
§1 DLX-PRE INTRO 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Intro. This program is part of a series of “exact cover solvers” that I’m putting together for my own
education as I prepare to write Section 7.2.2.1 of The Art of Computer Programming. My intent is to have
a variety of compatible programs on which I can run experiments, in order to learn how different approaches
work in practice.

Instead of actually solving an exact cover problem, DLX-PRE is a preprocessor : It converts the problem
on stdin to an equivalent problem on stdout , removing any options or items that it finds to be unnecessary.

Here’s a description of the input (and output) format, copied from DLX1: We’re given a matrix of 0s and
1s, some of whose items are called “primary” while the other items are “secondary.” Every option contains
a 1 in at least one primary item. The problem is to find all subsets of its options whose sum is (i) exactly 1
in all primary items; (ii) at most 1 in all secondary items.

This matrix, which is typically very sparse, is specified on stdin as follows:

• Each item has a symbolic name, from one to eight characters long. Each of those characters can be any
nonblank ASCII code except for ‘:’ and ‘|’.

• The first line of input contains the names of all primary items, separated by one or more spaces, followed
by ‘|’, followed by the names of all other items. (If all items are primary, the ‘|’ may be omitted.)

• The remaining lines represent the options, by listing the items where 1 appears.

• Additionally, “comment” lines can be interspersed anywhere in the input. Such lines, which begin with
‘|’, are ignored by this program, but they are often useful within stored files.

Later versions of this program solve more general problems by making further use of the reserved characters
‘:’ and ‘|’ to allow additional kinds of input.

For example, if we consider the matrix
0 0 1 0 1 1 0
1 0 0 1 0 0 1
0 1 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 0 0 1
0 0 0 1 1 0 1


which was (3) in my original paper, we can name the items A, B, C, D, E, F, G. Suppose the first five are
primary, and the latter two are secondary. That matrix can be represented by the lines

| A simple example

A B C D E | F G

C E F

A D G

B C F

A D

B G

D E G

(and also in many other ways, because item names can be given in any order, and so can the individual
options). It has a unique solution, consisting of the three options A D and E F C and B G.

DLX-PRE will simplify this drastically. First it will observe that every option containing A also contains
D; hence item D can be removed from the matrix, as can the option D E G. Similarly we can remove item
F; then item C and option B C. Now we can remove G and option A G. The result is a trivial problem, with
three primary items A, B, E, and three singleton options A, B, E.

https://cs.stanford.edu/~knuth/programs.html

2 INTRO DLX-PRE §2

2. Furthermore, DLX2 extends DLX1 by allowing “color controls.” Any option that specifies a “color” in
a nonprimary item will rule out all options that don’t specify the same color in that item. But any number
of options whose nonprimary items agree in color are allowed. (The previous situation was the special case
in which every option corresponds to a distinct color.)

The input format is extended so that, if xx is the name of a nonprimary item, options can contain entries
of the form xx:a, where a is a single character (denoting a color).

Here, for example, is a simple test case:

| A simple example of color controls

A B C | X Y

A B X:0 Y:0

A C X:1 Y:1

X:0 Y:1

B X:1

C Y:1

The option X:0 Y:1 will be deleted immediately, because it has no primary items. The preprocessor will
delete option A B X:0 Y:0, because that option can’t be used without making item C uncoverable. Then
item C can be eliminated, and option C Y:1.

3. These examples show that the simplified output may be drastically different from the original. It will
have the same number of solutions; but by looking only at the simplified options in those solutions, you may
have no idea how to actually resolve the original problem! (Unless you work backward from the simplifications
that were actually performed.)

The preprocessor for my SAT solvers had a counterpart called ‘ERP’, which converted solutions of the
preprocessed problems into solutions of the original problems. DLX-PRE doesn’t have that. But if you use
the show orig nos option below, for example by saying ‘v9’ when running DLX-PRE, you can figure out
which options of the original are solutions. The sets of options that solve the simplified problem are the sets
of options that solve the original problem; the numbers given as comments by show orig nos provide the
mapping between solutions.

For example, the simplified output from the first problem, using ‘v9’, is:

A B C |

A

| (from 4)

B

| (from 5)

C

| (from 1)

And from the second problem it is similar, but not quite as simple:

A B | X Y

A X:1 Y:1

| (from 2)

B X:1

| (from 3)

§4 DLX-PRE INTRO 3

4. Most of the code below, like the description above, has been cribbed from DLX2, with minor changes.
After this program does its work, it reports its running time in “mems”; one “mem” essentially means a

memory access to a 64-bit word. (The given totals don’t include the time or space needed to parse the input
or to format the output.)

Here is the overall structure:

#define o mems ++ /∗ count one mem ∗/
#define oo mems += 2 /∗ count two mems ∗/
#define ooo mems += 3 /∗ count three mems ∗/
#define O "%" /∗ used for percent signs in format strings ∗/
#define mod % /∗ used for percent signs denoting remainder in C ∗/
#define max level 500 /∗ at most this many options in a solution ∗/
#define max itms 100000 /∗ at most this many items ∗/
#define max nodes 10000000 /∗ at most this many nonzero elements in the matrix ∗/
#define bufsize (9 ∗max itms + 3) /∗ a buffer big enough to hold all item names ∗/
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#include "gb_flip.h"

typedef unsigned int uint; /∗ a convenient abbreviation ∗/
typedef unsigned long long ullng; /∗ ditto ∗/
〈Type definitions 7 〉;
〈Global variables 5 〉;
〈Subroutines 11 〉;
main (int argc , char ∗argv [])
{

register int c, cc , dd , i, j, k, p, pp , q, qq , r, rr , rrr , t, uu , x, cur node , best itm ;

