81 CELTIC-PATHS INTRO 1

(Downloaded from |ftps://cs.stanford.edu/ knuth/programs.htm] and typeset on May 27, 2023)

1. Intro. This quick-and-dirty program prepares TEX files for use with the weird fonts CELTICA and
CELTICB. You can use it to print amazing pictures that look like stylized Celtic knots. Sometimes the
resulting pictures look very elegant. (Plug: You can see the author’s most elegant example, so far, in
Chapter 46 of the book Selected Papers on Fun and Games, published by CSLI in 2010.)

The “knots” we print consist of one or more closed loops in which no three points are concurrent. Therefore
we can draw them in such a way that the paths go alternately over-under-over-under, etc., whenever they
cross. The loops consist of segments that cut a square grid either at corner points or at midpoints between
adjacent corners. So we can think of the total picture as composed of square tiles, where each tile has eight

https://cs.stanford.edu/~knuth/programs.html

2 INTRO CELTIC-PATHS §1

possible entry or exit points, numbered thus:

81 CELTIC-PATHS INTRO 3

There are three kinds of tiles, each representable as a sequence of four characters:
e A blank tile, represented by four blanks.
e A tile with a single segment from 4 to j, where i < j, represented by ij and two blanks.
e A tile with segments from ¢ to j and from ¢’ to j/, where i < j and i’ < j’ and ¢ < 7/, represented by iji’j’.
The segments from ¢ to j are also subject to several additional restrictions:
e ¢ and j cannot be adjacent on the periphery.
e ¢ and j cannot both be even.

Thus, for example, if ¢ = 0 the only possibilities for j are 3 and 5. But if ¢ = 1 we can have j = 3, 4, 5,
6, or 7. It follows that 14 different one-segment tiles are legal, and there are 47 with two segments.

The input to this program, for an m X n picture, consists of m lines of 5n characters, where each line
contains n tile specifications separated by blanks and followed by a period. For example, the simple 3 x 4
input

35 57 35 57
13 1537 1537 17
13 17

yields the nice little picture ‘.

The rules are illustrated more fully by the following 6 x 7 example, which was used in the author’s initial

tests:
35 57

35 57 35 1537 1357 57
1435 1657 15 1435 1637 17
35 1725 0514 16 1325 0537 57
13 1735 1725 03 17 13 17
13 17

From that input (on stdin), the output of this program (on stdout) is a TEX file that prints a “poodle”:

2. Whenever a tile contains a segment through some boundary point, the neighboring tiles must also
contain a segment through that common point. For example, tile ‘35’ can be used only if its neighbor to
the right uses its point 7, and only if its neighbor below uses its point 1. More significantly, if a tile uses a
corner point, it has three neighbors that touch the same corner, and all three of them must use that corner.
Paths therefore always make an ‘X’ crossing, at right angles, whenever they pass through a corner of the
grid.

All regions of the final illustration are filled in with black, if they don’t lie completely outside of all paths.

4 INTRO

CELTIC-PATHS

§3

3. OK, let’s get going. This program ought to be fun, once we get through the tedious details of preparing
font tables and of reading/checking the input.

#define mazxm 100
#define mazn 100

#define bufsize 5 mazn + 2

#include <stdio.h>
#include <stdlib.h>

char buf [bufsize], entry[8];

int a[mazm]|[mazn];
int b[mazm][mazn];

int codetable[*T778];
char bw[mazm][maxn][8];
int inout[mazm][mazn][8];

/+ the input */

/* endpoints touched in each tile */
/* mapping from tiles to font positions */

(Declare the magic tables 11);

main ()

{

/* black/white coloring of regions */
/* inside/outside coloring of regions */

/* at most this many rows; mustn’t exceed 4096 =/
/* at most this many columns; mustn’t exceed 4096 */

register int i, 5, k, i, jj, kk, m, n, s, t;

Initialize codetable 4);
Read the input into a, and check it for consistency 5);

Do the inside/outside coloring 9);

(
(
(Do the black/white coloring 8);
(
(

Produce the output 13);

4. (Begin tedium.) Fonts CELTICA and CELTICB have a peculiar encoding scheme, not terribly systematic,
governed by a mapping from tile specs (in hexadecimal) to character positions (in octal).

