81 CVM-ESTIMATES INTRO 1

1. Intro. I'm experimenting with the interesting algorithm proposed by Sourav Chakraborty, N. V.
Vinodchandran, and Kuldeep S. Meel [ESA 2022, the 30th annual European Conference on Algorithms,
paper 39] for estimating the number of distinct elements in a given stream.

I've modified their algorithm slightly, so that its estimates will be thoroughly unbiased, in the sense that
the expected value will be exact. More precisely, the expected value would be exact if I were able to use
infinite-precision arithmetic, instead of the 31-bit precision of this particular program.

The command line names five things: bufsize, the buffer size; del, the sampling interval; length, the total
number of elements in the stream; param, a parameter that helps to define the simulated streaming data;
and seed, the seed for pseudorandom numbers.

Every del steps, I print the current estimate, the actual number of distinct elements seen so far, the ratio
of those two numbers, and the current probability cutoff. This continues until length elements have been
streamed.

The stream is simulated here as a sequence of random nonnegative integers less than param. With change
files I can supply other test data.

The buffer is implemented as a treap of maximum size bufsize. I also maintain a simple hash table — but
only to keep track of the actual number of distinct elements. (The hash table isn’t part of the algorithm.)

#define hashsize (1 < 25) /* must be a power of 2 x/
#define mazsize 1000000 /* the treap has at most this many nodes */

#include <stdio.h>
#include <stdlib.h>
#include "gb_flip.h"
int bufsize, del, length, param , seed; /* command-line parameters /
int ssize; /* bufsize +1 x/
(' Type definitions 7);
(Global variables 5);
(Subroutines 10);

void main(int arge, char xargv[])
{
register int a,h,i,7,k,l,m,q,r, u;
register unsigned int p; /* a probability, times 23! x/
(Process the command line 2);
(Do the experiment 3);

}

2. (Process the command line 2) =
if (arge # 6V sscanf (argv[1], "%hd", &bufsize) # 1V sscanf (argv[2], "%d", &del) # 1V sscanf (argv[3],
"%ar, &length) # 1V sscanf (argv[4], "%d", ¶m) # 1V sscanf (argu[5], "%d", &seed) # 1)
forintf (stderr, "Usage: uhsubufsize del length param seed\n", argv[0]);
exit (—1);

ssize = bufsize + 1;

if (bufsize < 0V bufsize > mazsize) {
forintf (stderr, "the buffer size must be positive and less than j%d!\n", mazsize);
exit (—2);

gb_init_rand (seed); /* warm up the random number generator */
hashmult = ((int)(.61803398875 * (double) hashsize)) | 1; /* get ready to hash x/

This code is used in section 1.

2 INTRO CVM-ESTIMATES §3

3. The CVM algorithm is wonderfully simple: We maintain a buffer of previously seen elements, and a
probability p, such that each previously seen element independently appears in the buffer with probability p.
Consequently the expected value of the current size of the buffer, divided by p, is the number of distinct
elements seen.

The buffer always contains at most bufsize elements, except for brief periods of time. When it overflows,
we randomly delete one of its elements and adjust p appropriately.

(Do the experiment 3) =
(Set p =1 and make the treap empty 9);
for (m =1; m <length; m++) {
(Input a, the mth element of the stream 4);
(Put a into the treap with probability p 12);
(If the treap is overfull, purge its most volatile element and decrease p 18);
if (m = length V —(m % del)) (Print the current statistics 19);

}

This code is used in section 1.

4. (Input a, the mth element of the stream 4) =
a = gb_unif-rand (param);
if (m < 10) fprintf (stderr, "a%d,is %d\n", m,a);
(Insert a into the hash table 6);

This code is used in section 3.

5. (Global variables 5) =

int hash[hashsize]; /+ the hash table */

int hashmult; /* multiplier for the initial probe */

int count; /* this many distinct elements seen so far x/
See also sections 8 and 20.

This code is used in section 1.

6. Ye olde linear probing. I assume that a # #80000000. (If a does happen to have that value, it isn’t
counted.)

#define signbit #80000000 /x xored to a so that the result is nonzero */

(Insert a into the hash table 6) =
for (k = a @ signbit, h = (k * hashmult) & (hashsize — 1); hash[h]; h = (h ? h — 1 : hashsize — 1))
if (hash[h] = k) goto found;
count ++, hash[h] = k;
if (count > (7 * hashsize)/8) {
forintf (stderr, "Sorry, there are more than %d elements!\n", (7 x hashsize)/8);
forintf (stderr, "Recompile me_ with_ a larger hashsize.\n");
exit (—6);
}
found:

This code is used in section 4.

