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(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Intro. This program is the twelfth in a series of exploratory studies by which I’m attempting to
gain first-hand experience with OBDD structures, as I prepare Section 7.1.4 of The Art of Computer
Programming. Again it’s quite different from its predecessors: This one implements a new approach to
finding an optimum ordering for the variables of a given Boolean function or set of functions. The new
approach is based on QDDs (quasi-reduced BDDs), which undergo the “jump-up” operation but not the
normal synthesis operations of a traditional BDD package. It requires no hashing or garbage collection.

The given function is specified explicitly by generating its QDD. As a demonstration, we implement the
2m-way multiplexer Mm(x1, . . . , xm;xm+1, . . . , xm+2m) here, because it exhibits great extremes of BDD size
under different orderings. But with CWEB change files any other function can be substituted.

If desired, optimization will be restricted to a subrange of the possible levels, keeping variables at the top
and bottom of the BDD in place. We assume that botvar − topvar is at most 24.

#define mm 2 /∗ order of MUX in this demonstration version ∗/
#define nn (mm + (1� mm )) /∗ the number of Boolean variables ∗/
#define outs 1 /∗ the number of Boolean functions to be simultaneously optimized ∗/
#define interval 1000 /∗ make this larger to suppress progress reports ∗/
#define worksize (1� 20) /∗ must be at most 1� 20 in this implementation ∗/

/∗ the jump-up work area will have 3 ∗ worksize octabytes ∗/
#define topvar 1 /∗ first variable whose order will be varied (must be ≥ 1 ∗/
#define botvar nn /∗ last variable whose order will be varied (must be ≤ nn ∗/
#define nnn (botvar + 1− topvar ) /∗ variables being permuted (at most 25) ∗/
#define o mems ++ /∗ count a memory access to an octabyte ∗/
#define oo mems += 2 /∗ or two ∗/
#define ooo mems += 3 /∗ or three ∗/
#define oooo mems += 4 /∗ or four, wow ∗/
#include <stdio.h>

#include <stdlib.h>

〈Type definitions 2 〉
〈Global variables 3 〉
unsigned long long mems ;

〈Subroutines 7 〉
main ( )
{

register int h, i, j, k, l, lo , hi , jj , kk , var , cycle ;
octa x;

〈 Initialize everything 4 〉;
for (cycle = 1; cycle < 1� (nnn − 1); cycle ++) {

if (cycle % interval ≡ 0) {
printf ("Beginning cycle %d (%llu mems so far)\n", cycle ,mems );
fflush (stdout );

}
〈Do the jump-up for the current cycle 21 〉;

}
〈Figure out an optimum order 27 〉;
printf ("Altogether %llu mems.\n",mems );
}

https://cs.stanford.edu/~knuth/programs.html
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2. 〈Type definitions 2 〉 ≡
typedef unsigned long long octa; /∗ an octabyte ∗/

See also section 8.

This code is used in section 1.
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3. QDD representation. The quasi-reduced binary decision decision for a Boolean function of n
variables has qk nodes on level k, for 0 ≤ k ≤ n, one for every distinct subfunction that can arise by
hard-wiring constant values for the initial variables (x1, . . . , xk). The sequence (q0, . . . , qn) is called the
function’s quasi-profile.

The maximum value of qk is min(t2k, 22
n−k

) when there are t output functions of n input variables. In
particular, the maximum quasi-profile when n = 25 and t = 1 is

(1, 2, 4, . . . , 219, 220, 216, 28, 24, 22, 2);

its potentially biggest element, 220, occurs when k = 20.
In this implementation the nodes on level k are numbered from 0 to qk−1, and we store them consecutively

in a big array node [k]. Each node contains three fields, (lo ,hi ,dep), packed into a 64-bit word. The lo and
hi fields, 20 bits each, point to nodes at level k+1; the dep field, which occupies the other 24 bits, represents
the set of variables on which this subfunction depends. Level n is special; it has the two “sink” nodes 0
and 1, which are represented by (0, 0, 0) and (1, 1, 0), respectively.

For example, suppose n = 3 and f(x1, x2, x3) = (x̄1 ∧ x2) ∨ (x1 ∧ x3). The nodes at level 2, which
correspond to branching on x3, are node [2][0] = (0, 0, 0), node [2][1] = (1, 1, 0), and node [2][2] = (0, 1, #4),
representing the respective subfunctions 0, 1, x3. The nodes at level 1, which correspond to branching on x2,
are node [1][0] = (0, 1, #2) and node [1][1] = (2, 2, #4), representing the subfunctions x2 and x3. And there’s
one node at level 0, namely node [0][0] = (0, 1, #7).