(Initialize codetable 4) =
for (1 =1; i <#7778; i++) codetable[i] = —1;

codetable[#1537] = 0; codetable[0] = °40;
codetable[#0300] = °44 , codetable [*0500] = °46, codetable[#1300] = °50, codetable[* 1400] = °52,
codetable[*1500] = °54 , codetable[* 1600] = °56 , codetable[*1700] = °60, codetable [#2500] = °62,

codetable[#2700
codetable[#4700

°64 , codetable [* 3500] = °66 , codetable[#3600]

°70, codetable[*3700] = °72,

°74 , codetable [*5700] = °76, codetable[#1357] = °100, codetable[#*1735] = °104,

[| =

[| =
codetable[#0513] = °110, codetable [#2735] = °114 , codetable[#1457] = °120, codetable[*1736] = °124,
codetable[#0357] = °130, codetable [*1725] = °134 , codetable[#1347] = °140, codetable[#*1635] = °144,
codetable[*0514] = °150, codetable[#2736] = °154 , codetable[#*0347] = °160, codetable[*1625] = °164,
codetable[#*0314] = °170, codetable [*2536] = °17/ , codetable[*0547] = °200, codetable[*1627] = °204 ,
codetable[#0315] = °210, codetable [*2537] = °21/ , codetable[*1547] = °220, codetable[*1637] = °224,
codetable[#0537] = °230, codetable [* 15627] = °23/ , codetable[#1437] = °240, codetable[*1536] = °2/4 ,
codetable[#0316] = °250, codetable [*0325] = °25/ , codetable[#2547] = °260, codetable[*1647] = °26/4 ,
codetable[*0527] = °270, codetable [* 1425] = °27/ , codetable[#1436] = °300, codetable[*0536] = °304 ,
codetable[#0317] = °310, codetable[*1325] = °814 , codetable[#3547] = °320, codetable [* 1657] = °524 ,
codetable[*0517] = °330, codetable [* 1327] = °33/ , codetable[*1435] = °340, codetable[*3657] = °344,
codetable[*0516] = °350, codetable [*0327] = °35/ , codetable[#1425] = °360, codetable[*3647] = °364;

This code is used in section 3.

85 CELTIC-PATHS INTRO 5

5. (More tedium. I do try to check carefully for errors, because the task of preparing the input is even

more tedious than the task of writing this code.)
The rows are numbered from 0 to m — 1, and the columns from 0 to n — 1.

(Read the input into a, and check it for consistency 5) =
for (m=0; ; m++) {
if (—fgets(buf, bufsize, stdin)) break;
for (j =0; ; j++) {
k=>5x%7;
if (j=nAm>0) {
forintf (stderr, "Missing,,‘ .’ at the end of_ row %d!\n",m);
exit(—1);
}

(Parse the entry for row m and column j 6);
if (buffk+4]=".7){
if (m=0)n=5+1;
elseif (n#j+1) {
forintf (stderr, "Premature,,¢ .’ jin row_%d!\n",m);
exit (—2);
}
break;
} else if (buf[k+4]#°.°) {
forintf (stderr, "Tilespecyin row %d, col %d not followed by blank!\n",m,j);
exit (—5);
}
}
continue;
badentry: fprintf (stderr, "Bad_entry, (%s)_ in row_%d and column %d'\n", entry,m,j);
exit (—3);
¥
if (m=0) {
forintf (stderr, "There was_no_input!\n");
exit (—4);
¥
forintf (stderr, "0K, I’ ve successfully read,)d rows and, /d columns.\n",m,n);
(Check for consistency 7);

This code is used in section 3.

6 INTRO CELTIC-PATHS

6. (Parse the entry for row m and column j 6) =
for (jj =0; jj <4; jj++) entry[jj] = buf [5+ j + jjl;
if (entry[0]=°.’) {
if (entry[l] # 0’ Ventry[2] # L’ V entry[3] # L’) goto badentry;
else a[m][j] = 0;
} else {
1f (entry[0] < ?0° V entry[0] > *7?) goto badentry;

if (entry[l] <0’V entry[l] ’77) goto badentry;
[I[5] = ((entry[0] - °07) < 12) + ((entT’y[] —20%) <8);
ni] = (1 < (eniry 0] —207)) + (1 < (entry[l] — 07
f (entry[2] =>u7) {
if (entry[3) 75 L) goto badentry;
} else {

if (entry[2] < 0’ V entry[2] > *7’) goto badentry;

if (entry[3] < 20’ V entry[3] > *7’) goto badentry;
a[m][j] += ((entry[2] = 20%) < 4) + (entry[3] — *0”);
blm][j] += (1 < (entry[2] —20?)) + (1 < (entry[3] — ’0?));

}

if (codetable[a[m][j]] < 0) {
forintf (stderr, "Sorry, hsuisn’tua legal tile, (row,hd,col %d) '\n", entry, m, j);
exit (—4);

This code is used in section 5.