87 CVM-ESTIMATES TREAPS 3

7. Treaps. I love the “treap” data structure, which was introduced by Jean Vuillemin under the name
“Cartesian tree” in Communications of the ACM 23 (1980), 229239, then renamed and extended by Cecilia
Aragon and Raimund Seidel in IEEE Symposium on Foundations of Computer Science 30 (1989), 540-546.
Indeed, it matches the CVM algorithm so nicely, I almost suspect that treaps were invented for precisely
this application.

A treap is a binary tree whose nodes have two key fields. The primary key, which in our application is an
element of the stream, obeys tree-search order: All descendants of the left child of node ¢ have a primary
key that is less than the primary key of ¢, and all descendants of its right child have a primary key that is
greater. The secondary key, which in our application is a pseudorandom integer called the volatility of the
element, obeys heap order: The secondary key of p’s children is less than p’s own secondary key.

A given set of nodes with distinct primary keys and distinct secondary keys can be made into a treap
in exactly one way. This unique treap can be obtained, for example, by using ordinary tree insertion with
respect to primary keys while inserting nodes in decreasing order of their secondary keys. It follows that the
binary tree will almost always be quite well balanced, because the volatilities are uniformly random.

(Type definitions 7) =
typedef struct node_struct {
int elt; /* identity of this element (the primary key) */
int wvol; /* its volatility (the secondary key) */
int left, right; /* left and right children of this node, or —1 x/
} node;

This code is used in section 1.

8. (Global variables 5) +=
node treap [mazsize);
int avail; /* top of the stack of unused nodes, or —1 */
int root; /* the node at the root of the treap, or —1 x/

9. We maintain a list of unused nodes, beginning at avail and linked through the left pointers. Space is
provided for up to ssize = bufsize + 1 nodes. The treap is “overfull” if and only if avail = —1, if and only if
treapcount / treapcountinc = ssize.

(Set p =1 and make the treap empty 9) =
p = signbit;
root = —1; /* the treap is null */
for (k=0; k < ssize; k++) treap[k].left =k —1;
avail = k — 1;

This code is used in section 3.

10. Here’s a routine that prints the top [levels of a given treap, for use when debugging. The nodes appear
in preorder.

(Subroutines 10) =
void print_treap (int r,int [)
{
if (r>0A1>0){
forintf (stderr, "%8x : L%8xL%h8xL%H8xLKSX\R" , ', treap[r].vol, treap[r].elt, treap[r].left, treap[r].Tight);
print_treap (treap[r].left,l — 1);
print_treap (treap[r].right,l — 1);
}
}

See also section 11.

This code is used in section 1.

4 TREAPS CVM-ESTIMATES §11

11. The algorithms for treap maintenance play fast and loose with pointers. So I'd better check that my
implementation is sound, when I'm debugging this code or making changes.

#define sanity_checking 0 /* set this nonzero when you suspect a bug */

(Subroutines 10) +=
int nodes_used;

void treapcheck (int r,int prev)
{
int p,g;
if (r>0) {
nodes_used ++;
p = treap|r].left, g = treap|r].right;
if (p>0) { /* yes there’s a left subtreap x/
if (treap[p].vol > treap[r].vol) fprintf (stderr,"heap order violated at_node %d!\n",p);
treapcheck (p, prev);
}
if (treap(r].elt < prev) fprintf (stderr,"element order violated at node %d!\n",r);
if (¢>0) { /* yes there’s a right subtreap */
if (treap[q].vol > treap|r].vol) fprintf (stderr,"heap order violated at node %d!\n",q);
treapcheck (g, treap[r].elt);

}
}
}
void treapsanity (void)
{
register int p;
for (nodes_used = 0,p = avail; p > 0; p = treap[pl.left) nodes_used ++;
treapcheck (root, —1);
if (nodes_used # ssize) fprintf (stderr, "memory leak (only %d nodes used!\n", nodes_used);

}

12. There’s a nontrivial chance that two elements will have exactly the same volatility, because I'm using
only 31-bit random numbers. It’s less likely, but still possible, that two such elements will have one of the
few volatilities that turn out to be relevant in this particular stream. So I print a warning on stderr when
equality occurs. The treap will never contain any volatility > p.

