81 CO-DEBRUIJN INTRODUCTION 1

1. Introduction. This program implements the coroutines of Algorithms 7.2.1.1R and 7.2.1.1D, in the
important case m = 2.

#define nn 10 /* we will test this value of n */
#include <stdio.h>

int p[nnl; /* program locations */
int z[nn],y[nn], t[nn], zp[nn], yp[nn], tp[nn]; /* local variables x/
int n[nn]; /* the value of ‘n’ in each coroutine */

(Subroutines 2);
main ()
{
register int k, kp;
(Initialize the coroutines 3);
for (k=0; k< (1 < nn); k++) printf ("%d", co(nn — 1));
printf ("\a");

2. We simulate the behavior of recursive coroutines, in such a way that repeated calls on co(n — 1) will
yield a cyclic sequence of period 2™ in which each nn-tuple occurs exactly once.

The coroutines are of types S (simple), R (recursive), and D (doubly recursive), as explained in the book.
There are nn — 1 coroutines altogether (see exercise 96); the main one will be number nn — 1.

Each coroutine ¢, for 1 < ¢ < nn, has a current position plg|, as well as local variables z[q], y[q], and so
on; and it generates a de Bruijn sequence of length 2741,

If n = 2, the coroutine for order n simply outputs the sequence 0, 0, 1, 1. Otherwise, if n is odd, coroutine
g = n — 1 invokes coroutine ¢ — 1 = n — 2 and doubles its length. Otherwise coroutine ¢ = 2n’ — 1 invokes
coroutines ¢ — 1 = 2n/ — 2 and (¢ — 1)/2 = n’ — 1, where coroutines 2n’ — 1 through n’ are “clones” of
coroutines n’ — 1 through 1; the effect is to square the length of the cycles output by those coroutines.

#define S 0 /* base for positions of an S coroutine x*/
#define R 10 /% base for positions of an R coroutine */
#define D 20 /* Dbase for positions of a D coroutine */
(Subroutines 2) =
void init (int)
{
register g =17 — 1;
nlgl =r;
if (r=2) plgl=5+1;
else if (r&1) {

pla] = R;
zlg) = 0;
init(q);

} else {
register int k, qq;
q =q>1
pla =D+ 1;

z[q] = aplq] = 2;

init (qq + 1);
}ﬁr%=q—hk>qmk"JMM=p%—mhﬂﬂ=$%—me%%=wW—q%nW=n%—q%
}

See also section 4.

This code is used in section 1.

2 INTRODUCTION CO-DEBRUIJN 83

3. (Initialize the coroutines 3) =
init(nn);

This code is used in section 1.

4. Now here’s how we invoke a coroutine and obtain its next value.

(Subroutines 2) +=
int co(int q)

switch (p[q]) {
(Cases for individual coroutines 5)
}
}

5. Each coroutine resets its p before returning a value. For example, type S is the simplest.

(Cases for individual coroutines 5) =
case S+ 1: plg] = S+ 2; return 0;
case S+ 2: p[g] = S + 3; return 0;
case S+ 3: plg] =S+ 4; return 1;
case S +4: p[g] =S+ 1; return 1;
See also sections 6 and 7.

This code is used in section 4.

6. Type R is next in difficulty. I change the numbering slightly here, so that case R does the first part of
the text’s step R1. The text’s n is n[g — 1] in this code, because of the initialization we’ve done.

(Cases for individual coroutines 5) +=

R1: case R: pl¢] = R+ 1; return z[qg|;

case R+ 1: if (z[q] # 0At[g] > n|g —1]) goto R3;
R2: ylg] = co(q —1);

R3: t[q] = (ylg] =17 t[g] +1:0);

R4: if (t[q] =nlg — 1] Azx[q] # 0) goto R2;

RS: zlq] = (z[g] +ylg]) & 1; goto Ri;

7. And finally there’s the coroutine of type D. Again the text’s parameter n is our variable nlg — 1].

(Cases for individual coroutines 5) +=
D1: case D +1: if (i[q] # nlg — 1]V xlg] > 2) ylq] = co(q — (n[q] > 1));
D2: if (z[q] # yla]) «lq] = yla],tlg] = 1; else t[g]++;
D3: plg| = D + 4; return x[ql;
D4: case D +4: yplg] = co(q— 1);
D5: if (aplg] # yplq]) =plal = yplal tpla] = 1; else tp[q]++;
D6: if (tp[g] = nlg — 1] Aaplg] < 2) {
if (t[q] < nlg—1]V ap[q] < z[q]) goto D4;
if (zp[q] = z[q]) goto D3;

D7: plg] = D + 8; return (zp[q));
case D+ 8: if (ip[¢] = nlg— 1] A ap[g] < 2) goto D3;
goto D1;

p:

CO-DEBRUIJN

Index.
1, 2, 4, 6, 7.

I~ =1 1= =7 1= (=7 = [

b
3.
S

<
—

=
o
L

Ned ~
SEINESTRERERE

NS

)
1o 1 1o 1> 1oy * ™ o

“._‘ |= “’i ‘.N)
~

la 2? 7.

|—
=
=~

INDEX

3

4 NAMES OF THE SECTIONS CO-DEBRUIJN
(Cases for individual coroutines 5, 6, 7) Used in section 4.

(Initialize the coroutines 3) Used in section 1.

(Subroutines 2, 4) Used in section 1.

CO-DEBRUIJN

Section Page
INtroduction 1 1
IdeX .o 8 3

	Introduction
	Index
	Names of the sections
	Cases for individual coroutines
	Initialize the coroutines
	Subroutines