〈Process the command line 6 〉;
〈 Input the item names 16 〉;
〈 Input the options 19 〉;
if (vbose & show basics) 〈Report the successful completion of the input phase 23 〉;
if (vbose & show tots) 〈Report the item totals 24 〉;
imems = mems ,mems = 0;
〈Reduce the problem 29 〉;

finish : 〈Output the reduced problem 43 〉;
done : if (vbose & show tots) 〈Report the item totals 24 〉;
all done : if (vbose & show basics) {

fprintf (stderr ,
"Removed "O"d option"O"s and "O"d item"O"s, after "O"llu+"O"llu mems,",
options out , options out ≡ 1 ? "" : "s", itms out , itms out ≡ 1 ? "" : "s", imems ,mems);

fprintf (stderr , " "O"d round"O"s.\n", rnd , rnd ≡ 1 ? "" : "s");
}
}

4 INTRO DLX-PRE §5

5. You can control the amount of output, as well as certain properties of the algorithm, by specifying
options on the command line:

• ‘v〈 integer 〉’ enables or disables various kinds of verbose output on stderr , given by binary codes such as
show choices ;

• ‘d〈 integer 〉’ to sets delta , which causes periodic state reports on stderr after the algorithm has performed
approximately delta mems since the previous report (default 10000000000);

• ‘t〈positive integer 〉’ to specify the maximum number of rounds of option elimination that will be at-
tempted.

• ‘T〈 integer 〉’ sets timeout (which causes abrupt termination if mems > timeout at the beginning of a
clause, but doesn’t ruin the integrity of the output).

#define show basics 1 /∗ vbose code for basic stats; this is the default ∗/
#define show choices 2 /∗ vbose code for general logging ∗/
#define show details 4 /∗ vbose code for further commentary ∗/
#define show orig nos 8 /∗ vbose code to identify sources of output options ∗/
#define show tots 512 /∗ vbose code for reporting item totals at start and end ∗/
#define show warnings 1024 /∗ vbose code for reporting options without primaries ∗/
〈Global variables 5 〉 ≡

int vbose = show basics + show warnings ; /∗ level of verbosity ∗/
char buf [bufsize]; /∗ input buffer ∗/
ullng options ; /∗ options seen so far ∗/
ullng imems ,mems ; /∗ mem counts ∗/
ullng thresh = 1000000000; /∗ report when mems exceeds this, if delta 6= 0 ∗/
ullng delta = 10000000000; /∗ report every delta or so mems ∗/
ullng timeout = #1fffffffffffffff; /∗ give up after this many mems ∗/
int rounds = max nodes ; /∗ maximum number of rounds attempted ∗/
int options out , itms out ; /∗ this many reductions made so far ∗/

See also sections 9 and 30.

This code is used in section 4.

6. If an option appears more than once on the command line, the first appearance takes precedence.

〈Process the command line 6 〉 ≡
for (j = argc − 1, k = 0; j; j−−)

switch (argv [j][0]) {
case ’v’: k |= (sscanf (argv [j] + 1, ""O"d",&vbose)− 1); break;
case ’d’: k |= (sscanf (argv [j] + 1, ""O"lld",&delta)− 1), thresh = delta ; break;
case ’t’: k |= (sscanf (argv [j] + 1, ""O"d",&rounds)− 1); break;
case ’T’: k |= (sscanf (argv [j] + 1, ""O"lld",&timeout)− 1); break;
default: k = 1; /∗ unrecognized command-line option ∗/
}

if (k) {
fprintf (stderr , "Usage: "O"s [v<n>] [d<n>] [t<n>] [T<n>] < foo.dlx > bar.dlx\n", argv [0]);
exit (−1);
}

This code is used in section 4.

§7 DLX-PRE DATA STRUCTURES 5

7. Data structures. Each item of the input matrix is represented by a item struct, and each option is
represented as a list of node structs. There’s one node for each nonzero entry in the matrix.

More precisely, the nodes of individual options appear sequentially, with “spacer” nodes between them.
The nodes are also linked circularly within each item, in doubly linked lists. The item lists each include a
header node, but the option lists do not. Item header nodes are aligned with a item struct, which contains
further info about the item.

Each node contains four important fields. Two are the pointers up and down of doubly linked lists, already
mentioned. A third points directly to the item containing the node. And the last specifies a color, or zero if
no color is specified.

A “pointer” is an array index, not a C reference (because the latter would occupy 64 bits and waste cache
space). The cl array is for item structs, and the nd array is for nodes. I assume that both of those arrays
are small enough to be allocated statically. (Modifications of this program could do dynamic allocation if
needed.) The header node corresponding to cl [c] is nd [c].

Notice that each node occupies two octabytes. We count one mem for a simultaneous access to the up
and down fields, or for a simultaneous access to the itm and color fields.

This program doesn’t change the itm fields after they’ve first been set up, except temporarily. But the
up and down fields will be changed frequently, although preserving relative order.

Exception: In the node nd [c] that is the header for the list of item c, we use the itm field to hold the
length of that list (excluding the header node itself). We also might use its color field for special purposes.
The alternative names len for itm and aux for color are used in the code so that this nonstandard semantics
will be more clear.

A spacer node has itm ≤ 0. Its up field points to the start of the preceding option; its down field points
to the end of the following option. Thus it’s easy to traverse an option circularly, in either direction.

Spacer nodes are also used within an option, if that option has been shortened. The up and down fields
in such spacers simply point to the next and previous elements. (We could optimize this by collapsing links,
for example when several spacers are consecutive. But the present program doesn’t do that.)

#define len itm /∗ item list length (used in header nodes only) ∗/
#define aux color /∗ an auxiliary quantity (used in header nodes only) ∗/
〈Type definitions 7 〉 ≡

typedef struct node struct {
int up , down ; /∗ predecessor and successor in item ∗/
int itm ; /∗ the item containing this node ∗/
int color ; /∗ the color specified by this node, if any ∗/
} node;

See also section 8.

This code is used in section 4.

