81 COMMAFREE-EASTMAN-NEW INTRO 1

(See htips://cs.stanford.edu/ knuth/programs.htm] for date.)

1. Intro. This program is an iterative implementation of an interesting recursive algorithm due to
Willard L. Eastman, IEEE Trans. IT-11 (1965), 263-267: Given a sequence of nonnegative integers x =
o1 ...Tn_1 of odd length n, where x is not equal to any of its cyclic shifts xy...xn_12¢...2x_1 for
1 < k < n, we output a cyclic shift oz such that the set of all such oz forms a commafree code of block
length n (over an infinite alphabet).

The integers are given as command-line arguments.

The simplest nontrivial example occurs when n = 3. If x = abc, where a, b, and ¢ aren’t all equal, then
exactly one of the cyclic shifts yoy1y2 = abe, bea, cab will satisfy yg > y1 < y2, and we choose that one. It’s
easy to check that the triples chosen in this way are commafree.

Similar constructions are possible when n = 5 or n = 7. But the case n = 9 already gets a bit dicey,
and when n is really large it’s not at all clear that commafreeness is possible. Eastman’s paper resolved a
conjecture made by Golomb, Gordon, and Welch in their pioneering paper about comma-free codes (1958).

(Of course, it’s not at all clear that we would want to actually use a commafree code when n is large;
but that’s another story, and beside the point. The point is that Eastman discovered a really interesting
algorithm.)

Note: This program was written after I presented a lecture about Eastman’s algorithm at Stanford on
3 December 2015. While preparing the lecture I realized that some nice structure was present, and a day later
it occurred to me that the algorithm could therefore be streamlined. This program significantly simplifies
the method of the previous one, which was called COMMAFREE-EASTMAN. It produces essentially the same
outputs, but they are reflected left-to-right. (More precisely, if the former program gave the codeword y from
the the input sequence © = xg . ..2,_1, this program gives the reverse of y when given the reverse of x.)
#define mazn 105
#include <stdio.h>
#include <stdlib.h>

int z[mazn + mazxnl;

int b[mazn + mazn];

int bb[mazn];

(Subroutines 5);

main (int argc, char xargv[])

{

register int i,40,7,k,n,p,q,t, tt;
(Process the command line 2);
(Do Eastman’s algorithm 3);
(Print the solution 8);

}

https://cs.stanford.edu/~knuth/programs.html

2 INTRO COMMAFREE-EASTMAN-NEW

2. (Process the command line 2) =
if (arge < 4) {
forintf (stderr, "Usage: hsux1ux2,. . .uxn\n", argv[0]);
exit (—1);
}
n = argc — 1;
if (n&1)=0) {
forintf (stderr, "The number of items, n, should be_ odd, mot_%d!\n", n);
exit(—2);
}
for (j=1; j <arge; j++) {
if (sscanf (argvlj],"%d", &z[j — 1)) #1Vva[j —1] <0) {
forintf (stderr, "Argument, %d should, be a nonnegative integer, mot, ‘%s’!\n",j, argv[j]);
exit(—3);
}

}

This code is used in section 1.

§2

83 COMMAFREE-EASTMAN-NEW THE ALGORITHM 3

3. The algorithm. We think of x as written cyclically, with x,4; = x; for all j > 0. The basic idea in
the algorithm below is to also think of = as partitioned into ¢ < n subwords by boundary markers b; where
0<by<by <---<b—1 <njthen subword y; is xp, xp; 41 ... 2p;,, 1, for 0 < j < ¢, where by = bg. If £ =1,
there’s just one subword, and it’s a cyclic shift of z. The number ¢ of subwords during each phase will be odd.

Eastman’s algorithm essentially begins with b; = j for 0 < j < n, so that z is partitioned into n subwords of
length 1. It successively removes boundary points until only one subword is left; that subword is the answer.
It operates in phases, so that all subwords during the jth phase have length 37~! or more; thus at most
|logs | phases are needed. (For example, the case n =9 is “dicey” because it might require two phases.)

The algorithm is based on comparison of adjacent subwords y;_; and y;. If those subwords have the same
length, we use lexicographic comparison; otherwise we declare that the longer subword is bigger.

The algorithm is based on an interesting factorization of strings into substrings that have the form
z=121...2, where k > 2 and z; > -+ > zx_1 < zx. Let’s call such a substring a “dip.” It is not difficult
to see that any string y = yoy1 ... in which the condition y; < y;4+1 occurs infinitely often can be factored
uniquely as a sequence of dips, y = 2(9z(1) | . For example, 3141592653589... = 3141592653589

Furthermore if y is a periodic sequence, its factorization is also ultimately periodic, although some of its
initial factors may not occur in the period. Consider, for example, the factorizations

1234501234501234501 ... =1234501234501234501 ... ;
1234560123456012345601 ... =1234560123456012345601

If the period length is ¢, and if i¢ is the smallest ¢ such that y;_3 > y;—2 < y;—1, then one of the factors ends
at ip and all factors are periodic after that point. The value of ig is at most t + 2.