〈Global variables 3 〉 ≡
octa ∗node [nnn + 1]; /∗ the node arrays ∗/
int qq [nnn + 1]; /∗ the quasi-profile: qq [k] = qk−topvar+1 ∗/

See also sections 9, 13, 15, 20, 24, and 28.

This code is used in section 1.

4. To launch this structure, we first need to allocate the node arrays. They are actually created only for
levels topvar − 1 through botvar .

〈 Initialize everything 4 〉 ≡
for (k = 0; k ≤ nnn ; k++) {
j = worksize , kk = k + topvar − 1;
if (nn − kk < 5 ∧ j > 1� (1� (nn − kk ))) j = 1� (1� (nn − kk ));
if (kk < 20 ∧ ((worksize/outs )� kk ) > 0 ∧ (j > outs ∗ (1� kk ))) j = outs ∗ (1� kk );
node [k] = (octa ∗) malloc(j ∗ sizeof (octa));
if (¬node [k]) {

fprintf (stderr , "I couldn’t allocate %d octabytes for node[%d]!\n", j, k);
exit (−2);

}
}

See also sections 6, 16, and 22.

This code is used in section 1.



4 QDD REPRESENTATION BDD12 §5

5. The packing policy is slightly unusual because I’m squeezing 65 bits into 64. The dep field represents
the state of up to 25 variables, but only 24 bits are available.

Not to worry: The least significant bit of a 25-bit dep would truly be of the least possible significance in
every way, because it would be zero everywhere except on level 0. And that bit on level 0 is almost never
examined.

Therefore I don’t store the least significant bit of dep . I store only the value dp = dep � 1, and I treat
level 0 as a special case. This saves time even when n < 25.

(If I wanted to handle more than 25 variables, I could use a more elaborate scheme in which the packing
conventions vary from level to level. But 25 is plenty for me at the moment.)

#define pack (lo , hi , dp) (((((octa)(dp)� 20) + (lo))� 20) + (hi ))
#define lofield (x) (((x)� 20) & #fffff)
#define hifield (x) ((x) & #fffff)
#define depfield (x) (((x)� 40)� 1)
#define extrabit (k, j) (k ≡ 0 ? lofield (node [0][j]) 6= hifield (node [0][j]) : 0)

6. Once the node arrays exist, we can set up the initial QDD. Here I implement the familiar function

Mm(x1, . . . , xm;xm+1, . . . , xm+2m) = xm+1+(x1...xm)2 .

(In fact, the example f(x1, x2, x3) above is M1(x1;x2, x3).)
Only the lo and hi fields are initialized here, because we will use the reduction routine to compute

appropriate deps.
The following code assumes that topvar = 1 and botvar = nn .

〈 Initialize everything 4 〉 +≡
for (k = 0; k < mm ; k++) {

for (j = 0; j < 1� k; j++) node [k][j] = pack (j + j, j + j + 1, 0);
qq [k] = 1� k;
}
for (j = 0; j < 1� mm ; j++)

if (j ≡ 0) node [mm ][j] = pack (0, 1, 0);
else node [mm ][j] = pack (j + 1, j + 1, 0);

qq [mm ] = 1� mm ;
for (k = mm + 1; k ≤ nn ; k++) {

for (j = 0; j < nn + 2− k; j++)
if (j < 2) node [k][j] = pack (j, j, 0);
else if (j ≡ 2) node [k][j] = pack (0, 1, 0);
else node [k][j] = pack (j − 1, j − 1, 0);

qq [k] = nn + 2− k;
} /∗ N.B.: now qq [nn ] = 2, and the sink nodes have been initialized ∗/
〈Compute the dep fields of the initial QDD 14 〉;
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7. For diagnostic purposes, I might want to pretty-print the current QDD.

〈Subroutines 7 〉 ≡
void print level (int k)
{

register int j;

printf ("level %d (x%d):\n", k,map [k] + topvar );
for (j = 0; j < qq [k]; j++)

printf (" %d,%d %x\n", lofield (node [k][j]), hifield (node [k][j]), depfield (node [k][j]) + extrabit (k, j));
}
void print qbdd (void)
{

register int k;

for (k = topvar − 1; k < botvar ; k++) print level (k);
}

See also sections 10 and 11.