87 CELTIC-PATHS INTRO 7

7. #define eqbit(k,kk) (((i > k) ® (it > kk)) & 1)
(Check for consistency 7) =
t=0;
for (j =0; j <my j++)
for (jj = 0; jj <m; jji++) {
i=(j>070[j —1][5] : 0);
it = (j <m?b[j][j] : 0);
if (egbit(4,2) + eqbit(5,1) 4 eqbit (6,0)) {
forintf (stderr, "Inconsistent_tiles %04x/%04x, (row %d, col hd) '\n",j > 0 ? a[j — 1][] : O,

aljlligl, 3, Jj);
T+t

¥
}
for (jj = 0; jj < mn; jj++)
for (j=0; j <m; j++) {
i=(j > 07?0l — 1] : 0);
i = (jj <n?b[j]li]: 0);
if (eqbit(2,0) + eqbit(3,7) + egbit (4,6)) {
forintf (stderr, "Inconsistent tiles %04x,%04x, (row,%d, col %d) '\n",
§i > 07 aljlli — 1]+ 0,aj1Li], 4.5)
t++;
¥
}
if (¢) {
forintf (stderr, "Sorry, I can’t go on,(errs=%d) .\n", t);
exit (—69);

}

This code is used in section 5.

8. OK, now the fun begins: We’ve got decent input, and we want to figure out how to typeset it.

The given loops partition the plane into regions, and the key idea is to assign “colors” to each region of
each tile. We use two different bicolorings: (1) Regions are either black or white, where the color changes
at each boundary edge between regions. (2) Regions are either inside or outside of the total picture. These
two colorings are related by the fact that outside regions are always white.

A blank tile has only one region. A tile ij has two. And a tile i54’j’ has either three or four, depending
on whether ¢ and i’j’ intersect. We unify these cases by considering eight subregions along the boundary,
namely 0..1,1..2, ..., 7..0, some of which are known to be identical.

The black/white coloring is easily done in one pass. (This code is in fact overkill.)

(Do the black/white coloring 8) =
for (i=10; i <m; i++)
for (j =0; j <n; j++) {
bl [10] = (6= 07 0= buli — 1][7][3));
} for (k=1; k< 8; k++) bwl[i][j][k] = (b[i][j] & (1 < k) 7 1:0) ® dbw[i][j][k — 1];

This code is used in section 3.

8 INTRO CELTIC-PATHS §9

9. The inside/outside coloring is trickier, because connectivity to the outside can twist around, and because
three-region tiles behave differently from four-region tiles.

The following algorithm is essentially a depth-first search to find all subregions that are connected to the
upper left corner. A stack is maintained within the data structure. At the end of the process, inout[i[j][k]
is nonzero if and only if that subregion is outside.

#define pop(i,j,k) i =s>16,j = (s > 4) & *£ff, k = s & #7,s = inout[i][j][k]
#define push(ii, jj, kk)
{ if (inout[it][jj][(kk) & #7] = 0)
inout [#][57][(kk) & #7] = s, = ((i1) < 16) + ((45) < 4) + ((kk) & #7); }
(Do the inside/outside coloring 9) =
inout[0][0][0] = —1;
for (s=0; s>0;) {
pop (i, j, k);
(Push all unseen neighbors of subregion [¢][j][k] onto the stack 10);

}

This code is used in section 3.

10. The neighbors of a subregion within a tile are either in an adjacent tile or in the same tile.

(Push all unseen neighbors of subregion [¢][j][k] onto the stack 10) =
switch (k) {
case 0: case 1: i
case 2: case 3: i
case 4: case 5: i
case 6: case 7: i

f (i >0) push(i —1,7,5 — k); break;
f (j<n-—1) push(i,j+ 1,9 — k); break;
f (i<m-—1) push(i+1,7,5—k); break;
f (j >0) push(i,j — 1,9 — k); break;

if ((b[i][j] & (1 < k)) =0) push(i,j,k+7); /* move counterclockwise */
kk = (k+1)

if ((b[i][J] & (1 < kk)) =0) push(i,], kk); /* move clockwise */

(Check neighbors in three-region tiles 12);

This code is used in section 9.

