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(See htips://cs.stanford.edu/ knuth/programs.htm] for date.)

1. Intro. This program is an iterative implementation of an interesting recursive algorithm due to
Willard L. Eastman, IEEE Trans. IT-11 (1965), 263-267: Given a sequence of nonnegative integers x =
o1 ...Tn_1 of odd length n, where x is not equal to any of its cyclic shifts xy...xn_12¢...2x_1 for
1 < k < n, we output a cyclic shift oz such that the set of all such oz forms a commafree code of block
length n (over an infinite alphabet).

The integers are given as command-line arguments.

The simplest nontrivial example occurs when n = 3. If x = abc, where a, b, and ¢ aren’t all equal, then
exactly one of the cyclic shifts yoy1y2 = abe, bea, cab will satisfy yg > y1 < y2, and we choose that one. It’s
easy to check that the triples chosen in this way are commafree.

Similar constructions are possible when n = 5 or n = 7. But the case n = 9 already gets a bit dicey,
and when n is really large it’s not at all clear that commafreeness is possible. Eastman’s paper resolved a
conjecture made by Golomb, Gordon, and Welch in their pioneering paper about comma-free codes (1958).

(Of course, it’s not at all clear that we would want to actually use a commafree code when n is large;
but that’s another story, and beside the point. The point is that Eastman discovered a really interesting
algorithm.)

Note: This program was written after I presented a lecture about Eastman’s algorithm at Stanford on
3 December 2015. While preparing the lecture I realized that some nice structure was present, and a day later
it occurred to me that the algorithm could therefore be streamlined. This program significantly simplifies
the method of the previous one, which was called COMMAFREE-EASTMAN. It produces essentially the same
outputs, but they are reflected left-to-right. (More precisely, if the former program gave the codeword y from
the the input sequence © = xg . ..2,_1, this program gives the reverse of y when given the reverse of x.)
#define mazn 105
#include <stdio.h>
#include <stdlib.h>

int z[mazn + mazxnl;

int b[mazn + mazn];

int bb[mazn];

(Subroutines 5);

main (int argc, char xargv[])

{

register int i,40,7,k,n,p,q,t, tt;
(Process the command line 2);
(Do Eastman’s algorithm 3);
(Print the solution 8);

}
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2. (Process the command line 2) =
if (arge < 4) {
forintf (stderr, "Usage: hsux1ux2,. . .uxn\n", argv[0]);
exit (—1);
}
n = argc — 1;
if (n&1)=0) {
forintf (stderr, "The number of items, n, should be_ odd, mot_%d!\n", n);
exit(—2);
}
for (j=1; j <arge; j++) {
if (sscanf (argvlj],"%d", &z[j — 1)) #1Vva[j —1] <0) {
forintf (stderr, "Argument, %d should, be a nonnegative integer, mot, ‘%s’!\n",j, argv[j]);
exit(—3);
}

}

This code is used in section 1.
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3. The algorithm. We think of x as written cyclically, with x,4; = x; for all j > 0. The basic idea in
the algorithm below is to also think of = as partitioned into ¢ < n subwords by boundary markers b; where
0<by<by <---<b—1 <njthen subword y; is xp, xp; 41 ... 2p;,, 1, for 0 < j < ¢, where by = bg. If £ =1,
there’s just one subword, and it’s a cyclic shift of z. The number ¢ of subwords during each phase will be odd.

Eastman’s algorithm essentially begins with b; = j for 0 < j < n, so that z is partitioned into n subwords of
length 1. It successively removes boundary points until only one subword is left; that subword is the answer.
It operates in phases, so that all subwords during the jth phase have length 37~! or more; thus at most
|logs | phases are needed. (For example, the case n =9 is “dicey” because it might require two phases.)

The algorithm is based on comparison of adjacent subwords y;_; and y;. If those subwords have the same
length, we use lexicographic comparison; otherwise we declare that the longer subword is bigger.

The algorithm is based on an interesting factorization of strings into substrings that have the form
z=121...2, where k > 2 and z; > -+ > zx_1 < zx. Let’s call such a substring a “dip.” It is not difficult
to see that any string y = yoy1 ... in which the condition y; < y;4+1 occurs infinitely often can be factored
uniquely as a sequence of dips, y = 2(9z(1) | . For example, 3141592653589... = 3141592653589 ... .