This code is used in section 1.
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8. Reduction. Restructurings of the QDD are implemented with the help of a work area, capable of
holding twice as many nodes as needed on any particular level.

In the work area, nodes appear in octabytes of type pair , which simply have two integer fields, l and r.
Two large arrays, work and head , comprise the work area. A node with fields (lo , hi ) is represented in a

pair that has l = hi ; this pair, which appears in the work array, is part of a linked list that begins head [lo ].
Links appear in the r fields.

The work area is intended for nodes that are destined to become part of node [k], for some level k. The lo
and hi fields, which are addresses of nodes at the next level, must therefore be less than qq [k + 1].

〈Type definitions 2 〉 +≡
typedef struct { unsigned int l, r; } pair;

9. 〈Global variables 3 〉 +≡
pair work [2 ∗ worksize ], head [worksize ]; /∗ the big workspace ∗/

10. We use j + 1 to link to entry j, so that null links are distinguishable from links to entry 0.

〈Subroutines 7 〉 +≡
void print work (int k)
{

register int lo , hi ;

printf ("Current workspace for level %d:\n", k);
for (lo = 0; lo < qq [k + 1]; lo ++)

for (hi = head [lo ].r; hi ; hi = work [hi − 1].r) printf (" %d,%d\n", lo ,work [hi − 1].l);
}

11. The key subroutine we need is called reduce . It finds the unique combinations (lo , hi ) in the work
area, and places them into node [k] with proper dep fields. It resets qq [k] to the number of distinct nodes
found.

The reduce routine also sets clone [j] to the new address of the node that was originally represented in
work [j].

“Bucket sorting” is the basic idea here. When we’re working on list head [lo ], we set head [hi ].l to the
address of an existing node (lo , hi ), if reduce has already created such a node.

〈Subroutines 7 〉 +≡
void reduce (int k)
{

register int lo , hi , dep , p,nextp , q;

q = 0; /∗ the number of nodes created so far ∗/
for (o, lo = 0; lo < qq [k + 1]; lo ++) {

for (o, p = head [lo ].r; p; p = nextp) {
o,nextp = work [p− 1].r;
hi = work [p− 1].l; /∗ the hi field of a node with the current lo ∗/
if (o, head [hi ].l) o, clone [p− 1] = head [hi ].l − 1; /∗ (lo , hi ) already exists ∗/
else 〈Create a new entry in node [k] 12 〉;

}
for (p = head [lo ].r; p; p = nextp) {
o,nextp = work [p− 1].r, hi = work [p− 1].l;
o, head [hi ].l = 0; /∗ clean up ∗/

}
o, head [lo ].r = 0; /∗ reset the lo list to empty ∗/

}
o, qq [k] = q;
}
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12. 〈Create a new entry in node [k] 12 〉 ≡
{

if (q ≥ worksize ) {
fprintf (stderr , "Sorry, level %d of the QDD is too big (worksize=%d)!\n", k,worksize );
exit (−3);

}
if (lo 6= hi ) oo , dep = depfield (node [k + 1][lo ] | node [k + 1][hi ]) | (1� k);
else o, dep = depfield (node [k + 1][lo ]);
o,node [k][q] = pack (lo , hi , dep � 1);
o, clone [p− 1] = q;
o, head [hi ].l = ++q;
}

This code is used in section 11.

13. 〈Global variables 3 〉 +≡
int clone [2 ∗ worksize ]; /∗ the new node addresses ∗/

14. Let’s illustrate reduce by using it to tidy up the initial QDD. The main point of interest is that we
must remap the pointers on level k − 1 after level k has been reduced.

#define makework (j, lo , hi ) work [j].l = hi ,work [j].r = head [lo ].r, head [lo ].r = j + 1

〈Compute the dep fields of the initial QDD 14 〉 ≡
for (k = nnn − 1; ; k−−) {

for (o, j = 0; j < qq [k]; j++) {
o, lo = lofield (node [k][j]);
ooo ,makework (j, lo , hifield (node [k][j]));

}
reduce (k);
if (k ≡ 0) break;
for (o, j = 0; j < qq [k − 1]; j++) {
o, x = node [k − 1][j];
ooo ,node [k − 1][j] = pack (clone [lofield (x)], clone [hifield (x)], 0);

}
}

This code is used in section 6.
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15. Jumping. Our chief goal is to study what happens when the variables of our function are permuted.
We’ll see later that only 2n−1 of the n! permutations need to be examined, and that each of them can be
obtained from its predecessor by a simple “jump-up” operation.