§11 CELTIC-PATHS INTRO 9

11. A tile that contains two nonintersecting segments consists of a middle region and two others. The
middle region needs to be identified so that we can “jump” from one of its edges to the other.

Three-region tiles are characterized by having codetable[a[i][]] between °100 and °164, inclusive. When
that happens, we can pack the necessary logic into a magic four-byte table, which contains the four endpoints
{4,4,7',7'} in the correct clockwise order for processing.

(Declare the magic tables 11) =
char magic[56] = {
13,9, 7,

N O NO NS
OO — W W RN W
Lo Ut R N U1 W T Lo T W
SO U UTO W

07 3’ 47 7’
6,1,2,5};
See also section 22.

This code is used in section 3.

12. (Check neighbors in three-region tiles 12) =
kk = codetable[ald][j]] — °100;
if (kk < 70 A Kk > 0) {
if (k = magiclkk + 1]) push(i,j, magic|kk] + 7);
if (k= ((magiclkk] +7) & #7)) push(i, j, magic[kk + 1]);
if (k = magiclkk + 3]) push(i,j, magic[kk + 2] + 7);
if (k = ((magic[kk + 2] +7) & #7)) push (i, j, magic[kk + 3]);

}

This code is used in section 10.

13. And at last, when every subregion has been colored in both of the bicolorings, we come to the
denouement: Typesetting can proceed.

Suppose codetable|ali][j]] is k. Then the tile in row i, column j is typeset in font CELTICA or CELTICB,
depending on whether its subregion 0 is white or black, respectively; that is, depending on whether bw [i][4][0]
is 0 or 1, respectively.

A blank tile, when k = °40, is typeset only if it’s inside. (Character °40 is ’.)

A two-region tile is typeset from k if both regions are inside, from k + 1 if one region is outside. (For
example, character °44 is *; character °45 is ’ in CELTICA and © in CELTICB.)

A three-region or four-region tile is typeset from k, k4 1, k + 2, or k+ 3, depending on the inside/outside
configurations; details are worked out below.

(Produce the output 13) =

(Publish the preamble 14);

for (i =0; ¢ <m; i++) (Publish row i 16);

(Publish the postamble 15);

This code is used in section 3.

10 INTRO CELTIC-PATHS §14

14. (Publish the preamble 14) =
printf ("%hbegin output of CELTIC-PATHS\n");
printf ("\\font\\celtica=celtical3 \\font\\celticb=celticb13\n\n");
printf ("\\begingroup\\celtica\n");
printf ("\\catcode ‘\\|=\\active \\def |#1|{\\hskip#lem}\n");
printf ("\\catcode ‘\\-=\\active \\def-#1#2#3{\\celtica\\char’#1#2#3}\n");
printf ("\\catcode ‘\\+=\\active \\def+#1#2#3{\\celticb\\char’ #1#2#3}\n");
printf ("\\offinterlineskip\\baselineskip=lem\n");
printf ("\\let\\par=\\cr \\obeylines \\halign{#\\hfil\n");

This code is used in section 13.

e N N W e NN

15. (Publish the postamble 15) =
printf ("}\\endgroup\n");

This code is used in section 13.

16. (Publish row i 16) =
{
5 =0; /* s holds the number of accumulated blanks x*/
for (j =0; j <n; j++) (Typeset tile (i,7) 17);
printf ("\n");

}

This code is used in section 13.
17. (Typeset tile (i,7) 17) =

kk = codetable|ali][4]];
i = bw i) [7][0];
if (kk >°100) (Handle a tile with three or four regions 21)
else if (kk =°40) (Handle a blank tile 18)
else if (kk =0) (Handle tile 1537 20)
else (Handle a two-region tile 19);
if (s) {
printf ("1%d1", s);
s =0;

printf ("%ch030", i1 7 2+ 1 2= kk);

}

This code is used in section 16.

18. (Handle a blank tile 18) =

if (inout[:][5][0]) { /* normal case, blank and outside x/
s++; continue;
}
}

This code is used in section 17.