8. Each item struct contains three fields: The name is the user-specified identifier; next and prev point
to adjacent items, when this item is part of a doubly linked list.

We count one mem for a simultaneous access to the prev and next fields.

〈Type definitions 7 〉 +≡
typedef struct itm struct {

char name [8]; /∗ symbolic identification of the item, for printing ∗/
int prev ,next ; /∗ neighbors of this item ∗/
} item;

6 DATA STRUCTURES DLX-PRE §9

9. 〈Global variables 5 〉 +≡
node ∗nd ; /∗ the master list of nodes ∗/
int last node ; /∗ the first node in nd that’s not yet used ∗/
item cl [max itms + 2]; /∗ the master list of items ∗/
int second = max itms ; /∗ boundary between primary and secondary items ∗/
int last itm ; /∗ the first item in cl that’s not yet used ∗/

10. One item struct is called the root. It serves as the head of the list of items that need to be covered,
and is identifiable by the fact that its name is empty.

#define root 0 /∗ cl [root] is the gateway to the unsettled items ∗/

11. An option is identified not by name but by the names of the items it contains. Here is a routine that
prints an option, given a pointer to any of its nodes. It also prints the position of the option in its item.

This procedure differs slightly from its counterpart in DLX2: It uses ‘while’ where DLX2 had ‘if ’. The
reason is that DLX-PRE sometimes deletes nodes, replacing them by spacers.

〈Subroutines 11 〉 ≡
void print option (int p,FILE ∗stream)
{

register int k, q;

if (p < last itm ∨ p ≥ last node ∨ nd [p].itm ≤ 0) {
fprintf (stderr , "Illegal option "O"d!\n", p);
return;

}
for (q = p; ;) {

fprintf (stream , " "O".8s", cl [nd [q].itm].name);
if (nd [q].color) fprintf (stream , ":"O"c",nd [q].color > 0 ? nd [q].color : nd [nd [q].itm].color);
q++;
while (nd [q].itm ≤ 0) q = nd [q].up ;
if (q ≡ p) break;

}
for (q = nd [nd [p].itm].down , k = 1; q 6= p; k++) {

if (q ≡ nd [p].itm) {
fprintf (stream , " (?)\n"); return; /∗ option not in its item! ∗/

} else q = nd [q].down ;
}
fprintf (stream , " ("O"d of "O"d)\n", k,nd [nd [p].itm].len);
}
void prow (int p)
{

print option (p, stderr);
}

See also sections 12, 13, 14, 27, and 28.

This code is used in section 4.

§12 DLX-PRE DATA STRUCTURES 7

12. Another routine to print options is used for diagnostics. It returns the original number of the option,
and displays the not-yet-deleted items in their original order. That original number (or rather its negative)
appears in the spacer at the right of the option.

〈Subroutines 11 〉 +≡
int dpoption (int p,FILE ∗stream)
{

register int q, c;

for (p−−; nd [p].itm > 0 ∨ nd [p].down < p; p−−) ;
for (q = p + 1; ; q++) {

c = nd [q].itm ;
if (c < 0) return −c;
if (c > 0) {

fprintf (stream , " "O".8s", cl [c].name);
if (nd [q].color) fprintf (stream , ":"O"c",nd [q].color);

}
}
}

13. When I’m debugging, I might want to look at one of the current item lists.

〈Subroutines 11 〉 +≡
void print itm (int c)
{

register int p;

if (c < root ∨ c ≥ last itm) {
fprintf (stderr , "Illegal item "O"d!\n", c);
return;

}
if (c < second)

fprintf (stderr , "Item "O".8s, length "O"d, neighbors "O".8s and "O".8s:\n", cl [c].name ,
nd [c].len , cl [cl [c].prev].name , cl [cl [c].next].name);

else fprintf (stderr , "Item "O".8s, length "O"d:\n", cl [c].name ,nd [c].len);
for (p = nd [c].down ; p ≥ last itm ; p = nd [p].down) prow (p);
}

14. Speaking of debugging, here’s a routine to check if redundant parts of our data structure have gone
awry.

#define sanity checking 0 /∗ set this to 1 if you suspect a bug ∗/
〈Subroutines 11 〉 +≡

void sanity (void)
{

register int k, p, q, pp , qq , t;

for (q = root , p = cl [q].next ; ; q = p, p = cl [p].next) {
if (cl [p].prev 6= q) fprintf (stderr , "Bad prev field at itm "O".8s!\n", cl [p].name);
if (p ≡ root) break;
〈Check item p 15 〉;

}
}

8 DATA STRUCTURES DLX-PRE §15

15. 〈Check item p 15 〉 ≡
for (qq = p, pp = nd [qq].down , k = 0; ; qq = pp , pp = nd [pp].down , k++) {

if (nd [pp].up 6= qq) fprintf (stderr , "Bad up field at node "O"d!\n", pp);
if (pp ≡ p) break;
if (nd [pp].itm 6= p) fprintf (stderr , "Bad itm field at node "O"d!\n", pp);
}
if (nd [p].len 6= k) fprintf (stderr , "Bad len field in item "O".8s!\n", cl [p].name);

This code is used in section 14.

§16 DLX-PRE INPUTTING THE MATRIX 9

16. Inputting the matrix. Brute force is the rule in this part of the code, whose goal is to parse and
store the input data and to check its validity.

