
§1 COMMAFREE-EASTMAN INTRO 1

1. Intro. This program is an iterative implementation of an interesting recursive algorithm due to
Willard L. Eastman, IEEE Trans. IT-11 (1965), 263–267: Given a sequence of nonnegative integers x =
x0x1 . . . xn−1 of odd length n, where x is not equal to any of its cyclic shifts xk . . . xn−1x0 . . . xk−1 for
1 ≤ k < n, we output a cyclic shift σx such that the set of all such σx forms a commafree code of block
length n (over an infinite alphabet).

The integers are given as command-line arguments.
The simplest nontrivial example occurs when n = 3. If x = abc, where a, b, and c aren’t all equal, then

exactly one of the cyclic shifts y0y1y2 = abc, bca, cab will satisfy y0 > y1 ≤ y2, and we choose that one. It’s
easy to check that the triples chosen in this way are commafree.

Similar constructions are possible when n = 5 or n = 7. But the case n = 9 already gets a bit dicey,
and when n is really large it’s not at all clear that commafreeness is possible. Eastman’s paper resolved a
conjecture made by Golomb, Gordon, and Welch in their pioneering paper about comma-free codes (1958).

(Of course, it’s not at all clear that we would want to actually use a commafree code when n is large;
but that’s another story, and beside the point. The point is that Eastman discovered a really interesting
algorithm.)

#define maxn 105

#include <stdio.h>

#include <stdlib.h>

int x[maxn + maxn + maxn];
int b[maxn + maxn + maxn];
int bb [maxn];

〈Subroutines 5 〉;
main (int argc , char ∗argv [])
{

register int i, j, k, n, p, q, t, tt ;

〈Process the command line 2 〉;
〈Do Eastman’s algorithm 3 〉;
}

2. 〈Process the command line 2 〉 ≡
if (argc < 4) {
fprintf (stderr , "Usage: %s x1 x2 ... xn\n", argv [0]);
exit (−1);
}
n = argc − 1;
if ((n& 1) ≡ 0) {
fprintf (stderr , "The number of items, n, should be odd, not %d!\n", n);
exit (−2);
}
for (j = 1; j < argc ; j++) {

if (sscanf (argv [j], "%d",&x[j − 1]) 6= 1 ∨ x[j − 1] < 0) {
fprintf (stderr , "Argument %d should be a nonnegative integer, not ‘%s’!\n", j, argv [j]);
exit (−3);

}
}

This code is used in section 1.

2 THE ALGORITHM COMMAFREE-EASTMAN §3

3. The algorithm. We think of x as written cyclically, with xn+j = xj for all j ≥ 0. The basic idea in
the algorithm below is to also think of x as partitioned into t ≤ n subwords by boundary markers bj where
0 ≤ b0 < b1 < · · · < bt−1 < n; then subword yj is xbjxbj+1 . . . xbj+1−1, for 0 ≤ j < t, where bt = b0. If t = 1,
there’s just one subword, and it’s a cyclic shift of x. The number t of subwords during each phase will be
odd.

Eastman’s algorithm essentially begins with bj = j for 0 ≤ j < n, so that x is partitioned into n subwords
of length 1. It successively removes boundary points until only one subword is left; that subword is the
answer. It operates in phases, so that all subwords during the jth phase have length 3j−1 or more; thus
at most blog3 nc phases are needed. (For example, the case n = 9 is “dicey” because it might require two
phases.)

The algorithm is based on comparison of adjacent subwords yj−1 and yj . If those subwords have the same
length, we use lexicographic comparison; otherwise we declare that the longer subword is bigger.

(After the first phase, all subwords not only have length ≥ 3, they also always begin with a nonzero entry;
in other words, xbj > 0 for every boundary marker bj . However, we won’t need to use that fact explicitly.)

The algorithm can be described with terminology based on the topography of Nevada: Say that i is a
basin if the subwords satisfy yi−1 > yi ≤ yi+1. There must be at least one basin; otherwise all the yj would
be equal, and x would equal one of its cyclic shifts. We look at consecutive basins, i and j; this means that
i < j and that i and j are basins, and that i+ 1 through j − 1 are not basins. If there’s only one basin we
have j = i+ t. The indices between consecutive basins are called ranges.

Since t is odd, there’s an odd number of consecutive basins for which j− i is odd. Each phase of Eastman’s
algorithm retains exactly one boundary point in the range between such basins, and deletes all the others.
The retained point is the smallest k = i+ 2l such that yk > yk+1.