The jump-up operation k → j, where k > j, takes the variable at level k of the branching structure
and moves it up to level j, sliding the previous occupants of levels (j, j + 1, . . . , k − 1) down one notch.
For example, suppose n = 7 and we do jump-up 5 → 2. Before the operation, levels 0 thru 6 represent
branching on variables (x1, x2, x3, x4, x5, x6, x7), respectively; after jumping, they represent branching on
(x1, x2, x6, x3, x4, x5, x7).

The dep fields are always based on the assumption that level k branches on variable xk+1. An auxiliary
map table records the results of previous jumps; level k actually branches on variable xmap[k]+topvar of the
original unpermuted function. We also maintain a bitmap array, where bitmap [k] contains the bits that
encode the set {map [0], . . . ,map [k − 1]}.
〈Global variables 3 〉 +≡

int map [nnn ]; /∗ the current permutation ∗/
int bitmap [nnn ]; /∗ its initial dependency sets ∗/

16. 〈 Initialize everything 4 〉 +≡
for (j = k = 0; j < nnn ; k += 1� j, j++) o,map [j] = j, bitmap [j] = k;

17. The basic idea for jumping up is quite simple. We essentially make two copies of levels j thru k − 1,
one for the case when xk+1 = 0 and one for the case when xk+1 = 1. Those copies are moved to levels j + 1
thru k, and reduced to eliminate duplicates. Finally, every original node on level j is replaced by a node
that branches on xk+1. The lo branch of this new node is to the 0-copy of the old node, and the hi branch
is to the 1-copy.

Because of the remapping that takes place here, the dep fields in levels less than jj are no longer correct.
But we will do jump-ups in a controlled manner, so that those dep fields are never actually examined.

〈 Jump up from kk to jj 17 〉 ≡
o, var = map [kk ];
for (k = kk ; k > jj ; k−−) {
〈Make two copies of level k − 1 in the work area 18 〉;
reduce (k);
oo ,map [k] = map [k − 1];
oo , bitmap [k] = bitmap [k − 1] | (1� var );
}
〈Remake level jj 19 〉;

This code is used in section 21.
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18. Simple but cool list processing does the trick here.

〈Make two copies of level k − 1 in the work area 18 〉 ≡
for (o, j = 0; j < qq [k − 1]; j++) {
o, x = node [k − 1][j], l = lofield (x), h = hifield (x);
if (k ≡ kk ) {

oo , lo = lofield (node [k][l]), hi = lofield (node [k][h]);
ooo ,makework (j + j, lo , hi );
lo = hifield (node [k][l]), hi = hifield (node [k][h]);
ooo ,makework (j + j + 1, lo , hi );

} else {
oo , lo = clone [l + l], hi = clone [h+ h];
ooo ,makework (j + j, lo , hi );
oo , lo = clone [l + l + 1], hi = clone [h+ h+ 1];
ooo ,makework (j + j + 1, lo , hi );

}
}

This code is used in section 17.

19. As mentioned earlier, we needn’t worry about the integrity of the dep fields in levels less than jj .

〈Remake level jj 19 〉 ≡
for (o, j = 0; j < qq [jj ]; j++) {

oo , lo = clone [j + j], hi = clone [j + j + 1];
ooo ,makework (j, lo , hi );
}
reduce (jj );
o,map [jj ] = var ;
if (jj )

for (o, j = 0; j < qq [jj − 1]; j++) {
o, x = node [jj − 1][j];
ooo ,node [jj − 1][j] = pack (clone [lofield (x)], clone [hifield (x)], 0);

}
This code is used in section 17.
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20. The algorithm. OK, we’ve now got a beautiful infrastructure to work with. But the reader may
well wonder why we’ve been building it.

Perhaps I should have presented this program in a top-down way, starting with the statement of the
problem (which is to find the optimum ordering of variables) and then explaining how to reduce that problem
to list processing.

Well then, to start at the beginning, we can note that the main problem can be reduced to smaller problems
of the same kind. Namely, for any given subset X of the variables {x1, . . . , xn}, where X has k elements,
we can ask what ordering of those variables minimizes the profile of the first k levels, when those variables
are required to be tested first. (Here I’m talking about the real profile (b0, . . . , bn), not the quasi-profile
(q0, . . . , qn).)