#define panic(m)
{ fprintf (stderr , ""O"s!\n"O"d: "O".99s\n",m, p, buf); exit (−666); }

〈 Input the item names 16 〉 ≡
nd = (node ∗) calloc(max nodes , sizeof (node));
if (¬nd) {

fprintf (stderr , "I couldn’t allocate space for "O"d nodes!\n",max nodes);
exit (−666);
}
if (max nodes ≤ 2 ∗max itms) {

fprintf (stderr , "Recompile me: max_nodes must exceed twice max_itms!\n");
exit (−999);
} /∗ every item will want a header node and at least one other node ∗/
while (1) {

if (¬fgets (buf , bufsize , stdin)) break;
if (o, buf [p = strlen (buf)− 1] 6= ’\n’) panic("Input line way too long");
for (p = 0; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’ ∨ ¬buf [p]) continue; /∗ bypass comment or blank line ∗/
last itm = 1;
break;
}
if (¬last itm) panic("No items");
for (; o, buf [p];) {

for (j = 0; j < 8 ∧ (o,¬isspace (buf [p + j])); j++) {
if (buf [p + j] ≡ ’:’ ∨ buf [p + j] ≡ ’|’) panic("Illegal character in item name");
o, cl [last itm].name [j] = buf [p + j];

}
if (j ≡ 8 ∧ ¬isspace (buf [p + j])) panic("Item name too long");
〈Check for duplicate item name 17 〉;
〈 Initialize last itm to a new item with an empty list 18 〉;
for (p += j + 1; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’) {

if (second 6= max itms) panic("Item name line contains | twice");
second = last itm ;
for (p++; o, isspace (buf [p]); p++) ;

}
}
if (second ≡ max itms) second = last itm ;
o, cl [root].prev = second − 1; /∗ cl [second − 1].next = root since root = 0 ∗/
last node = last itm ; /∗ reserve all the header nodes and the first spacer ∗/
o,nd [last node].itm = 0;

This code is used in section 4.

17. 〈Check for duplicate item name 17 〉 ≡
for (k = 1; o, strncmp(cl [k].name , cl [last itm].name , 8); k++) ;
if (k < last itm) panic("Duplicate item name");

This code is used in section 16.

10 INPUTTING THE MATRIX DLX-PRE §18

18. 〈 Initialize last itm to a new item with an empty list 18 〉 ≡
if (last itm > max itms) panic("Too many items");
if (second ≡ max itms) oo , cl [last itm − 1].next = last itm , cl [last itm].prev = last itm − 1;
else o, cl [last itm].next = cl [last itm].prev = last itm ; /∗ nd [last itm].len = 0 ∗/
o,nd [last itm].up = nd [last itm].down = last itm ;
last itm ++;

This code is used in section 16.

19. In DLX1 and its descendants, I put the option number into the spacer that follows it, but only because
I thought it might be a possible debugging aid. Now, in DLX-PRE, I’m glad I did, because we need this
number when the user wants to relate the simplified output to the original unsimplified options.

〈 Input the options 19 〉 ≡
while (1) {

if (¬fgets (buf , bufsize , stdin)) break;
if (o, buf [p = strlen (buf)− 1] 6= ’\n’) panic("Option line too long");
for (p = 0; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’ ∨ ¬buf [p]) continue; /∗ bypass comment or blank line ∗/
i = last node ; /∗ remember the spacer at the left of this option ∗/
for (pp = 0; buf [p];) {

for (j = 0; j < 8 ∧ (o,¬isspace (buf [p + j])) ∧ buf [p + j] 6= ’:’; j++)
o, cl [last itm].name [j] = buf [p + j];

if (¬j) panic("Empty item name");
if (j ≡ 8 ∧ ¬isspace (buf [p + j]) ∧ buf [p + j] 6= ’:’) panic("Item name too long");
if (j < 8) o, cl [last itm].name [j] = ’\0’;
〈Create a node for the item named in buf [p] 20 〉;
if (buf [p + j] 6= ’:’) o,nd [last node].color = 0;
else if (k ≥ second) {

if ((o, isspace (buf [p + j + 1])) ∨ (o,¬isspace (buf [p + j + 2])))
panic("Color must be a single character");

o,nd [last node].color = (unsigned char) buf [p + j + 1];
p += 2;

} else panic("Primary item must be uncolored");
for (p += j + 1; o, isspace (buf [p]); p++) ;

}
if (¬pp) {

if (vbose & show warnings) fprintf (stderr , "Option ignored (no primary items): "O"s", buf);
while (last node > i) {
〈Remove last node from its item 22 〉;
last node −−;

}
} else {
o,nd [i].down = last node ;
last node ++; /∗ create the next spacer ∗/
if (last node ≡ max nodes) panic("Too many nodes");
options ++;
o,nd [last node].up = i + 1;
o,nd [last node].itm = −options ;

}
}

This code is used in section 4.

§20 DLX-PRE INPUTTING THE MATRIX 11

20. 〈Create a node for the item named in buf [p] 20 〉 ≡
for (k = 0; o, strncmp(cl [k].name , cl [last itm].name , 8); k++) ;
if (k ≡ last itm) panic("Unknown item name");
if (o,nd [k].aux ≥ i) panic("Duplicate item name in this option");
last node ++;
if (last node ≡ max nodes) panic("Too many nodes");
o,nd [last node].itm = k;
if (k < second) pp = 1;
o, t = nd [k].len + 1;
〈 Insert node last node into the list for item k 21 〉;

This code is used in section 19.

21. Insertion of a new node is simple. We store the position of the new node into nd [k].aux , so that the
test for duplicate items above will be correct.

〈 Insert node last node into the list for item k 21 〉 ≡
o,nd [k].len = t; /∗ store the new length of the list ∗/
nd [k].aux = last node ; /∗ no mem charge for aux after len ∗/
o, r = nd [k].up ; /∗ the “bottom” node of the item list ∗/
ooo ,nd [r].down = nd [k].up = last node ,nd [last node].up = r,nd [last node].down = k;

This code is used in section 20.

22. 〈Remove last node from its item 22 〉 ≡
o, k = nd [last node].itm ;
oo ,nd [k].len −−,nd [k].aux = i− 1;
o, q = nd [last node].up , r = nd [last node].down ;
oo ,nd [q].down = r,nd [r].up = q;

This code is used in section 19.