(For example, suppose i = 2 and j = 9 are consecutive basins. Then we have y1 > y2 ≤ y3 ≤ · · · ≤ yq >
yq+1 > · · · > y9 ≤ y10, for some range element 2 < q < 9. We choose k = 4 if q = 3 or q = 4, k = 6 if q = 5
or q = 6, and k = 8 if q = 7 or q = 8.)

〈Do Eastman’s algorithm 3 〉 ≡
〈 Initialize 4 〉;
for (p = 1, t = n; t > 1; t = tt , p++)
〈Do one phase of Eastman’s algorithm, putting tt boundary points into bb 6 〉;

This code is used in section 1.

4. 〈 Initialize 4 〉 ≡
for (j = n; j < n+ n+ n; j++) x[j] = x[j − n];
for (j = 0; j < n+ n+ n; j++) b[j] = j;
t = n;

This code is used in section 3.

§5 COMMAFREE-EASTMAN THE ALGORITHM 3

5. Here’s a basic subroutine that returns 1 if subword yi−1 exceeds subword yi, otherwise it returns 0.

〈Subroutines 5 〉 ≡
int compare (register int i)
{

register int j;

if (b[i]− b[i− 1] ≡ b[i+ 1]− b[i]) {
for (j = 0; b[i] + j < b[i+ 1]; j++) {

if (x[b[i− 1] + j] ≡ x[b[i] + j]) continue;
return (x[b[i− 1] + j] > x[b[i] + j]);

}
return 0; /∗ yi−1 = yi ∗/

}
return (b[i]− b[i− 1] > b[i+ 1]− b[i]);
}

This code is used in section 1.

6. 〈Do one phase of Eastman’s algorithm, putting tt boundary points into bb 6 〉 ≡
{

for (tt = 0, i = 1; i ≤ t; i++)
if (compare (i)) break;

if (i > t) {
fprintf (stderr , "The input is cyclic!\n");
exit (−666);

}
for (; compare (i+ 1); i++) ; /∗ advance to the first basin ∗/
for (; i ≤ t; i = j) {

for (q = i+ 1; compare (q + 1) ≡ 0; q++) ; /∗ climb the range ∗/
for (j = q + 1; compare (j + 1); j++) ; /∗ advance to the next basin ∗/
if ((j − i) & 1) 〈Choose a boundary point to retain 7 〉;

}
printf ("Phase %d leaves", p);
for (k = 0; k < tt ; k++) b[k] = bb [k], printf (" %d", bb [k]);
printf ("\n");
for (; b[k − tt] < n+ n; k++) b[k] = b[k − tt] + n;
}

This code is used in section 3.

7. 〈Choose a boundary point to retain 7 〉 ≡
{

if ((q − i) & 1) q++;
if (q < t) bb [tt ++] = b[q];
else {

for (k = tt ++; k > 0; k−−) bb [k] = bb [k − 1];
bb [0] = b[q − t];

}
}

This code is used in section 6.

4 INDEX COMMAFREE-EASTMAN §8

8. Index.

argc : 1, 2.
argv : 1, 2.
b: 1.
bb : 1, 6, 7.
compare : 5, 6.
exit : 2, 6.
fprintf : 2, 6.
i: 1, 5.
j: 1, 5.
k: 1.
main : 1.
maxn : 1.
n: 1.
p: 1.
printf : 6.
q: 1.
sscanf : 2.
stderr : 2, 6.
t: 1.
tt : 1, 3, 6, 7.
x: 1.

COMMAFREE-EASTMAN NAMES OF THE SECTIONS 5

〈Choose a boundary point to retain 7 〉 Used in section 6.

〈Do Eastman’s algorithm 3 〉 Used in section 1.

〈Do one phase of Eastman’s algorithm, putting tt boundary points into bb 6 〉 Used in section 3.

〈 Initialize 4 〉 Used in section 3.

〈Process the command line 2 〉 Used in section 1.

〈Subroutines 5 〉 Used in section 1.

COMMAFREE-EASTMAN

Section Page
Intro . 1 1
The algorithm . 3 2
Index . 8 4

	Intro
	The algorithm
	Index
	Names of the sections
	Choose a boundary point to retain
	Do Eastman's algorithm
	Do one phase of Eastman's algorithm, putting tt boundary points into bb
	Initialize
	Process the command line
	Subroutines

