81 COMMAFREE-EASTMAN INTRO 1

1. Intro. This program is an iterative implementation of an interesting recursive algorithm due to
Willard L. Eastman, IEEE Trans. IT-11 (1965), 263-267: Given a sequence of nonnegative integers x =
ToT1 ... Tp—1 of odd length n, where = is not equal to any of its cyclic shifts xy...xp_12¢...2x—1 for
1 < k < n, we output a cyclic shift oz such that the set of all such ox forms a commafree code of block
length n (over an infinite alphabet).

The integers are given as command-line arguments.

The simplest nontrivial example occurs when n = 3. If x = abe, where a, b, and ¢ aren’t all equal, then
exactly one of the cyclic shifts yoy1y2 = abe, bea, cab will satisfy yg > y1 < y2, and we choose that one. It’s
easy to check that the triples chosen in this way are commafree.

Similar constructions are possible when n = 5 or n = 7. But the case n = 9 already gets a bit dicey,
and when n is really large it’s not at all clear that commafreeness is possible. Eastman’s paper resolved a
conjecture made by Golomb, Gordon, and Welch in their pioneering paper about comma-free codes (1958).

(Of course, it’s not at all clear that we would want to actually use a commafree code when n is large;
but that’s another story, and beside the point. The point is that Eastman discovered a really interesting
algorithm.)

#define mazn 105

#include <stdio.h>
#include <stdlib.h>
int z[mazn + mazn + mazn];
int b[mazn + mazn + maxn];
int bb[mazn];

(Subroutines 5);

main (int argc, char xargv|])

{
register int ¢, j,k,n,p,q,t,tt;
(Process the command line 2);
(Do Eastman’s algorithm 3);

}

2. (Process the command line 2) =
if (arge <4) {
forintf (stderr, "Usage: ks x1ux2,. . .uxn\n", argv[0]);
exit (—1);
}
n = argc — 1;
if (n&1)=0) {
forintf (stderr, "The number of items, n, should be_ odd, mnot_%d!\n", n);
exit (—2);
}
for (j=1; j <arge; j++) {
if (sscanf (argvlj],"%d", &z[j — 1)) #1Vva[j—1] <0) {
fprintf (stderr, " Argument, %d, should be a nonnegative integer, noty‘%s’!\n",j, argv[j]);
exit (—3);
}
}

This code is used in section 1.

2 THE ALGORITHM COMMAFREE-EASTMAN 83

3. The algorithm. We think of x as written cyclically, with x,4; = x; for all j > 0. The basic idea in
the algorithm below is to also think of = as partitioned into ¢ < n subwords by boundary markers b; where
0<by<by <---<b—1 <njthen subword y; is xp, xp; 41 ... 2p;,, 1, for 0 < j < ¢, where by = bg. If £ =1,
there’s just one subword, and it’s a cyclic shift of . The number ¢ of subwords during each phase will be
odd.

Eastman’s algorithm essentially begins with b; = j for 0 < j < n, so that z is partitioned into n subwords
of length 1. It successively removes boundary points until only one subword is left; that subword is the
answer. It operates in phases, so that all subwords during the jth phase have length 3/~! or more; thus
at most |logs n| phases are needed. (For example, the case n = 9 is “dicey” because it might require two
phases.)

The algorithm is based on comparison of adjacent subwords y;_; and y;. If those subwords have the same
length, we use lexicographic comparison; otherwise we declare that the longer subword is bigger.

(After the first phase, all subwords not only have length > 3, they also always begin with a nonzero entry;
in other words, x;, > 0 for every boundary marker b;. However, we won’t need to use that fact explicitly.)

The algorithm can be described with terminology based on the topography of Nevada: Say that ¢ is a
basin if the subwords satisfy y;—1 > y; < y;41. There must be at least one basin; otherwise all the y; would
be equal, and = would equal one of its cyclic shifts. We look at consecutive basins, ¢ and j; this means that
i < j and that ¢ and j are basins, and that ¢ + 1 through j — 1 are not basins. If there’s only one basin we
have j =i +t. The indices between consecutive basins are called ranges.