23. 〈Report the successful completion of the input phase 23 〉 ≡
fprintf (stderr , "("O"lld options, "O"d+"O"d items, "O"d entries successfully read)\n",

options , second − 1, last itm − second , last node − last itm);

This code is used in section 4.

24. The item lengths after input should agree with the item lengths after this program has finished—
unless, of course, we’ve successfully simplified the input! I print them (on request), in order to provide some
reassurance that the algorithm isn’t badly screwed up.

〈Report the item totals 24 〉 ≡
{

fprintf (stderr , "Item totals:");
for (k = 1; k < last itm ; k++) {

if (k ≡ second) fprintf (stderr , " |");
fprintf (stderr , " "O"d",nd [k].len);

}
fprintf (stderr , "\n");
}

This code is used in section 4.

12 THE DANCING DLX-PRE §25

25. The dancing. Suppose p is a primary item, and c is an arbitrary item such that every option
containing p also contains an uncolored instance of c. Then we can delete item c, and every option that
contains c but not p. For we’ll need to cover p, and then c will automatically be covered too.

More generally, if p is a primary item and r is an option such that p /∈ r but every option containing p
is incompatible with r, then we can eliminate option r: That option can’t be chosen without making p
uncoverable.

This program exploits those two ideas, by systematically looking at all options in the list for item c, as c
runs through all items.

This algorithm takes “polynomial time,” but I don’t claim that it is fast. I want to get a straightforward
algorithm in place before trying to make it more complicated.

On the other hand, I’ve tried to use the most efficient and scalable methods that I could think of, consistent
with that goal of relative simplicity. There’s no point in having a preprocessor unless it works fast enough
to speed up the total time of preprocessing plus processing.

26. The basic operation is “hiding an item.” This means causing all of the options in its list to be invisible
from outside the item, except for the options that color this item; they are (temporarily) deleted from all
other lists.

As in DLX2, the neat part of this algorithm is the way the lists are maintained. No auxiliary tables
are needed when hiding an item, or when unhiding it later. The nodes removed from doubly linked lists
remember their former neighbors, because we do no garbage collection.

27. Hiding is much like DLX2’s “covering” operation, but it has a new twist: If the process of hiding item
c causes at least one primary item p to become empty, we know that c can be eliminated (as mentioned
above). Furthermore we know that we can delete every option that contains c but not p.

Therefore the hide procedure puts the value of such p in a global variable, for use by the caller. That
global variable is called ‘stack ’ for historical reasons: My first implementation had an unnecessarily complex
mechanism for dealing with several primary items that simultaneously become empty, so I used to put them
onto a stack.

〈Subroutines 11 〉 +≡
void hide (int c)
{

register int cc , l, r, rr ,nn , uu , dd , t, k = 0;

for (o, rr = nd [c].down ; rr ≥ last itm ; o, rr = nd [rr].down)
if (o,¬nd [rr].color) {

for (nn = rr + 1; nn 6= rr ;) {
o, uu = nd [nn].up , dd = nd [nn].down ;
o, cc = nd [nn].itm ;
if (cc ≤ 0) {

nn = uu ;
continue;

}
oo ,nd [uu].down = dd ,nd [dd].up = uu ;
o, t = nd [cc].len − 1;
o,nd [cc].len = t;
if (t ≡ 0 ∧ cc < second) stack = cc ;
nn ++;
}

}
}

§28 DLX-PRE THE DANCING 13

28. 〈Subroutines 11 〉 +≡
void unhide (int c)
{

register int cc , l, r, rr ,nn , uu , dd , t;

for (o, rr = nd [c].down ; rr ≥ last itm ; o, rr = nd [rr].down)
if (o,¬nd [rr].color) {

for (nn = rr + 1; nn 6= rr ;) {
o, uu = nd [nn].up , dd = nd [nn].down ;
o, cc = nd [nn].itm ;
if (cc ≤ 0) {

nn = uu ;
continue;

}
o, t = nd [cc].len ;
oo ,nd [uu].down = nd [dd].up = nn ;
o,nd [cc].len = t + 1;
nn ++;
}

}
}

29. Here then is the main loop for each round of preprocessing.

〈Reduce the problem 29 〉 ≡
for (cc = 1; cc < last itm ; cc ++)

if (o,nd [cc].len ≡ 0) 〈Take note that cc has no options 41 〉;
for (rnd = 1; rnd < rounds ; rnd ++) {

if (vbose & show choices) fprintf (stderr , "Beginning round "O"d:\n", rnd);
for (change = 0, c = 1; c < last itm ; c++)

if (o,nd [c].len) 〈Try to reduce options in item c’s list 31 〉;
if (¬change) break;
}

This code is used in section 4.

30. 〈Global variables 5 〉 +≡
int rnd ; /∗ the current round ∗/
int stack ; /∗ a blocked item; or top of stack of options to delete ∗/
int change ; /∗ have we removed anything on the current round? ∗/

14 THE DANCING DLX-PRE §31

31. In order to avoid testing an option repeatedly, we usually try to remove it only when c is its first
element as stored in memory.

Note (after correcting a bug, 02 January 2023): If c is secondary and has a nonzero color in option r, we
should not try to remove r, because r has not been hidden by the hide routine. Thus we might miss some
potential deletions. Users can avoid this by putting all of the colored secondary items last in every option.

