
§1 BAXTER-TO-FLOORPLAN INTRO 1

1. Intro. This (hastily written) program computes a floorplan that corresponds to a given Baxter
permutation. See exercises MPR–135 and 7.2.2.1–372 in Volume 4B of The Art of Computer Programming
for an introduction to the relevant concepts and terminology.

The input permutation is supposed to satisfy special conditions. When k is given, let’s say that a number s
less than k is “small” and a number l greater than k + 1 is “large”. Then

if k occurs after k + 1, we don’t have two consecutive elements sl between them; (∗)
if k + 1 occurs after k, we don’t have two consecutive elements ls between them. (∗∗)

In other words, if k + 1 occurs before k in P , any small elements between them must follow any large
ones between them (∗); otherwise any small elements between them must precede any large ones between
them (∗∗). A Baxter permutation is a permutation that satisfies (∗) and (∗∗).

Let’s call the given Baxter permutation P = p1p2 . . . pn. We’ll construct a floorplan whose rooms are
the numbers {1, 2, . . . , n}. The diagonal order of those rooms will be simply 12 . . . n; and their antidiagonal
order will be p1p2 . . . pn.

Floorplans have an interesting “four-way” order, under which any two distinct rooms j and k are in exactly
one of four relationships to each other: Either j is left of k (written j ⇒ k), or j is above k (written j ⇓ k),
or j is right of k (written j ⇐ k), or j is below k (written j ⇑ k <). The diagonal order is the linear order
“above or left”; the antidiagonal order is the linear order “below or left”.

Therefore we must have the following (nice) situation:

j ⇒ k ⇐⇒ j < k and j precedes k in P ;

j ⇓ k ⇐⇒ j < k and j follows k in P ;

j ⇐ k ⇐⇒ j > k and j follows k in P ;

j ⇑ k ⇐⇒ j > k and j precedes k in P .

Furthermore, j precedes k in P if and only qj < qk, where q1q2 . . . qn is P−, the inverse of permutation P .
Any permutation P defines a four-way order, according to those rules. But only a Baxter permutation

defines the four-way order derivable from a floorplan. For example, the “pi-mutation” 3142 defines the
four-way order with 1 left of 2, 1 above 3, 1 left of 4, 2 above 3, 2 above 4, 3 left of 4; that can happen in
a floorplan only if there’s at least one more room. (For instance, we could put “room 2.5” to the right of 1,
below 2, above 3, and left of 4. The Baxter permutation for that floorplan would be 3 1 2.5 4 2.)

The rooms of a floorplan are delimited by horizontal and vertical line segments called “bounds,” which
don’t intersect each other. The number of horizontal bounds in the floorplan we shall output is two more
than the number of descents in P (that is, places where pk > pk+1); and the number of vertical bounds is
two more than the number of ascents (where pk < pk+1).

By the way, changing P to PR corresponds to transposing the floorplan about its main diagonal. Changing
P to PC corresponds to transposing the floorplan about its other diagonal. Changing P to P− corresponds to
a top-bottom reflection of the floorplan. Thus the eight Baxter permutations obtained from P by reflection,
complementation, and/or inversion correspond to the eight standard “isometric” transformations that can
be made to floorplans.

2 INTRO BAXTER-TO-FLOORPLAN §2

2. The input permutation appears in stdin , as the sequence of numbers p1 p2 . . . pn (separated by
whitespace). The output floorplan will be a specification that conforms to the input conventions of the
companion program FLOORPLAN-TO-TWINTREE, with the rooms in ascending order.

#define maxn 1024
#define panic(m, k)

{ fprintf (stderr , "%s! (%d)\n",m, k); exit (−666); }
#define pan (m)

{ fprintf (stderr , "%s!\n",m); exit (−66); }
#include <stdio.h>

#include <stdlib.h>

〈Global variables 4 〉;
void main (void)
{

register int i, j, k, l,m, n;

〈 Input the permutation 3 〉;
〈Check for Baxterhood 5 〉;
〈Compute the floorplan 6 〉;
〈Output the floorplan 10 〉;
}

3. 〈 Input the permutation 3 〉 ≡
for (m = n = 0; fscanf (stdin , "%d",&inx) ≡ 1; n++) {

if (inx ≤ 0 ∨ inx > maxn) panic("element out of range", inx);
if (inx > m) m = inx ;
p[n + 1] = inx ;
}
if (m > n) panic("too few elements",m− n);
if (m < n) panic("too many elements", n−m);
for (k = 1; k ≤ n; k++) q[p[k]] = k; /∗ compute the inverse ∗/
for (k = 1; k ≤ n; k++)

if (q[k] ≡ 0) panic("missing element", k);

This code is used in section 2.

4. 〈Global variables 4 〉 ≡
int inx ; /∗ data input with fscanf ∗/
int p[maxn + 1], q[maxn + 1];

See also section 9.

This code is used in section 2.

§5 BAXTER-TO-FLOORPLAN INTRO 3

5. The following check might take quadratic time, because I tried to make it as simple as possible.
If you want to test the Baxter property in linear time, there’s a tricky way to do it: (1) Feed the permu-

tation P to OFFLINE-TREE-INSERTION. (2) Also feed its reflection, PR, to OFFLINE-TREE-INSERTION.
(3) Edit those two outputs to make a twintree and feed that twintree to TWINTREE-TO-BAXTER. (4) Com-
pare that result to P . If P is Baxter, you’ll get it back again. [An almost equivalent method was in
fact published by Johnson M. Hart, International Journal of Computer and Information Sciences 9 (1980),
307–321, and it’s instructive to compare the two approaches.]