If we’ve solved that problem for all subsets X of size k < n, we can solve it for all subsets of size k + 1,
as follows: Find a QDD in which the elements of X appear on the levels 0 through k − 1. For each x /∈ X,
count the number of elements on level k that depend on x; that is the value of bk that will appear in the
profile of any BDD in which the elements of X are tested first. Add that value to the minimum cost of X
on the previous levels, thereby getting a candidate for the minimum cost of X ∪ x. After trying all X and
all x, we’ll know the minimum costs for all k + 1-element subsets.

Notice that every QDD has information about n different subsets at once, namely the subsets of elements
on its initial k levels for 1 ≤ k ≤ n. Therefore, instead of working only on small subsets before large ones,
this program gathers data for all sizes simultaneously; we can determine the actual minimum costs later.

(A completely different strategy, which uses branch-and-bound methods to avoid subsets that are known
to be nonoptimum, will work better on many Boolean functions. I plan to implement that method too, for
comparison purposes. But the method considered here is advantageous for the hard functions that can make
branch-and-bound examine too many branches.)

For each variable xj+1 and each k-element set X with xj+1 /∈ X, we will set b[X][j] to the profile element bk
that would occur when xj+1 is at level k of a BDD and when the variables of X occupy levels 0 through k−1.
The subset X is encoded as a binary number,

∑
{2i−1 | xi ∈ X}.

〈Global variables 3 〉 +≡
int b[1� nnn ][nnn ]; /∗ transition data for BDDs ∗/

21. Now I must explain a beautiful pattern: There’s a simple way to produce all the QDDs we need, using
a relatively short sequence of jump-ups.

In essence, we want a sequence of permutations with the property that every k-element subset of {1, . . . , n}
appears as the first k elements of some permutation, and such that we can get from each permutation to its
successor by a single jump-up. There’s a nice way to do this with a sequence of length 2n−1: When n = 1,
the permutation is simply ‘1’. When n > 1, take the sequence for n − 1 and place n at the bottom; then
jump n up to the top; then use the sequence for n− 1 on the lower n− 1 elements. This idea turns out to
be equivalent to the following: The kth jump-up is νk + ρk → νk − 1, for 1 ≤ k < 2n−1. (In this formula
νk denotes the number of 1s in the binary representation of k, and ρk denotes the number of 0s at the right
end of that representation.) For example, when n = 4 the jumps are 1 → 0, 2 → 0, 2 → 1, 3 → 0, 2 → 1,
3→ 1, 3→ 2; the permutations are

1234, 2134, 3214, 3124, 4312, 4132, 4213, 4231.

The idea is that all k-combinations that don’t contain n appear in the first half; those that do contain n
appear in the second half.

〈Do the jump-up for the current cycle 21 〉 ≡
for (jj = 0, kk = 1, k = cycle ; (k & 1) ≡ 0; kk ++) k �= 1; /∗ compute ρk ∗/
for (k &= k − 1; k; jj ++, kk ++) k &= k − 1; /∗ compute νk ∗/
〈 Jump up from kk to jj 17 〉;
for (k = jj + 1; k ≤ kk ; k++) 〈Gather statistics from level k of the current QDD 23 〉;

This code is used in section 1.
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22. We also need to gather statistics from the initial QDD.

〈 Initialize everything 4 〉 +≡
〈Gather statistics from level 0 of the current QDD 26 〉;
for (k = 1; k < nnn ; k++) 〈Gather statistics from level k of the current QDD 23 〉;
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23. Every node in node [k] is marked with a dep field, telling which of the remaining variables it depends
on. More precisely, if the dep contains the bit 1� i, there’s a dependency on xj , where j = map [i].

There might be lots and lots of nodes, so I’d like to examine each dep field only once. (In fact, I could
have gathered the stats while doing reduce during the jump-up; so I won’t charge any mems for fetching the
node here.) There are three bytes in the dp field, so I’ll count how many nodes have each possible pattern
in each of those bytes. Usually only one or two of the bytes can be nonzero; so the routine breaks into six
rather tedious cases.

