82 DLX2-CUTOFF INTRO 1

(Downloaded from [|ftps://cs.stanford.edu/ knuth/programs.htm] and typeset on September 17, 2017)

2% This version of the program keeps removing rows at the bottom, thereby finding all solutions that have
minimax row number. (And it usually also finds a few more, before it has found the best cutoff point.)

We assume that the columns contain rows in their original order; the up and down links actually point
upwards and downwards. Therefore we disable the “randomizing” feature by which columns could be linked
randomly. (Randomization still does apply, however, when choosing a column for branching.)

After this program finds all the desired solutions, it normally prints their total number on stderr, together
with statistics about how many nodes were in the search tree, and how many “updates” and “cleansings”
were made. The running time in “mems” is also reported, together with the approximate number of bytes
needed for data storage. (An “update” is the removal of a row from its column. A “cleansing” is the removal
of a satisfied color constraint from its row. One “mem” essentially means a memory access to a 64-bit word.
The reported totals don’t include the time or space needed to parse the input or to format the output.)

Here is the overall structure:

#define o mems++ /* count one mem x*/

#define oo mems +=2 /* count two mems x/

#define ooo mems +=3 /* count three mems */

#define O "j%" /* used for percent signs in format strings */

#define mod % /* used for percent signs denoting remainder in C */

#define max_level 500 /* at most this many rows in a solution */

#define maz_cols 100000 /* at most this many columns */

#define maz_nodes 10000000 /* at most this many nonzero elements in the matrix */
#define bufsize (9 * maz_cols + 3) /* a buffer big enough to hold all column names */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#include "gb_flip.h"
typedef unsigned int uint; /* a convenient abbreviation */
typedef unsigned long long ullng; /x ditto */

('Type definitions 5);
(Global variables 3*);
(Subroutines 9);

main (int arge, char xargv[])

{

register int cc, i, j, k, p, pp, q, v, t, cur_node, best_col;

(Process the command line 4);

(Input the column names 13);

(Input the rows 16);

if (vbose & show_basics) (Report the successful completion of the input phase 20);

if (vbose & show_tots) (Report the column totals 21);

imems = mems, mems = 0;

(Solve the problem 22);

done: if (sanity_checking) sanity();

if (vbose & show_tots) (Report the column totals 21);

if (vbose & show_profile) (Print the profile 35);

if (vbose & show_basics) {
fprintf (stderr, "Altogether,," O"1lu solution"O"s,,"O"11lu+"O"11u-"0"11ly mems,", count,

count =17"" :"s" imems, mems,lmems);

bytes = last_col sizeof (column) + last_node * sizeof (node) + mazl * sizeof (int);
forintf (stderr,","O"11lu updates, "O"1lu cleansings,", updates, cleansings);

https://cs.stanford.edu/~knuth/programs.html

2 INTRO DLX2-CUTOFF §2

forintf (stderr,","O"11lu bytes, " O"1lu nodes.\n", bytes, nodes);

}
}

3* You can control the amount of output, as well as certain properties of the algorithm, by specifying
options on the command line:

e ‘v(integer)’ enables or disables various kinds of verbose output on stderr, given by binary codes such as
show_choices;

e ‘m(integer)’ causes every mth solution to be output (the default is mO, which merely counts them);

e ‘s(integer)’ causes the algorithm to make random choices in key places (thus providing some variety,
although the solutions are by no means uniformly random), and it also defines the seed for any random
numbers that are used;

e ‘d(integer)’ to sets delta, which causes periodic state reports on stderr after the algorithm has performed
approximately delta mems since the previous report;

e ‘c(positive integer)’ limits the levels on which choices are shown during verbose tracing;

e ‘C(positive integer)’ limits the levels on which choices are shown in the periodic state reports;

e ‘1(nonnegative integer)’ gives a lower limit, relative to the maximum level so far achieved, to the levels
on which choices are shown during verbose tracing;

e ‘t(positive integer)’ causes the program to stop after this many solutions have been found;

e ‘T(integer)’ sets timeout (which causes abrupt termination if mems > timeout at the beginning of a level).