Since t is odd, the period contains an odd number of dips of odd length. Each phase of Eastman’s algorithm
simply retains the boundary points that precede those odd dips.
(Do Eastman’s algorithm 3) =

(Initialize 4);

for (p=1,t=n; t>1; t=tt,p++)

(Do one phase of Eastman’s algorithm, putting t¢ boundary points into bb 6);

This code is used in section 1.

4. We might need to refer to b[n + n — 1], but not b[n + n|.
(Initialize 4) =

for (j=mn; j<n+n; j+) z[j] =z[j —nl;

for (j=0; j <n+mn; j++) bjj] = 7;

t=mn;

This code is used in section 3.

4 THE ALGORITHM COMMAFREE-EASTMAN-NEW

§5

5. Here’s a basic subroutine that returns 1 if subword y;_1 is less than subword y;, otherwise it returns 0.

(Subroutines 5) =
int [ess(register int i)
{
register int j;
if (b[i] — bli — 1] = bli + 1] = b[i]) {
for (j =0; bli] +j <bli+1]; j++) {
if (z[bli — 1] + j] = x[b[i] + j]) continue;
} return (z[bi — 1] + j] < z[b[i] + 7]);
} return 0; [* Yic1 =y */
} return (b[i] — b[i — 1] < b[i + 1] — b[7]);

This code is used in section 1.

6. (Do one phase of Eastman’s algorithm, putting ¢¢ boundary points into bb 6) =
{
for (i=1; ; i++)
if (—less(i)) break; /* now ¢ <t and y[i — 1] > y[i] */
for (i +=2; i <t+2; i++)
if (less(i —1)) break;
if (i >t+2) {
forintf (stderr, "The input_is,cyclic!\n");
exit (—666);
b e mowyli 3] > yfi— 2 <yli—1] #/
if (i<t) i0=i; else i =i0 =i—t;
for (tt =0; i<i0 +t; i=7) {
for (j=i+2; ; j++)
if (less(j — 1)) break; /* advance past the next dip */
if ((j —¢) & 1) (Retain i as a boundary point 7);
}
printf ("Phase, %d leaves", p);
for (k=0; k < tt; k++) blk] = bb[k], printf ("L%d", bb[k]);
printf ("\n");
for (; blk — tt] <n+n; k++) blk] = b[k — tt] + n;
}

This code is used in section 3.

7. If i >t at this point, we have “wrapped around,” so we actually want to retain the boundary point i —t.
(This case will arise at most once per phase, because j > i 4+ 3 and we must have j = i0 +t. Therefore i — ¢
will be smaller than all of the previously retained points, and we want to shift them one space to the right.)

(Retain ¢ as a boundary point 7) =

{
if (i < t) bb[tt++] = blil;

else {
for (k=tt++; k> 0; k—) bblk] = bb[k — 1];
bb[0] = b[i — tl;

}
}

This code is used in section 6.

88 COMMAFREE-EASTMAN-NEW

8. (Print the solution 8) =
for (j =b[0]; 7 < b[0] + n; j++) printf ("u%d", z[j]);
printf ("\n");

This code is used in section 1.

THE ALGORITHM

5

6 INDEX COMMAFREE-EASTMAN-NEW 89

p: i
printf: 6, 8.

sscanf: 2.
stderr: 2, 6.
t: 1.

tt:

8
= =

COMMAFREE-EASTMAN-NEW NAMES OF THE SECTIONS 7

(Do Eastman’s algorithm 3) Used in section 1.

(Do one phase of Eastman’s algorithm, putting t¢ boundary points into bb 6) Used in section 3.
(Initialize 4) Used in section 3.

<Print the solution 8> Used in section 1.

(Process the command line 2) Used in section 1.

(Retain ¢ as a boundary point 7) Used in section 6.

(Subroutines 5> Used in section 1.

COMMAFREE-EASTMAN-NEW

Section Page
015 o 1 1
The algorithim 3 3
IndeX .o 9 6

	Intro
	The algorithm
	Index
	Names of the sections
	Do Eastman's algorithm
	Do one phase of Eastman's algorithm, putting tt boundary points into bb
	Initialize
	Print the solution
	Process the command line
	Retain i as a boundary point
	Subroutines