〈Try to reduce options in item c’s list 31 〉 ≡
{

if (sanity checking) sanity ();
if (delta ∧ (mems ≥ thresh)) {

thresh += delta ;
fprintf (stderr , " after "O"lld mems: "O"d."O"d, "O"d items out, "O"d options out\n",

mems , rnd , c, itms out , options out);
}
if (mems ≥ timeout) goto finish ;
stack = 0, hide (c);
if (stack) 〈Remove item c, and maybe some options 32 〉
else {

for (o, r = nd [c].down ; r ≥ last itm ; o, r = nd [r].down) {
for (q = r − 1; o,nd [q].down ≡ q − 1; q−−) ; /∗ bypass null spacers ∗/
if (o,nd [q].itm ≤ 0 ∧ (o,¬nd [r].color))

/∗ r is the first (surviving, uncolored) node in its option ∗/
〈Stack option r for deletion if it leaves some primary item uncoverable 36 〉;

}
unhide (c);
for (r = stack ; r; r = rr) {

oo , rr = nd [r].itm ,nd [r].itm = c;
〈Actually delete option r 40 〉;

}
}
}

This code is used in section 29.

32. 〈Remove item c, and maybe some options 32 〉 ≡
{

unhide (c);
if (vbose & show details)

fprintf (stderr , "Deleting item "O".8s, forced by "O".8s\n", cl [c].name , cl [stack].name);
for (o, r = nd [c].down ; r ≥ last itm ; r = rrr) {

o, rrr = nd [r].down ;
〈Delete or shorten option r 33 〉;

}
o,nd [c].up = nd [c].down = c;
o,nd [c].len = 0, itms out ++; /∗ now item c is gone ∗/
change = 1;
}

This code is used in section 31.

§33 DLX-PRE THE DANCING 15

33. We’re in the driver’s seat here: If option r includes stack , we keep it, but remove item c. Otherwise
we delete it.

〈Delete or shorten option r 33 〉 ≡
{

for (q = r + 1; q 6= r;) {
o, cc = nd [q].itm ;
if (cc ≤ 0) {

o, q = nd [q].up ;
continue;

}
if (cc ≡ stack) break;
q++;

}
if (q 6= r) 〈Shorten and retain option r 34 〉
else 〈Delete option r 35 〉;
}

This code is used in section 32.

34. 〈Shorten and retain option r 34 〉 ≡
{

if (vbose & show details) {
fprintf (stderr , " shortening");
t = dpoption (r, stderr), fprintf (stderr , " (option "O"d)\n", t);

}
o,nd [r].up = r + 1,nd [r].down = r − 1; /∗ make node r into a spacer ∗/
o,nd [r].itm = 0;
}

This code is used in section 33.

35. 〈Delete option r 35 〉 ≡
{

if (vbose & show details) {
fprintf (stderr , " deleting");
t = dpoption (r, stderr), fprintf (stderr , " (option "O"d)\n", t);

}
options out ++;
for (o, q = r + 1; q 6= r;) {

o, cc = nd [q].itm ;
if (cc ≤ 0) {

o, q = nd [q].up ;
continue;

}
o, t = nd [cc].len − 1;
if (t ≡ 0) 〈Take note that cc has no options 41 〉;
o,nd [cc].len = t;
o, uu = nd [q].up , dd = nd [q].down ;
oo ,nd [uu].down = dd ,nd [dd].up = uu ;
q++;

}
}

This code is used in section 33.

16 THE DANCING DLX-PRE §36

36. At this point we’ve hidden item c and option r. Now we’ll hide also the other items in that option; and
we’ll delete r if this leaves some other primary item uncoverable. (As soon as such an item is encountered,
we put it in pp and immediately back up.)

But before doing that test, we stamp the aux field of every non-c item of r with the number r. Then we’ll
know for sure whether or not we’ve blocked an item not in r.

When cc is an item in option r, with color x, the notion of “hiding item cc” means, more precisely, that
we hide every option in cc ’s item list that clashes with option r. Option rr clashes with r if and only if
either x = 0 or rr has cc with a color 6= x.

〈Stack option r for deletion if it leaves some primary item uncoverable 36 〉 ≡
{

for (q = r + 1; ;) {
o, cc = nd [q].itm ;
if (cc ≤ 0) {

o, q = nd [q].up ;
if (q > r) continue;
break; /∗ done with option ∗/

}
o,nd [cc].aux = r, q++;

}
for (pp = 0, q = r + 1; ;) {
o, cc = nd [q].itm ;
if (cc ≤ 0) {

o, q = nd [q].up ;
if (q > r) continue;
break; /∗ done with option ∗/

}
for (x = nd [q].color , o, p = nd [cc].down ; p ≥ last itm ; o, p = nd [p].down) {

if (x > 0 ∧ (o,nd [p].color ≡ x)) continue;
〈Hide the entries of option p, or goto backup 37 〉;

}
q++;

}
backup : for (q = r − 1; q 6= r;) {

o, cc = nd [q].itm ;
if (cc ≤ 0) {

o, q = nd [q].down ;
continue;

}
for (x = nd [q].color , o, p = nd [cc].up ; p ≥ last itm ; o, p = nd [p].up) {

if (x > 0 ∧ (o,nd [p].color ≡ x)) continue;
〈Unhide the entries of option p 38 〉;

}
q−−;

}
if (pp) 〈Mark the unnecessary option r 39 〉;
}

This code is used in section 31.

§37 DLX-PRE THE DANCING 17

37. Long ago, in my paper “Structured programming with go to statements” [Computing Surveys 6
(December 1974), 261–301], I explained why it’s sometimes legitimate to jump out of one loop into the midst
of another. Now, after many years, I’m still jumping.

〈Hide the entries of option p, or goto backup 37 〉 ≡
for (qq = p + 1; qq 6= p;) {
o, cc = nd [qq].itm ;
if (cc ≤ 0) {

o, qq = nd [qq].up ;
continue;

}
o, t = nd [cc].len − 1;
if (¬t ∧ cc < second ∧ nd [cc].aux 6= r) {

pp = cc ;
goto midst ; /∗ with fingers crossed ∗/

}
o,nd [cc].len = t;
o, uu = nd [qq].up , dd = nd [qq].down ;
oo ,nd [uu].down = dd ,nd [dd].up = uu ;
qq ++;
}

This code is used in section 36.