F#define show_basics 1 /* wbose code for basic stats; this is the default */

#define show_choices 2 /* wvbose code for backtrack logging =/

#define show_details 4 /* wvbose code for further commentary #/

#define show_cutoffs 8 /* wbose code to report improvements in the cutoff point */
#define show_profile 128 /x wbose code to show the search tree profile */

#define show_full_state 256 /* wbose code for complete state reports x/

#define show_tots 512 /* wvbose code for reporting column totals at start and end */
#define show_warnings 1024 /* wvbose code for reporting rows without primaries x/
(Global variables 3*) =

int random_seed = 0; /* seed for the random words of gb_rand =/

int randomizing; /* has ‘s’ been specified? =/

int vbose = show_basics + show_warnings; /x level of verbosity =/

int spacing; /x solution k is output if k is a multiple of spacing */

int show_choices-maz = 1000000; /* above this level, show_choices is ignored */

int show_choices_gap = 1000000; /* below level maxl — show_choices_gap, show_details is ignored */

int show_levels_maz = 1000000; /* above this level, state reports stop */

int maxl = 0; /* maximum level actually reached =/

char buf[bufsize]; /* input buffer x/

ullng count; /* solutions found so far */

ullng rows; /* rows seen so far */

ullng imems, mems, Imems; /* mem counts */

ullng updates; /* update counts x/

ullng cleansings; /* cleansing counts */

ullng bytes; /* memory used by main data structures */

ullng nodes; /* total number of branch nodes initiated */

ullng thresh = 0; /* report when mems exceeds this, if delta # 0 */

ullng delta = 0; /* report every delta or so mems */

ullng mazxcount = #fffffffFFEFFEFFL; /x stop after finding this many solutions */
ullng timeout = #1ffEfFEfFEEFLEFSE; /* give up after this many mems */

See also sections 7* and 23.

This code is used in section 2%*.

§7 DLX2-CUTOFF DATA STRUCTURES 3

7* (Global variables 3*) +=
node nd[maz_nodes]; /* the master list of nodes */
int last_node; /* the first node in nd that’s not yet used x/
column cl[maz_cols + 2J; /* the master list of columns */
int second = maz_cols; /* boundary between primary and secondary columns x/
int last_col; /* the first column in ¢l that’s not yet used */
int cutoff = maz_nodes; /* nodes after this point have essentially disappeared x/

11* Speaking of debugging, here’s a routine to check if redundant parts of our data structure have gone
awry.

F#define sanity_checking 0 /x set this to 1 if you suspect a bug */

(Subroutines 9) +=
void sanity (void)

{

register int k, p, ¢, pp, qq, t;

for (¢ = root,p = cl[q].next; ; ¢ =p,p = cl[p].next) {
if (cl[p].prev # q) fprintf (stderr, "Bad_ prev,field atcol,"O".8s!\n", cl[p].name);
if (p = root) break;
(Check column p 12);
}
¥

4 THE DANCING DLX2-CUTOFF §26

26* A subtle point should be noted: As we uncover column ¢, and run across a row ‘c z ...’ that should
be restored to column z, the original successors ‘x a ...’ ‘¢ b ...’ etc., of that row in column z may now
be cut off. In such a case we can be sure that those successor rows have disappeared from column x, and
they have not been restored.

The reason is that each of those rows must have a primary column; and every primary column was covered
before we changed the cutoff. The rows were therefore not restored to column x when we uncovered those
primary columns.

(Subroutines 9) +=
void uncover(int c)

{

register int cc, I, v, rr, nn, uu, dd, t;

for (o,t =0,rr = nd[c].up; rr > cutoff; o,rr = nd[rr].up) t++;
if (t) { /* t rows that we covered have been cut off x/
0o, nd|c].len —=1;
if (¢ > second) lmems +=2;
0o, nd[c].up = rr,nd[rr].down = ¢;
}
for (; rr > last_col; o, rr = nd[rr].up)
for (nn =rr+1; nn#rr;) {
if (o, nd[nn].color > 0) {
o0, uu = nd[nn].up, dd = nd[nn].down;
cc = nd[nn].col;
if (cc <0) {
nn = uu;
continue;
}
if (dd > cutoff) o, nd[nn].down = dd = cc; /* see the “subtle point” above x/
00, nd[uu].down = nd[dd].up = nn;
o,t = ndec].len + 1;
o0, nd[cc].len =t;
if (cc > second) Ilmems += 2;
}
nn ++;
}
o,l = clc].prev,r = cl[c].next;
0o, cl[l].next = cl[r].prev = ¢;

830 DLX2-CUTOFF THE DANCING

30* Just as purify is analogous to cover, the inverse process is analogous to uncover.