Furthermore if y is a periodic sequence, its factorization is also ultimately periodic, although some of its
initial factors may not occur in the period. Consider, for example, the factorizations

1234501234501234501 ... =1234501234501234501 ... ;
1234560123456012345601 ... =1234560123456012345601 ... .

If the period length is ¢, and if i¢ is the smallest ¢ such that y;_3 > y;—2 < y;—1, then one of the factors ends
at ip and all factors are periodic after that point. The value of ig is at most t + 2.

Since t is odd, the period contains an odd number of dips of odd length. Each phase of Eastman’s algorithm
simply retains the boundary points that precede those odd dips.
(Do Eastman’s algorithm 3) =

(Initialize 4);

for (p=1,t=n; t>1; t=tt,p++)

(Do one phase of Eastman’s algorithm, putting t¢ boundary points into bb 6);

This code is used in section 1.

4. We might need to refer to b[n + n — 1], but not b[n + n|.
(Initialize 4) =

for (j=mn; j<n+n; j+) z[j] =z[j —nl;

for (j=0; j <n+mn; j++) bjj] = 7;

t=mn;

This code is used in section 3.
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5. Here’s a basic subroutine that returns 1 if subword y;_1 is less than subword y;, otherwise it returns 0.

(Subroutines 5) =
int [ess(register int i)
{
register int j;
if (b[i] — bli — 1] = bli + 1] = b[i]) {
for (j =0; bli] +j <bli+1]; j++) {
if (z[bli — 1] + j] = x[b[i] + j]) continue;
} return (z[bi — 1] + j] < z[b[i] + 7]);
} return 0; [* Yic1 =y */
} return (b[i] — b[i — 1] < b[i + 1] — b[7]);

This code is used in section 1.

6. (Do one phase of Eastman’s algorithm, putting ¢¢ boundary points into bb 6) =
{
for (i=1; ; i++)
if (—less(i)) break; /* now ¢ <t and y[i — 1] > y[i] */
for (i +=2; i <t+2; i++)
if (less(i —1)) break;
if (i >t+2) {
forintf (stderr, "The input_is,cyclic!\n");
exit (—666);
b e mowyli 3] > yfi— 2 <yli—1] #/
if (i<t) i0=i; else i =i0 =i—t;
for (tt =0; i<i0 +t; i=7) {
for (j=i+2; ; j++)
if (less(j — 1)) break; /* advance past the next dip */
if ((j —¢) & 1) (Retain i as a boundary point 7);
}
printf ("Phase, %d leaves", p);
for (k=0; k < tt; k++) blk] = bb[k], printf ("L%d", bb[k]);
printf ("\n");
for (; blk — tt] <n+n; k++) blk] = b[k — tt] + n;
}

This code is used in section 3.

7. If i >t at this point, we have “wrapped around,” so we actually want to retain the boundary point i —t.
(This case will arise at most once per phase, because j > i 4+ 3 and we must have j = i0 +t. Therefore i — ¢
will be smaller than all of the previously retained points, and we want to shift them one space to the right.)

(Retain ¢ as a boundary point 7) =

{
if (i < t) bb[tt++] = blil;

else {
for (k=tt++; k> 0; k—) bblk] = bb[k — 1];
bb[0] = b[i — tl;

}
}

This code is used in section 6.



88 COMMAFREE-EASTMAN-NEW

8. (Print the solution 8) =
for (j =b[0]; 7 < b[0] + n; j++) printf ("u%d", z[j]);
printf ("\n");

This code is used in section 1.
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p: i
printf: 6, 8.

sscanf: 2.
stderr: 2, 6.
t: 1.

tt:

8
= =
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(Do Eastman’s algorithm 3) Used in section 1.

(Do one phase of Eastman’s algorithm, putting t¢ boundary points into bb 6) Used in section 3.
(Initialize 4) Used in section 3.

<Print the solution 8> Used in section 1.

(Process the command line 2) Used in section 1.

(Retain ¢ as a boundary point 7) Used in section 6.

(Subroutines 5> Used in section 1.
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