38. 〈Unhide the entries of option p 38 〉 ≡
for (qq = p− 1; qq 6= p;) {
o, cc = nd [qq].itm ;
if (cc ≤ 0) {

o, qq = nd [qq].down ;
continue;

}
oo ,nd [cc].len ++;
o, uu = nd [qq].up , dd = nd [qq].down ;
oo ,nd [uu].down = nd [dd].up = qq ;

midst : qq −−;
}

This code is used in section 36.

18 THE DANCING DLX-PRE §39

39. When I first wrote this program, I reasoned as follows: “Option r has been hidden. So if we remove
it from list c, the operation unhide (c) will keep it hidden. (And that’s precisely what we want.)”

Boy, was I wrong! This change to list c fouled up the unhide routine, because things were not properly
restored/undone after the list no longer told us to undo them. (Undeleted options are mixed with deleted
ones.)

The remedy is to mark the option, for deletion later. The marked options are linked together via their
itm fields, which will no longer be needed for their former purpose.

〈Mark the unnecessary option r 39 〉 ≡
{

if (vbose & show details) {
fprintf (stderr , " "O".8s blocked by", cl [pp].name);
t = dpoption (r, stderr), fprintf (stderr , " (option "O"d)\n", t);

}
options out ++, change = 1;
o,nd [r].itm = stack , stack = r;
}

This code is used in section 36.

40. 〈Actually delete option r 40 〉 ≡
for (p = r + 1; ;) {
o, cc = nd [p].itm ;
if (cc ≤ 0) {

o, p = nd [p].up ;
continue;

}
o, uu = nd [p].up , dd = nd [p].down ;
oo ,nd [uu].down = dd ,nd [dd].up = uu ;
oo ,nd [cc].len −−;
if (nd [cc].len ≡ 0) 〈Take note that cc has no options 41 〉;
if (p ≡ r) break;
p++;
}

This code is used in section 31.

41. 〈Take note that cc has no options 41 〉 ≡
{

itms out ++;
if (cc ≥ second) {

if (vbose & show details) fprintf (stderr , " "O".8s is in no options\n", cl [cc].name);
} else 〈Terminate with unfeasible item cc 42 〉;
}

This code is used in sections 29, 35, and 40.

§42 DLX-PRE THE DANCING 19

42. We might find a primary item that appears in no options. In such a case all of the options can be
deleted, and all of the other items!

〈Terminate with unfeasible item cc 42 〉 ≡
{

if (vbose & show details)
fprintf (stderr , "Primary item "O".8s is in no options!\n", cl [cc].name);

options out = options ;
itms out = last itm − 1;
printf (""O".8s\n", cl [cc].name); /∗ this is the only line of output ∗/
goto all done ;
}

This code is used in section 41.

20 THE OUTPUT PHASE DLX-PRE §43

43. The output phase. Okay, we’re done!

〈Output the reduced problem 43 〉 ≡
〈Output the item names 44 〉;
〈Output the options 45 〉;

This code is used in section 4.

44. In order to be tidy, we don’t output a vertical line when all the secondary items have been removed.

〈Output the item names 44 〉 ≡
for (c = p = 1; c < last itm ; c++) {

if (c ≡ second) p = 0; /∗ no longer primary ∗/
if (o,nd [c].len) {

if (p ≡ 0) p = −1, printf (" |");
printf (" "O".8s", cl [c].name);

}
}
printf ("\n");

This code is used in section 43.

45. 〈Output the options 45 〉 ≡
for (c = 1; c < last itm ; c++)

if (o,nd [c].len) {
for (o, r = nd [c].down ; r ≥ last itm ; o, r = nd [r].down) {

for (q = r − 1; o,nd [q].down ≡ q − 1; q−−) ;
if (o,nd [q].itm ≤ 0) { /∗ r was the leftmost survivor in its option ∗/
t = dpoption (r, stdout);
printf ("\n");
if (vbose & show orig nos) printf ("| (from "O"d)\n", t);
}

}
}

This code is used in section 43.

§46 DLX-PRE INDEX 21

46. Index.

all done : 4, 42.
argc : 4, 6.
argv : 4, 6.
aux : 7, 20, 21, 22, 36, 37.
backup : 36.
best itm : 4.
buf : 5, 16, 19.
bufsize : 4, 5, 16, 19.
c: 4, 12, 13, 27, 28.
calloc : 16.
cc : 4, 27, 28, 29, 33, 35, 36, 37, 38, 40, 41, 42.
change : 29, 30, 32, 39.
cl : 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 32, 39, 41, 42, 44.
color : 7, 11, 12, 19, 27, 28, 31, 36.
cur node : 4.
dd : 4, 27, 28, 35, 37, 38, 40.
delta : 5, 6, 31.
done : 4.
down : 7, 11, 12, 13, 15, 18, 19, 21, 22, 27, 28, 31,

32, 34, 35, 36, 37, 38, 40, 45.
dpoption : 12, 34, 35, 39, 45.
exit : 6, 16.
fgets : 16, 19.
finish : 4, 31.
fprintf : 4, 6, 11, 12, 13, 14, 15, 16, 19, 23, 24,

29, 31, 32, 34, 35, 39, 41, 42.
hide : 27, 31.
i: 4.
imems : 4, 5.
isspace : 16, 19.
item: 8, 9, 10.
itm : 7, 11, 12, 15, 16, 19, 20, 22, 27, 28, 31, 33,

34, 35, 36, 37, 38, 39, 40, 45.
itm struct: 8.
itms out : 4, 5, 31, 32, 41, 42.
j: 4.
k: 4, 11, 14, 27.
l: 27, 28.
last itm : 9, 11, 13, 16, 17, 18, 19, 20, 23, 24, 27,

28, 29, 31, 32, 36, 42, 44, 45.
last node : 9, 11, 16, 19, 20, 21, 22, 23.
len : 7, 11, 13, 15, 18, 20, 21, 22, 24, 27, 28, 29,