{ Subroutines 9) +=
void unpurify(int p)

register int cc, rr, nn, uu, dd, t, x;
0, cc = nd|[p].col,z = nd[p].color; /* there’s no need to clear nd|[cc].color x/
for (o,t =0,rr = nd[ccl.up; rr > cutoff; o,rr = nd[rr].up) t++;
if (t) { /x t rows that we covered have been cut off */
0o, nd|cc).len —=t;
Imems += 2;
oo, nd[cc|.up = rr,nd[rr].down = cc;
}
for (; rr > last_col; o,rr = nd[rr].up) {
if (o, nd[rr].color < 0) o,nd[rr].color = x;
else if (rr #p) {
for (nn=rr —1; nn £ rr;) {
o, uu = nd[nn].up, dd = nd[nn].down;
0, cc = nd[nn].col;
if (cc <0) {
nn = dd; continue;
}
if (nd[nn].color > 0) {
if (dd > cutoff) o,nd[nn].down = dd = cc; /* see the “subtle point” above */
00, nd[uu].down = nd[dd].up = nn;
o,t = nd[cc].len + 1;
o,nd[ccl.len =1
if (cc > second) Ilmems += 2;

}

nn——;

6 THE DANCING DLX2-CUTOFF

32* (Record solution and goto recover 32*) =

{

count ++;
for (k=0,pp =0; k < level; k++)

if (choice(k] > pp) pp = choice[k];
for (pp++; o,nd[pp].col > 0; pp++) ; /* move to end of largest chosen row =/
if (pp # cutoff) {

culoff = pp;

if (vbose & show_cutoffs) {

forintf (stderr, " new cutoff after row,"O"d:\n", —nd[pp].col);

prow(nd[pp].up);

}
for (k=0; k < level; k++) {
0, cc = nd|[choice[k]].col; /* cc will stay covered until we backtrack */

for (0,t =0, pp = nd[cc].up; pp > cutoff; o,pp = nd[pp].up) t++;
if (t) { /* need to prune unneeded options from column cc */
00, nd[pp].down = cc,nd[cc].up = pp;
0o, nd[cc].len —=t;
}
}

if (spacing A (count mod spacing = 0)) {
printf (""O"11d:\n", count);
for (k =0; k < level; k++) print_row(choice[k], stdout);
fflush (stdout);

if (count > mazcount) goto done;
goto recover;

}

This code is used in section 22.

§32

836 DLX2-CUTOFF

36* Index.

INDEX 7

The following sections were changed by the change file: 2, 3, 7, 11, 26, 30, 32, 36.

advance: 22.

arge: 2F 4.

argv: 2 4.

auzr: 5, 17, 18, 19.

backup: 22.

best_col: 2¥ 22, 31.

buf: 3¥ 13, 16.

bufsize: 2¥ 3F 13, 16.

bytes: 2% 3*

c: 10, 25, 26F 34.

ce: 2%25. 26% 27, 28, 29, 30* 32%

choice: 22, 23, 32F 33, 34.

c: 5, 7%8, 9, 10, 11* 12, 13, 14, 15, 16, 17,
92, 25, 26* 31.

cleansings: 27 3F 29.

col: 5,9, 12, 13, 16, 17, 19, 22, 25, 26* 27,
28, 29, 30F 32F 34.

col_struct: 6.

color: 5,9, 16, 25, 26% 27, 28, 29, 30%

column: 2¥6, 7F8.

count: 2% 3¥ 32% 33, 34.

cover: 22, 25, 27, 30%*

cur_node: 2F 22, 27, 28.

cutoff: T¥ 267 30F 32*

d: 34.

dd: 25, 26F 29, 30*

delta: 3% 4, 24.

done: 2F22 24, 32%

down: 2%5, 9, 10, 12, 15, 16, 18, 19, 22, 25,
926% 28, 29, 30% 32F 34.

erit: 4, 13, 22.

[34

fd: 34.

fflush: 32*

fgets: 13, 16.

forward: 22.

forintf: 2%4, 9, 10, 11%12, 13, 16, 20, 21, 22,

24, 31, 32F 33, 34, 35.
gb_init_rand: 4.

gb_rand: 3*
gb_unif-rand: 18, 31.
10 2¥

imems: 2F 3*
isspace: 13, 16.

4. 2%

k. 2¥9, 117 34.

I: 25, 26¥ 33, 34.

last_col: 2F¥T7¥9, 10, 13, 14, 15, 16, 17, 20, 21,
25, 26% 29, 30%

last_node: 2F¥7¥9, 13, 16, 17, 18, 19, 20.

len:

5, 9, 10, 12, 15, 17, 18, 19, 21, 25, 265

29, 30% 31, 32* 34.

level:

Ilmems:

main
max_
max_
max_

mazxcount:

maxl

mems:

mod

name:

nd:

22, 23, 31, 32% 33, 34, 35.
2% 3% 25, 26F 29, 30%*

. 2k

cols:

level:

nodes:

2% T¥ 13, 15.
2% 22, 23.
2% 7F13, 16, 17, 31.
3k 4, 32F
;2% 3%22, 31, 33, 35.
2¥ 3718, 24, 31, 33, 34.
: o 2F 32F
6, 8,9, 10, 11¥12, 13, 14, 16, 17, 31.
5, 7¥9, 10, 12, 13, 15, 16, 17, 18, 19, 21, 22,

25, 2627, 28, 29, 30% 31, 32* 34.

next:
nn:

node:

6, 10, 11713, 15, 22, 25, 267 31.
25, 265 29, 30*
275, *

node_struct: 5.

nodes:

2% 3% 22.