§19 CELTIC-PATHS INTRO 11

19. (Handle a two-region tile 19) =
{ for (k=0; k <8; k++)
if (inout [1][j][*]) {
kk++; break;
}
}

This code is used in section 17.

20. The fonts treat 1537 as a special case in which all sixteen combinations of black /white backgrounds are
permissible. Only four of them can actually occur in the output of this program, because adjacent regions
cannot both be ‘outside’.
(Handle tile 1537 20) =

{
}

This code is used in section 17.

kk = (inout[i][§][1] 7 1 : 0) 4+ (inout[i][§][3] ? 8 : 0) + (inout[i][§][5] ? 4 : 0) + (inout[i][§][7] ? 2 : 0);

21. In the most complex case, we walk clockwise around the edge of the tile and note the pattern of four
inside/outside regions that we see. Four patterns are possible (either 0000, 1000, 0010, or 1010 in CELTICA,
and either 0000, 0001, 0100, or 0101 in CELTICB); they cause us to add 0, 1, 2, or 3, respectively to the
character code kk.

(Handle a tile with three or four regions 21) =

t = (inout[i][5][0] 7 8 : 0);
for (k=1,jj =4; jj; k++)
it (o[i][j] & (1 < k)) {
t += (inout [i][§][k] ? j : 0);
Jj>=1
}
kk 4+= offset][t];
}

This code is used in section 17.

22. (Declare the magic tables 11) +=
char offset[16] = {0,1,2,0,2,3,0,0,1,0,3,0,0,0,0,0};

12 INDEX CELTIC-PATHS §23

23. Index.

a:
b: 3
badentry: 5, 6.

buf: 3, 5, 6.

bufsize: 3, 5.

bw: 3, 8, 13, 17.

codetable: 3, 4, 6, 11, 12, 13, 17.

3.
3.

entry: 3, 5, 6.

eqbit: 7.

exit: 5, 6, 7.

fgets: 5.

forintf: 5, 6, 7.

i 3.

w: 3, 7,9, 17.

mout: 3, 9, 18, 19, 20, 21.
j: 3.

g3 3, 6, 7,9, 21.

k: 3.

kk: 3,7,9, 10, 12, 17, 19, 20, 21.
m: 3.

magic: 11, 12.

main: 3.

maxm: 3.

maxn: 3.

n: 3.

offset: 21, 22.

pop: 9.

printf: 14, 15, 16, 17.
push: 9, 10, 12.

s 3.

stderr: 5, 6, 7.
stdin: 1, 5.
stdout: 1.

t. 3.

CELTIC-PATHS NAMES OF THE SECTIONS

Check for consistency 7) Used in section 5.

Check neighbors in three-region tiles 12) Used in section 10.

Declare the magic tables 11, 22) Used in section 3.

Do the black/white coloring 8) Used in section 3.

Do the inside/outside coloring 9) Used in section 3.

Handle a blank tile 18) Used in section 17.

Handle a tile with three or four regions 21) Used in section 17.

Handle a two-region tile 19) Used in section 17.

Handle tile 1537 20) Used in section 17.

Initialize codetable 4) Used in section 3.

Parse the entry for row m and column j 6) Used in section 5.

Produce the output 13) Used in section 3.

Publish row ¢ 16) Used in section 13.

Publish the postamble 15) Used in section 13.

Publish the preamble 14) Used in section 13.

Push all unseen neighbors of subregion [i][j][k] onto the stack 10) Used in section 9.
Read the input into a, and check it for consistency 5) Used in section 3.
Typeset tile (i,7) 17) Used in section 16.

o~~~ o~~~ o~~~ o~~~ o~~~

13

CELTIC-PATHS

Section Page

	Intro
	Index
	Names of the sections
	Check for consistency
	Check neighbors in three-region tiles
	Declare the magic tables
	Do the black/white coloring
	Do the inside/outside coloring
	Handle a blank tile
	Handle a tile with three or four regions
	Handle a two-region tile
	Handle tile 1537
	Initialize codetable
	Parse the entry for row m and column j
	Produce the output
	Publish row i
	Publish the postamble
	Publish the preamble
	Push all unseen neighbors of subregion [i][j][k] onto the stack
	Read the input into a, and check it for consistency
	Typeset tile (i,j)