32, 35, 37, 38, 40, 44, 45.
main : 4.
max itms : 4, 9, 16, 18.
max level : 4.
max nodes : 4, 5, 16, 19, 20.
mems : 4, 5, 31.
midst : 37, 38.
mod : 4.

name : 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20,
32, 39, 41, 42, 44.

nd : 7, 9, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22,
24, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 44, 45.

next : 8, 13, 14, 16, 18.
nn : 27, 28.
node: 7, 9, 16.
node struct: 7.
O: 4.
o: 4.
oo : 4, 18, 22, 27, 28, 31, 35, 37, 38, 40.
ooo : 4, 21.
options : 5, 19, 23, 42.
options out : 4, 5, 31, 35, 39, 42.
p: 4, 11, 12, 13, 14.
panic : 16, 17, 18, 19, 20.
pp : 4, 14, 15, 19, 20, 36, 37, 39.
prev : 8, 13, 14, 16, 18.
print itm : 13.
print option : 11.
printf : 42, 44, 45.
prow : 11, 13.
q: 4, 11, 12, 14.
qq : 4, 14, 15, 37, 38.
r: 4, 27, 28.
rnd : 4, 29, 30, 31.
root : 10, 13, 14, 16.
rounds : 5, 6, 29.
rr : 4, 27, 28, 31, 36.
rrr : 4, 32.
sanity : 14, 31.
sanity checking : 14, 31.
second : 9, 13, 16, 18, 19, 20, 23, 24, 27, 37, 41, 44.
show basics : 4, 5.
show choices : 5, 29.
show details : 5, 32, 34, 35, 39, 41, 42.
show orig nos : 3, 5, 45.
show tots : 4, 5.
show warnings : 5, 19.
sscanf : 6.
stack : 27, 30, 31, 32, 33, 39.
stderr : 4, 5, 6, 11, 13, 14, 15, 16, 19, 23, 24, 29,

31, 32, 34, 35, 39, 41, 42.
stdin : 1, 16, 19.
stdout : 1, 45.
stream : 11, 12.
strlen : 16, 19.
strncmp : 17, 20.
t: 4, 14, 27, 28.
thresh : 5, 6, 31.

22 INDEX DLX-PRE §46

timeout : 5, 6, 31.
uint: 4.
ullng: 4, 5.
unhide : 28, 31, 32, 39.
up : 7, 11, 15, 18, 19, 21, 22, 27, 28, 32, 33, 34,

35, 36, 37, 38, 40.
uu : 4, 27, 28, 35, 37, 38, 40.
vbose : 4, 5, 6, 19, 29, 32, 34, 35, 39, 41, 42, 45.
x: 4.

DLX-PRE NAMES OF THE SECTIONS 23

〈Actually delete option r 40 〉 Used in section 31.

〈Check for duplicate item name 17 〉 Used in section 16.

〈Check item p 15 〉 Used in section 14.

〈Create a node for the item named in buf [p] 20 〉 Used in section 19.

〈Delete option r 35 〉 Used in section 33.

〈Delete or shorten option r 33 〉 Used in section 32.

〈Global variables 5, 9, 30 〉 Used in section 4.

〈Hide the entries of option p, or goto backup 37 〉 Used in section 36.

〈 Initialize last itm to a new item with an empty list 18 〉 Used in section 16.

〈 Input the item names 16 〉 Used in section 4.

〈 Input the options 19 〉 Used in section 4.

〈 Insert node last node into the list for item k 21 〉 Used in section 20.

〈Mark the unnecessary option r 39 〉 Used in section 36.

〈Output the item names 44 〉 Used in section 43.

〈Output the options 45 〉 Used in section 43.

〈Output the reduced problem 43 〉 Used in section 4.

〈Process the command line 6 〉 Used in section 4.

〈Reduce the problem 29 〉 Used in section 4.

〈Remove item c, and maybe some options 32 〉 Used in section 31.

〈Remove last node from its item 22 〉 Used in section 19.

〈Report the item totals 24 〉 Used in section 4.

〈Report the successful completion of the input phase 23 〉 Used in section 4.

〈Shorten and retain option r 34 〉 Used in section 33.

〈Stack option r for deletion if it leaves some primary item uncoverable 36 〉 Used in section 31.

〈Subroutines 11, 12, 13, 14, 27, 28 〉 Used in section 4.

〈Take note that cc has no options 41 〉 Used in sections 29, 35, and 40.

〈Terminate with unfeasible item cc 42 〉 Used in section 41.

〈Try to reduce options in item c’s list 31 〉 Used in section 29.

〈Type definitions 7, 8 〉 Used in section 4.

〈Unhide the entries of option p 38 〉 Used in section 36.

DLX-PRE

Section Page
Intro . 1 1
Data structures . 7 5
Inputting the matrix . 16 9
The dancing . 25 12
The output phase . 43 20
Index . 46 21

	Intro
	Data structures
	Inputting the matrix
	The dancing
	The output phase
	Index
	Names of the sections
	Actually delete option r
	Check for duplicate item name
	Check item p
	Create a node for the item named in buf[p]
	Delete option r
	Delete or shorten option r
	Global variables
	Hide the entries of option p, or goto backup
	Initialize last_itm to a new item with an empty list
	Input the item names
	Input the options
	Insert node last_node into the list for item k
	Mark the unnecessary option r
	Output the item names
	Output the options
	Output the reduced problem
	Process the command line
	Reduce the problem
	Remove item c, and maybe some options
	Remove last_node from its item
	Report the item totals
	Report the successful completion of the input phase
	Shorten and retain option r
	Stack option r for deletion if it leaves some primary item uncoverable
	Subroutines
	Take note that cc has no options
	Terminate with unfeasible item cc
	Try to reduce options in item c's list
	Type definitions
	Unhide the entries of option p