〈Gather statistics from level k of the current QDD 23 〉 ≡
{

switch (((nnn − 2)� 3) ∗ 4 + ((k − 1)� 3)) {
case 2 ∗ 4 + 0: for (j = 0; j < 256; j++) ooo , count1 [j] = count2 [j] = count3 [j] = 0;

for (o, j = 0; j < qq [k]; j++) {
x = node [k][j]; /∗ mems not charged, see above ∗/
oo , count1 [x� 56]++;
oo , count2 [(x� 48) & #ff]++;
oo , count3 [(x� 40) & #ff]++;

}
; break;

case 2 ∗ 4 + 1: for (j = 0; j < 256; j++) oo , count1 [j] = count2 [j] = 0;
for (o, j = 0; j < qq [k]; j++) {
x = node [k][j]; /∗ mems not charged, see above ∗/
oo , count1 [x� 56]++;
oo , count2 [(x� 48) & #ff]++;

}
; break;

case 2 ∗ 4 + 2: for (j = 0; j < 256; j++) o, count1 [j] = 0;
for (o, j = 0; j < qq [k]; j++) {
x = node [k][j]; /∗ mems not charged, see above ∗/
oo , count1 [x� 56]++;

}
; break;

case 1 ∗ 4 + 0: for (j = 0; j < 256; j++) oo , count2 [j] = count3 [j] = 0;
for (o, j = 0; j < qq [k]; j++) {
x = node [k][j]; /∗ mems not charged, see above ∗/
oo , count2 [(x� 48) & #ff]++;
oo , count3 [(x� 40) & #ff]++;

}
; break;

case 1 ∗ 4 + 1: for (j = 0; j < 256; j++) o, count2 [j] = 0;
for (o, j = 0; j < qq [k]; j++) {
x = node [k][j]; /∗ mems not charged, see above ∗/
oo , count2 [(x� 48) & #ff]++;

}
; break;

case 0 ∗ 4 + 0: for (j = 0; j < 256; j++) o, count3 [j] = 0;
for (o, j = 0; j < qq [k]; j++) {
x = node [k][j]; /∗ mems not charged, see above ∗/
oo , count3 [(x� 40) & #ff]++;

}
; break;

}
for (j = k; j < nnn ; j++) 〈Gather stats for variable j at level k 25 〉;
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}
This code is used in sections 21 and 22.

24. 〈Global variables 3 〉 +≡
int count1 [256], count2 [256], count3 [256]; /∗ bit pattern counts ∗/

25. 〈Gather stats for variable j at level k 25 〉 ≡
{
l = 1� ((j − 1) & #7), i = 0;
if (j < 9) {

for (i = 0, h = l; h < 256; h = (h+ 1) | l) o, i += count3 [h];
} else if (j < 17) {

for (i = 0, h = l; h < 256; h = (h+ 1) | l) o, i += count2 [h];
} else

for (i = 0, h = l; h < 256; h = (h+ 1) | l) o, i += count1 [h];
oooo , b[bitmap [k]][map [j]] = i;
}

This code is used in section 23.

26. At this point we have the initial QDD, with map [j] = j for all j.

〈Gather statistics from level 0 of the current QDD 26 〉 ≡
for (j = 0; j < qq [0]; j++) {
o, i = depfield (node [0][j]) + extrabit (0, j);
for (k = 0; k < nnn ; k++) o, b[0][k] += (i� k) & 1;
}

This code is used in section 22.
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27. At last comes the final reckoning: We can compute the minimum cost that can be achieved when
subset X occurs at the top of the BDD, for 1 ≤ X < 2n.

While we’re at it, we might as well compute the maximum cost too.

〈Figure out an optimum order 27 〉 ≡
for (k = 1; k < 1� nnn ; k++) { /∗ k represents a subset X ∗/
h = 1� nnn ; /∗ infinite cost ∗/
for (j = 0, i = 1; j < nnn ; j++, i�= 1)

if (k & i) {
oo , l = cost [k ⊕ i] + b[k ⊕ i][j]; /∗ the cost if xj+1 comes last ∗/
if (l < h) h = l, lo = j;