(Put a into the treap with probability p 12) =

(Remove a from the treap if it is present 13);

u = gb_next_rand(); /* uniformly random 31-bit number */

if (u<p) {
if (u=p) fprintf(stderr,"(discarded element, ’d of ,vol, %08x at time %d)\n", a,u, m);
else (Insert a into the treap, with volatility u 16);

}

if (sanity_checking) treapcheck (root,—1);

This code is used in section 3.

§13

13.

CVM-ESTIMATES TREAPS 5

During this process, g is the current node and r tells us who pointed to q.

(Remove a from the treap if it is present 13) =

{

}

This

14.

for (¢ = root,r = ~ssize; ¢ >0;) {
if (treap[q].elt = a) break; /* yes it’s there x/
if (treap[ql.elt > a) r = ~q,q = treap|q).left; /+ move to left subtreap */
else r = q,q = treap|q|.right; /* move to right subtreap x/

}
if (¢ >0) (Delete node q 14);

code is used in section 12.

The deletion process essentially merges the two subtreaps that are children of the deleted node.

{Delete node g 14) =

{

}

This

15.

[= treaplq|.left, treapq].left = avail, avail = g;
treapcount = treapcount — treapcountinc;

q = treap|q.right;

(Merge [with ¢, storing the result as specified by r 15);

code is used in sections 13 and 18.

(Merge [with ¢, storing the result as specified by r 15) =

do {

This

16.

}

This

if (1<0) j=gq,i=r~ssize; /* j denotes the result, ¢ denotes the next r */
else if (¢ < 0) j=1,i = ~ssize; /x it’s easy to merge with an empty subtreap */
else if (treapll].vol > treaplq|.vol) j =1,i=1,1 = treap|l].right;
/= left subtreap is the result, it retains its left subtreap */
else j =gq,i = ~q,q = treap|q].left; /* right subtreap is the result, it retains its right subtreap =/
if (r > 0) treap[r].right = j;
else if (r = ~ssize) root = j;
else treap|~r].left = j;
r=1;
while (i # ~ssize);

code is used in section 14.
(Insert a into the treap, with volatility u 16) =

l = avail, avail = treap[l].left, treapcount = treapcount + treapcountinc;
treapl].elt = a, treap|l].vol = u;
for (r = ~ssize,q = root; q > 0 A treap[q].vol > u;) {

if (treap[q].elt > a) r = ~q, q = treap[q].left;

else r = q,q = treap|q|.right;

if (r >0) treap(r].right =1;

else if (r = ~ssize) root = I;

else treap|[~r].left =;

{ Create the subtreaps of a by splitting the subtreaps of ¢ 17);

code is used in section 12.

6 TREAPS CVM-ESTIMATES §17

17. At this point we must do the opposite of merging: The subtreaps whose elements just precede and
follow a are gradually determined by splitting appropriate subtreaps of node q.

A formal proof of the slick code here would be a bit tricky, and probably difficult to verify. Maybe I'll
have time some day to work out such a proof. Meanwhile I can understand it today by drawing pictures
such as Fig. 25 in Section 6.2.3 of Sorting and Searching. Fortunately the computer doesn’t slow down in
this loop, like people do when they get to a conceptually harder part of an algorithm.

(Create the subtreaps of a by splitting the subtreaps of ¢ 17) =
1=nr~l,j =1 /* slots to fill in as we split at left and right of a */
while (¢ > 0) {

if (a < treap|q].elt) {
if (j >0) treap[j].right = q; else treap|~jl.left = g;
J = ~q,q = treaplq|.left;
} else {
if (i > 0) treapli].right = q; else treap[~i].left = ¢;
i = q,q = treap|q|.right;
}
¥
if (i >0) treapli].right = —1; else treap|~i].left = —1;
if (j >0) treap[j].right = —1; else treap|~j].left = —1;

This code is used in section 16.

18. See the note above, regarding elements from different times that have the same volatility by pure
coincidence. If several elements of the tree have the maximum volatility, we must delete them all. Thus, if
there are k such elements, we print £ — 1 warnings.

(If the treap is overfull, purge its most volatile element and decrease p 18) =
if (avail <0) {

p = treap[root].vol;

r = ~ssize,q = 100t;

(Delete node ¢ 14);

while (root > 0 A treap[root].vol = p) {
fprintf (stderr, " (purged_element %d of vol %08x at time %d) \n", treap[root].elt, p,m);
T = ~ssize,q = 100t;
(Delete node q 14);

}

if (sanity_checking) treapsanity();

}

This code is used in section 3.

