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1. Intro. This program is an iterative implementation of an interesting recursive algorithm due to
Willard L. Eastman, IEEE Trans. IT-11 (1965), 263-267: Given a sequence of nonnegative integers x =
ToT1 ... Tp—1 of odd length n, where = is not equal to any of its cyclic shifts xy...xp_12¢...2x—1 for
1 < k < n, we output a cyclic shift oz such that the set of all such ox forms a commafree code of block
length n (over an infinite alphabet).

The integers are given as command-line arguments.

The simplest nontrivial example occurs when n = 3. If x = abe, where a, b, and ¢ aren’t all equal, then
exactly one of the cyclic shifts yoy1y2 = abe, bea, cab will satisfy yg > y1 < y2, and we choose that one. It’s
easy to check that the triples chosen in this way are commafree.

Similar constructions are possible when n = 5 or n = 7. But the case n = 9 already gets a bit dicey,
and when n is really large it’s not at all clear that commafreeness is possible. Eastman’s paper resolved a
conjecture made by Golomb, Gordon, and Welch in their pioneering paper about comma-free codes (1958).

(Of course, it’s not at all clear that we would want to actually use a commafree code when n is large;
but that’s another story, and beside the point. The point is that Eastman discovered a really interesting
algorithm.)

#define mazn 105

#include <stdio.h>
#include <stdlib.h>
int z[mazn + mazn + mazn];
int b[mazn + mazn + maxn];
int bb[mazn];

(Subroutines 5);

main (int argc, char xargv|])

{
register int ¢, j,k,n,p,q,t,tt;
(Process the command line 2);
(Do Eastman’s algorithm 3);

}

2. (Process the command line 2) =
if (arge <4) {
forintf (stderr, "Usage: ks x1ux2,. . .uxn\n", argv[0]);
exit (—1);
}
n = argc — 1;
if (n&1)=0) {
forintf (stderr, "The number of items, n, should be_ odd, mnot_%d!\n", n);
exit (—2);
}
for (j=1; j <arge; j++) {
if (sscanf (argvlj],"%d", &z[j — 1)) #1Vva[j—1] <0) {
fprintf (stderr, " Argument, %d, should be a nonnegative integer, noty‘%s’!\n",j, argv[j]);
exit (—3);
}
}

This code is used in section 1.
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3. The algorithm. We think of x as written cyclically, with x,4; = x; for all j > 0. The basic idea in
the algorithm below is to also think of = as partitioned into ¢ < n subwords by boundary markers b; where
0<by<by <---<b—1 <njthen subword y; is xp, xp; 41 ... 2p;,, 1, for 0 < j < ¢, where by = bg. If £ =1,
there’s just one subword, and it’s a cyclic shift of . The number ¢ of subwords during each phase will be
odd.

Eastman’s algorithm essentially begins with b; = j for 0 < j < n, so that z is partitioned into n subwords
of length 1. It successively removes boundary points until only one subword is left; that subword is the
answer. It operates in phases, so that all subwords during the jth phase have length 3/~! or more; thus
at most |logs n| phases are needed. (For example, the case n = 9 is “dicey” because it might require two
phases.)

The algorithm is based on comparison of adjacent subwords y;_; and y;. If those subwords have the same
length, we use lexicographic comparison; otherwise we declare that the longer subword is bigger.

(After the first phase, all subwords not only have length > 3, they also always begin with a nonzero entry;
in other words, x;, > 0 for every boundary marker b;. However, we won’t need to use that fact explicitly.)

The algorithm can be described with terminology based on the topography of Nevada: Say that ¢ is a
basin if the subwords satisfy y;—1 > y; < y;41. There must be at least one basin; otherwise all the y; would
be equal, and = would equal one of its cyclic shifts. We look at consecutive basins, ¢ and j; this means that
i < j and that ¢ and j are basins, and that ¢ + 1 through j — 1 are not basins. If there’s only one basin we
have j =i +t. The indices between consecutive basins are called ranges.

Since t is odd, there’s an odd number of consecutive basins for which j —¢ is odd. Each phase of Eastman’s
algorithm retains exactly one boundary point in the range between such basins, and deletes all the others.
The retained point is the smallest k = ¢ + 2[ such that yi > yg41-

(For example, suppose ¢ = 2 and j = 9 are consecutive basins. Then we have y1 > yo <yg < --- <y, >
Yg+1 > -+ > Yo < Y10, for some range element 2 < ¢ < 9. We choose k =4ifg=3o0org=4,k=6ifg=5
orgq=6,and k=8ifg=Tor ¢=28.)

(Do Eastman’s algorithm 3) =

(Initialize 4);

for (p=1,t=mn; t>1; t =tt,p++)

(Do one phase of Eastman’s algorithm, putting ¢¢ boundary points into bb 6);

This code is used in section 1.

4. (Initialize 4) =
for (j =n; j<n+n+n; j++) zj] = z[j —n];
for (j=0; j<n+n+mn; j++) bj] =7;
t =n;

This code is used in section 3.
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5. Here’s a basic subroutine that returns 1 if subword y;_1 exceeds subword y;, otherwise it returns 0.

(Subroutines 5) =
int compare (register int 7)
{
register int j;
if (b[i] —bli — 1] = b[i + 1] — b[i]) {
for (j =0; bli] +j <bli+1]; j++) {
if (z[bli — 1] + j] = 2[b[i] + j]) continue;
return (z[bi — 1] + j] > z[b[i] + j]);

}
} return 0; [* Yic1 =y */
return (b[i] — b[i — 1] > b[i + 1] — b[d]);

}

This code is used in section 1.

6. (Do one phase of Eastman’s algorithm, putting ¢¢ boundary points into bb 6) =

{
for (tt =0,i=1; i <t; i++)
if (compare(i)) break;

if (i>1¢){
fprintf (stderr, "The_input_is,cyclic!\n");
exit (—666);
}
for (; compare(i+1); i++) ; /x advance to the first basin x/
for (;i<t;i=j) {
for (¢ =i+ 1; compare(q+1) =0; g++) ; /* climb the range */
for (j=q+1; compare(j+1); j++) ; /* advance to the next basin x/

if ((j —¢)& 1) (Choose a boundary point to retain 7);
printf ("Phase, %d leaves", p);
for (k=0; k < tt; k+t) b[k] = bb[E], printf (" %d", bb[k));

printf ("\n");
for (; blk — tt] < n+n; k++) b[k] = bk — tt] + n;

This code is used in section 3.

7. (Choose a boundary point to retain 7) =

if ((g—1)&1) g+
if (¢ <) bb[tt++] = blgl;

else {
for (k=1tt++; k> 0; k—) bb[k] = bb[k — 1];
bb[0] = blg — t];

}

}

This code is used in section 6.
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8. Index.

arge: 1, 2.
argv: 1, 2.

b: 1.

bb: 1, 6, 7.
compare: 5, 6.
erit: 2, 6.
forintf: 2, 6.
v 1, 5.

ji 1, 5.

k: 1.
main:
maxn:
n: 1.
p: 1.
printf: 6.
q 1.
sscanf: 2.
stderr: 2, 6.
t: 1.

tt:
x:
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{ Choose a boundary point to retain 7) Used in section 6.

(Do Eastman’s algorithm 3) Used in section 1.

(Do one phase of Eastman’s algorithm, putting ¢t boundary points into bb 6) Used in section 3.
(Initialize 4) Used in section 3.

(Process the command line 2) Used in section 1.

(Subroutines 5) Used in section 1.
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