}
oo , cost [k] = h, routing [k] = lo ;
}
printf ("Optimum ordering (cost %d+externals) can be achieved thus:\n", cost [(1� nnn )− 1]);
for (j = nnn − 1, k = (1� nnn )− 1; k; j−−, k ⊕= 1� routing [k])

printf (" level %d, x%d (%d)\n", j, routing [k] + topvar , b[k ⊕ (1� routing [k])][routing [k]]);
for (k = 1; k < 1� nnn ; k++) { /∗ k represents a subset X ∗/
h = 0;
for (j = 0, i = 1; j < nnn ; j++, i�= 1)

if (k & i) {
l = cost [k ⊕ i] + b[k ⊕ i][j]; /∗ the cost if xj+1 comes last ∗/
if (l > h) h = l, lo = j;
}

cost [k] = h, routing [k] = lo ;
}
printf ("Pessimum ordering (cost %d+externals) can be achieved thus:\n", cost [(1� nnn )− 1]);
for (j = nnn − 1, k = (1� nnn )− 1; k; j−−, k ⊕= 1� routing [k])

printf (" level %d, x%d (%d)\n", j, routing [k] + topvar , b[k ⊕ (1� routing [k])][routing [k]]);

This code is used in section 1.

28. 〈Global variables 3 〉 +≡
int cost [1� nnn ]; /∗ the optimum node count for each bitmap ∗/
char routing [1� nnn ]; /∗ the variable to put last in the optimum order ∗/
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29. Index.

b: 20.
bitmap : 15, 16, 17, 25.
botvar : 1, 4, 6, 7.
clone : 11, 12, 13, 14, 18, 19.
cost : 27, 28.
count1 : 23, 24, 25.
count2 : 23, 24, 25.
count3 : 23, 24, 25.
cycle : 1, 21.
dep : 3, 5, 6, 11, 12, 15, 17, 19, 23.
depfield : 5, 7, 12, 26.
dp : 5, 23.
exit : 4, 12.
extrabit : 5, 7, 26.
fflush : 1.
fprintf : 4, 12.
h: 1.
head : 8, 9, 10, 11, 12, 14.
hi : 1, 3, 5, 6, 8, 10, 11, 12, 14, 17, 18, 19.
hifield : 5, 7, 14, 18, 19.
i: 1.
interval : 1.
j: 1, 7.
jj : 1, 17, 19, 21.
k: 1, 7, 10, 11.
kk : 1, 4, 17, 18, 21.
l: 1, 8.
lo : 1, 3, 5, 6, 8, 10, 11, 12, 14, 17, 18, 19, 27.
lofield : 5, 7, 14, 18, 19.
main : 1.
makework : 14, 18, 19.
malloc : 4.
map : 7, 15, 16, 17, 19, 23, 25, 26.
mems : 1.
mm : 1, 6.
nextp : 11.
nn : 1, 4, 6.
nnn : 1, 3, 4, 14, 15, 16, 20, 22, 23, 26, 27, 28.
node : 3, 4, 5, 6, 7, 8, 11, 12, 14, 18, 19, 23, 26.
o: 1.
octa: 1, 2, 3, 4, 5.
oo : 1, 12, 17, 18, 19, 23, 27.
ooo : 1, 14, 18, 19, 23.
oooo : 1, 25.
outs : 1, 4.
p: 11.
pack : 5, 6, 12, 14, 19.
pair: 8, 9.
print level : 7.
print qbdd : 7.
print work : 10.

printf : 1, 7, 10, 27.
q: 11.
qq : 3, 6, 7, 8, 10, 11, 14, 18, 19, 23, 26.
r: 8.
reduce : 11, 14, 17, 19, 23.
routing : 27, 28.
stderr : 4, 12.
stdout : 1.
topvar : 1, 4, 6, 7, 27.
var : 1, 17, 19.
work : 8, 9, 10, 11, 14.
worksize : 1, 4, 9, 12, 13.
x: 1.
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〈Compute the dep fields of the initial QDD 14 〉 Used in section 6.

〈Create a new entry in node [k] 12 〉 Used in section 11.

〈Do the jump-up for the current cycle 21 〉 Used in section 1.

〈Figure out an optimum order 27 〉 Used in section 1.

〈Gather statistics from level 0 of the current QDD 26 〉 Used in section 22.

〈Gather statistics from level k of the current QDD 23 〉 Used in sections 21 and 22.

〈Gather stats for variable j at level k 25 〉 Used in section 23.

〈Global variables 3, 9, 13, 15, 20, 24, 28 〉 Used in section 1.

〈 Initialize everything 4, 6, 16, 22 〉 Used in section 1.

〈 Jump up from kk to jj 17 〉 Used in section 21.

〈Make two copies of level k − 1 in the work area 18 〉 Used in section 17.

〈Remake level jj 19 〉 Used in section 17.

〈Subroutines 7, 10, 11 〉 Used in section 1.

〈Type definitions 2, 8 〉 Used in section 1.
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