Since t is odd, there’s an odd number of consecutive basins for which j —¢ is odd. Each phase of Eastman’s
algorithm retains exactly one boundary point in the range between such basins, and deletes all the others.
The retained point is the smallest k = ¢ + 2[such that yi > yg41-

(For example, suppose ¢ = 2 and j = 9 are consecutive basins. Then we have y1 > yo <yg < --- <y, >
Yg+1 > -+ > Yo < Y10, for some range element 2 < ¢ < 9. We choose k =4ifg=3o0org=4,k=6ifg=5
orgq=6,and k=8ifg=Tor ¢=28.)

(Do Eastman’s algorithm 3) =

(Initialize 4);

for (p=1,t=mn; t>1; t =tt,p++)

(Do one phase of Eastman’s algorithm, putting ¢¢ boundary points into bb 6);

This code is used in section 1.

4. (Initialize 4) =
for (j =n; j<n+n+n; j++) zj] = z[j —n];
for (j=0; j<n+n+mn; j++) bj] =7;
t =n;

This code is used in section 3.

85 COMMAFREE-EASTMAN THE ALGORITHM 3

5. Here’s a basic subroutine that returns 1 if subword y;_1 exceeds subword y;, otherwise it returns 0.

(Subroutines 5) =
int compare (register int 7)
{
register int j;
if (b[i] —bli — 1] = b[i + 1] — b[i]) {
for (j =0; bli] +j <bli+1]; j++) {
if (z[bli — 1] + j] = 2[b[i] + j]) continue;
return (z[bi — 1] + j] > z[b[i] + j]);

}
} return 0; [* Yic1 =y */
return (b[i] — b[i — 1] > b[i + 1] — b[d]);

}

This code is used in section 1.

6. (Do one phase of Eastman’s algorithm, putting ¢¢ boundary points into bb 6) =

{
for (tt =0,i=1; i <t; i++)
if (compare(i)) break;

if (i>1¢){
fprintf (stderr, "The_input_is,cyclic!\n");
exit (—666);
}
for (; compare(i+1); i++) ; /x advance to the first basin x/
for (;i<t;i=j) {
for (¢ =i+ 1; compare(q+1) =0; g++) ; /* climb the range */
for (j=q+1; compare(j+1); j++) ; /* advance to the next basin x/

if ((j —¢)& 1) (Choose a boundary point to retain 7);
printf ("Phase, %d leaves", p);
for (k=0; k < tt; k+t) b[k] = bb[E], printf (" %d", bb[k));

printf ("\n");
for (; blk — tt] < n+n; k++) b[k] = bk — tt] + n;

This code is used in section 3.

7. (Choose a boundary point to retain 7) =

if ((g—1)&1) g+
if (¢ <) bb[tt++] = blgl;

else {
for (k=1tt++; k> 0; k—) bb[k] = bb[k — 1];
bb[0] = blg — t];

}

}

This code is used in section 6.

4 INDEX COMMAFREE-EASTMAN §8

8. Index.

arge: 1, 2.
argv: 1, 2.

b: 1.

bb: 1, 6, 7.
compare: 5, 6.
erit: 2, 6.
forintf: 2, 6.
v 1, 5.

ji 1, 5.

k: 1.
main:
maxn:
n: 1.
p: 1.
printf: 6.
q 1.
sscanf: 2.
stderr: 2, 6.
t: 1.

tt:
x:

= =

= =
VC/J
“G:
\]

COMMAFREE-EASTMAN NAMES OF THE SECTIONS 5

{ Choose a boundary point to retain 7) Used in section 6.

(Do Eastman’s algorithm 3) Used in section 1.

(Do one phase of Eastman’s algorithm, putting ¢t boundary points into bb 6) Used in section 3.
(Initialize 4) Used in section 3.

(Process the command line 2) Used in section 1.

(Subroutines 5) Used in section 1.

COMMAFREE-EASTMAN

Section Page
015 o 1 1
The algorithim 3 2
IndeX .o 8 4

	Intro
	The algorithm
	Index
	Names of the sections
	Choose a boundary point to retain
	Do Eastman's algorithm
	Do one phase of Eastman's algorithm, putting tt boundary points into bb
	Initialize
	Process the command line
	Subroutines