19. (Print the current statistics 19) =
{
estimate = treapcount /((double) p + 0.5); /* prevent division by 0 x/
ratio = estimate /(double) count;
printf ("%.4£%124d,,(%.4£) , vol %08x after %d\n", estimate, count, ratio, p,m);

This code is used in section 3.

20. (Global variables 5) +=
double treapcount; /* the treap currently has this many nodes, times 273! x/
double treapcountinc = (double) signbit; /*x 231 %/
double estimate;
double ratio;

621 CVM-ESTIMATES

21. Index.

a: 1.

Aragon, Cecilia Rodriguez: 7.
arge: 1, 2.

argv: 1, 2.

avail: 8, 9, 11, 14, 16, 18.
bufsize: 1, 2, 3, 9.
Chakraborty, Sourav: 1.
count: 5, 6, 19.

del: 1, 2, 3.

elt: 7,10, 11, 13, 16, 17, 18.
estimate: 19, 20.

exit: 2, 6.

found: 6.

forintf: 2, 4, 6, 10, 11, 12, 18.
gb_init_rand: 2.

gb_next_rand: 12.
gb_unif-rand: 4.

h: 1.

hash: 5, 6.

hashmult: 2, 5, 6.

hashsize: 1, 2, 5, 6.

i
VE
k:
l:

L

[—=

10.

left: 7,9, 10, 11, 13, 14, 15, 16, 17.
1

length: 1, 2, 3.

m: 1.

main: 1.

mazsize: 1, 2, 8.

Meel, Kuldeep S.: 1.

node: 7, 8.

node_struct: 7.

nodes_used: 11.

p: 1, 11.

param: 1, 2, 4.

prev: 11.

print_treap: 10.

printf: 19.

qg: 1, 11.

r: 1, 10, 11.

ratio: 19, 20.

rght: 7,10, 11, 13, 14, 15, 16, 17.
root: 8,9, 11, 12, 13, 15, 16, 18.
sanity_checking: 11, 12, 18.
seed: 1, 2.

Seidel, Raimund: 7.

signbit: 6, 9, 20.

sscanf: 2.

ssize: 1, 2,9, 11, 13, 15, 16, 18.
stderr: 2, 4, 6, 10, 11, 12, 18.

INDEX

treap: 8,9, 10, 11, 13, 14, 15, 16, 17, 18.
treapcheck: 11, 12.

treapcount: 9, 14, 16, 19, 20.
treapcountinc: 9, 14, 16, 20.
treapsanity: 11, 18.

u: 1.

Vinodchandran, N. V.. 1.

vol: 7,10, 11, 15, 16, 18.

Vuillemin, Jean Etienne: 7.

8 NAMES OF THE SECTIONS CVM-ESTIMATES

Create the subtreaps of a by splitting the subtreaps of ¢ 17) Used in section 16.
Delete node ¢ 14) Used in sections 13 and 18.

Do the experiment 3) Used in section 1.

Global variables 5, 8, 20> Used in section 1.

If the treap is overfull, purge its most volatile element and decrease p 18) Used in section 3.
Input a, the mth element of the stream 4) Used in section 3.

Insert a into the hash table 6) Used in section 4.

Insert a into the treap, with volatility 4 16) Used in section 12.

Merge | with ¢, storing the result as specified by r 15) Used in section 14.

Print the current statistics 19) Used in section 3.

Process the command line 2) Used in section 1.

Put a into the treap with probability p 12) Used in section 3.

Remove a from the treap if it is present 13) Used in section 12.

Set p =1 and make the treap empty 9) Used in section 3.

Subroutines 10, 11> Used in section 1.

Type definitions 7) Used in section 1.

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

CVM-ESTIMATES

Section Page

.. 1 1
... 7 3
21 7

	Intro
	Treaps
	Index
	Names of the sections
	Create the subtreaps of a by splitting the subtreaps of q
	Delete node q
	Do the experiment
	Global variables
	If the treap is overfull, purge its most volatile element and decrease p
	Input a, the mth element of the stream
	Insert a into the hash table
	Insert a into the treap, with volatility u
	Merge l with q, storing the result as specified by r
	Print the current statistics
	Process the command line
	Put a into the treap with probability p
	Remove a from the treap if it is present
	Set p=1 and make the treap empty
	Subroutines
	Type definitions