[If you omit this check, you’ll get a floorplan whose anti-diagonal permutation is P . But if P isn’t Baxter,
the diagonal permutation of that floorplan won’t be 1 2 . . . n.]

〈Check for Baxterhood 5 〉 ≡
for (k = 2; k < n− 1; k++) {

if (q[k] < q[k + 1]) {
for (l = q[k] + 1; l < q[k + 1]− 1; l++)

if (p[l] > k ∧ p[l + 1] < k) panic("not Baxter **", k);
} else {

for (l = q[k + 1] + 1; l < q[k]− 1; l++)
if (p[l] < k ∧ p[l + 1] > k) panic("not Baxter *", k);

}
}

This code is used in section 2.

4 THE KEY ALGORITHM BAXTER-TO-FLOORPLAN §6

6. The key algorithm. We get to use a particularly nice method here, thanks to the insights of Eyal
Ackerman, Gill Barequet, and Ron Y. Pinter [Discrete Applied Mathematics 154 (2006), 1674–1684]. The
four bounds lft , bot , rt , and top of each room can be filled in systemically as we march through P , taking
linear time because we spend only a small bounded number of steps between the times when we make a
contribution to the final plan.

The algorithm maintains two stacks, RLmin and RLmax , which record the current right-to-left minima
and maxima in the permutation read so far. The rooms on RLmin are precisely those for which lft and bot
have been filled, but not yet top . The rooms on RLmax are precisely those for which lft and bot have been
filled, but not yet rt .

Values in the bot and top arrays are indices of horizontal bounds; values in the lft and rt arrays are indices
of vertical bounds.

At the end, we needn’t fill in the missing values of rt and top , because they are zero (and that’s what we
want).

This algorithm is almost too good to be true! It’s valid, however, because it can be seen to create the
antidiagonal floorplan, step by step.

〈Compute the floorplan 6 〉 ≡
minptr = maxptr = 1,RLmin [0] = RLmax [0] = j = p[1], lft [j] = bot [j] = n;
for (k = 1; k < n; k++) {
i = p[k], j = p[k + 1]; /∗ i is at the top of both RLmin and RLmax ∗/
if (i < j) 〈Create a new vertical bound 7 〉
else 〈Create a new horizontal bound 8 〉;
}

This code is used in section 2.

7. 〈Create a new vertical bound 7 〉 ≡
{
lft [j] = rt [i] = n− k,maxptr −−,RLmin [minptr ++] = j;
while (maxptr ∧ RLmax [maxptr − 1] < j) rt [RLmax [−−maxptr]] = n− k;
bot [j] = (maxptr ? top [RLmax [maxptr − 1]] : n);
RLmax [maxptr ++] = j;
}

This code is used in section 6.

8. 〈Create a new horizontal bound 8 〉 ≡
{
bot [j] = top [i] = n− k,minptr −−,RLmax [maxptr ++] = j;
while (minptr ∧ RLmin [minptr − 1] > j) top [RLmin [−−minptr]] = n− k;
lft [j] = (minptr ? rt [RLmin [minptr − 1]] : n);
RLmin [minptr ++] = j;
}

This code is used in section 6.

9. 〈Global variables 4 〉 +≡
int lft [maxn + 1], bot [maxn + 1], rt [maxn + 1], top [maxn + 1];
int RLmin [maxn],RLmax [maxn]; /∗ the stacks ∗/
int minptr ,maxptr ; /∗ the current stack sizes ∗/

10. 〈Output the floorplan 10 〉 ≡
for (k = 1; k ≤ n; k++) printf ("%d y%d y%d x%d x%d\n", k, n− top [k], n− bot [k], n− lft [k], n− rt [k]);

This code is used in section 2.

§11 BAXTER-TO-FLOORPLAN INDEX 5

11. Index.

bot : 6, 7, 8, 9, 10.
exit : 2.
fprintf : 2.
fscanf : 3, 4.
i: 2.
inx : 3, 4.
j: 2.
k: 2.
l: 2.
lft : 6, 7, 8, 9, 10.
m: 2.
main : 2.
maxn : 2, 3, 4, 9.
maxptr : 6, 7, 8, 9.
minptr : 6, 7, 8, 9.
n: 2.
p: 4.
pan : 2.
panic : 2, 3, 5.
printf : 10.
q: 4.
RLmax : 6, 7, 8, 9.
RLmin : 6, 7, 8, 9.
rt : 6, 7, 8, 9, 10.
stderr : 2.
stdin : 2, 3.
top : 6, 7, 8, 9, 10.

6 NAMES OF THE SECTIONS BAXTER-TO-FLOORPLAN

〈Check for Baxterhood 5 〉 Used in section 2.

〈Compute the floorplan 6 〉 Used in section 2.

〈Create a new horizontal bound 8 〉 Used in section 6.

〈Create a new vertical bound 7 〉 Used in section 6.

〈Global variables 4, 9 〉 Used in section 2.

〈 Input the permutation 3 〉 Used in section 2.

〈Output the floorplan 10 〉 Used in section 2.

BAXTER-TO-FLOORPLAN

Section Page
Intro . 1 1
The key algorithm . 6 4
Index . 11 5

	Intro
	The key algorithm
	Index
	Names of the sections
	Check for Baxterhood
	Compute the floorplan
	Create a new horizontal bound
	Create a new vertical bound
	Global variables
	Input the permutation
	Output the floorplan