0. 2f
o: 2F

00:
000:

215, 19, 22, 25, 26} 29, 30F 32*
2% 18.

pr 29, 10, 11729, 30* 34.

panic: 13, 14, 15, 16, 17.

pp: 2¥11%12, 16, 17, 27, 28, 32*
prev: 6, 10, 11% 13, 15, 25, 26*
print_col: 10.

print_progress: 24, 34.
print_row: 9, 22, 29, 32F 33.
print_state: 24, 33.

printf: 32¥

profile: 22, 23, 35.

prow: 9, 10, 32*

purify: 27, 29, 30%*

g 2F9, 11F

qq: 11F 12.

ri 2F 25, 26%

random_seed: 3% 4.
randomizing: 3% 4, 5, 18, 31.
recover: 22, 32%*

root: 8, 10, 11¥ 13, 22, 31.
rows: 3F 16, 20.

rr: 25, 265 29, 30*

samity: 2F 11F 22.
sanity_checking: 2¥ 11F 22.
second: T¥10, 13, 15, 16, 17, 20, 21, 25, 26729, 30*
show_basics: 2F 3*
show_choices: 3% 22.

8 INDEX DLX2-CUTOFF 836

show_choices_gap: 3F 4, 31.

show_choices_mazx: 3¥4, 22, 31.

show_cutoffs: 3% 32%*

show_details: 3¥ 31.

show_full_state: 3F 24.

show_levels_maz: 3F 4, 33, 34.

show_profile: 2F 3¥ 22.

show_tots: 2F 3*

show_warnings: 3¥ 16.

spacing: 3F 4, 32%

sscanf: 4.

stderr: 2%3%4, 9,10, 11%12, 13, 16, 20, 21, 22,
24, 31, 32% 33, 34, 35.

stdin: 13, 16.
stdout: 32%F
stream: 9.

strlen: 13, 16.
strnemp: 14, 17.
t: 2F11F 25, 26F 29, 30*

thresh: 3F 4, 24.

timeout: 3F 4, 24.

uint: 2*

ullng: 2F 3F 23.

uncover: 22, 26F 28, 30%*
unpurify: 28, 30%

up: 2%5,9,12, 15, 16, 18, 19, 25, 2627, 29, 30%32*
updates: 2¥ 3% 25, 29.

uu: 25, 265 29, 30*

vbose: 2F 3% 4, 16, 22, 24, 31, 32*
r: 29, 30%

DLX2-CUTOFF NAMES OF THE SECTIONS

(Check column p 12> Used in section 11%*.

(Check for duplicate column name 14) Used in section 13.

(Cover all other columns of cur_node 27) Used in section 22.

(Create a node for the column named in buf[p] 17) Used in section 16.

(Do special things if enough mems have accumulated 24) Used in section 22.
(Global variables 3*, 7%, 23) Used in section 2*.

(Initialize last_col to a new column with an empty list 15) Used in section 13.
(Input the column names 13) Used in section 2*.

(Input the rows 16) Used in section 2%*.

(Insert node last_node into the list for column k& 18) Used in section 17.
(Print the profile 35) Used in section 2*.

(Process the command line 4) Used in section 2*.

{ Record solution and goto recover 32*) Used in section 22.

(Remove last_node from its column 19) Used in section 16.

(Report the column totals 21) Used in section 2*.

(Report the successful completion of the input phase 20) Used in section 2*.
(Set best_col to the best column for branching 31) Used in section 22.
(Solve the problem 22) Used in section 2*.

(Subroutines 9, 10, 11*, 25, 26*, 29, 30%, 33, 34) Used in section 2*.

(Type definitions 5, 6> Used in section 2*.

(Uncover all other columns of cur-node 28) Used in section 22.

DLX2-CUTOFF

Section Page

Data StrUCtUIeSo 5 2
Inputting the matrix 13 3
The dancingo 22 3
Index ... 36 7

	Data structures
	Inputting the matrix
	The dancing
	Index
	Names of the sections
	Check column p
	Check for duplicate column name
	Cover all other columns of cur_node
	Create a node for the column named in buf[p]
	Do special things if enough mems have accumulated
	Global variables
	Initialize last_col to a new column with an empty list
	Input the column names
	Input the rows
	Insert node last_node into the list for column k
	Print the profile
	Process the command line
	Record solution and goto recover
	Remove last_node from its column
	Report the column totals
	Report the successful completion of the input phase
	Set best_col to the best column for branching
	Solve the problem
	Subroutines
	Type definitions
	Uncover all other columns of cur_node

