.
prev : 8, 12, 13, 15, 19, 26, 31, 32, 34, 35, 44, 45.
print col : 12.
print progress : 28, 47.

§55 DLX3-MOTLEY INDEX 29

print row : 11, 30, 38, 45, 46.
print state : 28, 46.
printf : 43*, 45, 50*, 51*, 52*.
profile : 26, 27, 48.
prow : 11, 12.
purify : 36, 38, 39.
q: 3, 11, 13, 43*, 46.
qq : 13, 14, 41.
r: 3, 34, 35.
random seed : 4, 5.
randomizing : 4, 5, 7, 22, 42.
root : 10, 12, 13, 15, 42, 44, 45.
rows : 4, 20, 24.
rr : 34, 35, 38, 39, 41.
s: 3, 53*.
sanity : 13, 26.
sanity checking : 13, 26.
scor : 26, 27, 46, 47.
score : 3, 11, 26, 30, 42.
second : 9, 12, 15, 16, 19, 20, 21, 24, 25, 36, 37.
show basics : 3, 4.
show choices : 4, 26.
show choices gap : 4, 5, 42.
show choices max : 4, 5, 26, 42.
show details : 4, 42.
show full state : 4, 28.
show levels max : 4, 5, 46, 47.
show profile : 3, 4, 26.
show tots : 3, 4.
show warnings : 4, 20.
slack : 8, 12, 19, 26, 30, 32, 33, 42.
spacing : 4, 5, 43*.
sscanf : 5.
stage : 3, 16.
start name : 16.
stderr : 3, 4, 5, 6, 11, 12, 13, 14, 15, 20, 24, 25,

28, 29, 30, 42, 46, 47, 48, 53*.
stdin : 15, 20.
stdout : 43*, 45.
stream : 11.
strlen : 15, 20.
strncmp : 18, 21.
sum : 43*.
t: 3, 13, 34, 35, 38, 39, 40, 41, 43*.
thresh : 4, 5, 28.
timeout : 4, 5, 28.
totcount : 4, 6, 43*.
tweak : 32, 40.
uint: 3.
ullng: 3, 4, 27.
uncover : 33, 35, 37, 39, 41, 44, 45.
unpurify : 37, 39.

untweak : 33, 41.
up : 7, 11, 14, 19, 20, 22, 23, 34, 35, 36, 38,

39, 40, 41, 43*.
updates : 4, 6, 34, 38, 40.
uu : 34, 35, 38, 39, 40, 41.
vbose : 3, 4, 5, 20, 26, 28, 42.
x: 38, 39, 41.
xa : 43*.
xb : 43*.
yc : 43*.
yd : 43*.
z: 41.

30 NAMES OF THE SECTIONS DLX3-MOTLEY

〈Check column p 14 〉 Used in section 13.

〈Check for 180-degree rotation symmetry 52* 〉 Used in section 43*.

〈Check for 90-degree rotation symmetry 51* 〉 Used in section 43*.

〈Check for duplicate column name 18 〉 Used in section 16.

〈Check for transposition symmetries 50* 〉 Used in section 43*.

〈Convert the prefix to an integer, q 17 〉 Used in section 16.

〈Cover or partially cover all other columns of cur node ’s row 36 〉 Used in section 26.

〈Create a node for the column named in buf [p] 21 〉 Used in section 20.

〈Do special things if enough mems have accumulated 28 〉 Used in section 26.

〈Give statistics about the run 6 〉 Used in section 3.

〈Global variables 4, 9, 27, 49* 〉 Used in section 3.

〈 If cur node is off limits, goto backup ; also tweak if needed 32 〉 Used in section 26.

〈 Increase level and goto forward 29 〉 Used in section 26.

〈 Initialize last col to a new column with an empty list 19 〉 Used in section 15.

〈 Input the column names 15 〉 Used in section 3.

〈 Input the rows 20 〉 Used in section 3.

〈 Insert node last node into the list for column k 22 〉 Used in section 21.

〈Print the free rows 45 〉
〈Print the profile 48 〉 Used in section 3.

〈Process the command line 5 〉 Used in section 3.

〈Reactivate best col and goto backup 31 〉 Used in section 26.

〈Record a solution and goto backdown 43* 〉 Used in section 26.

〈Remove last node from its column 23 〉 Used in section 20.

〈Report the column totals 25 〉 Used in section 3.

〈Report the current move 30 〉 Used in section 26.

〈Report the successful completion of the input phase 24 〉 Used in section 3.

〈Restore the original state of best col 33 〉 Used in section 26.

〈Scan a column name, possibly prefixed by bounds 16 〉 Used in section 15.

〈Set best col to the best column for branching, and let score be its branching degree 42 〉 Used in section 26.

〈Set p to the number of rows remaining 44 〉 Used in section 43*.

〈Solve the problem 26 〉 Used in section 3.

〈Subroutines 11, 12, 13, 34, 35, 38, 39, 40, 41, 46, 47, 53*, 54* 〉 Used in section 3.

〈Type definitions 7, 8 〉 Used in section 3.

〈Uncover or partially uncover all other columns of cur node ’s row 37 〉 Used in section 26.

DLX3-MOTLEY

Section Page
Intro . 1 1
Data structures . 7 5
Inputting the matrix . 15 9
The dancing . 26 14
Index . 55 28

	Intro
	Data structures
	Inputting the matrix
	The dancing
	Index
	Names of the sections
	Check column p
	Check for 180-degree rotation symmetry
	Check for 90-degree rotation symmetry
	Check for duplicate column name
	Check for transposition symmetries
	Convert the prefix to an integer, q
	Cover or partially cover all other columns of cur_node's row
	Create a node for the column named in buf[p]
	Do special things if enough mems have accumulated
	Give statistics about the run
	Global variables
	If cur_node is off limits, goto backup; also tweak if needed
	Increase level and goto forward
	Initialize last_col to a new column with an empty list
	Input the column names
	Input the rows
	Insert node last_node into the list for column k
	Print the free rows
	Print the profile
	Process the command line
	Reactivate best_col and goto backup
	Record a solution and goto backdown
	Remove last_node from its column
	Report the column totals
	Report the current move
	Report the successful completion of the input phase
	Restore the original state of best_col
	Scan a column name, possibly prefixed by bounds
	Set best_col to the best column for branching, and let score be its branching degree
	Set p to the number of rows remaining
	Solve the problem
	Subroutines
	Type definitions
	Uncover or partially uncover all other columns of cur_node's row

