
§1 BACK-SKELETON INTRO 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Intro. This program is designed to compose multiplication-skeleton puzzles of a type pioneered by
Junya Take. For example, consider his puzzle for the letter O, in Journal of Recreational Mathematics 38
(2014), 132:

.......

×

........

OO.....

..O..O..

...O..O.

...O..O

....OO......

Each occurrence of ‘O’ should be replaced by some digit d, and each ‘.’ should be replaced by a digit 6= d.
(And no zero should be in a most significant position.) The solution is unique:

2208068

× 357029

19872612

4416136

15456476

11040340

6624204

788344309972

But the purpose of this program is not to solve such a puzzle! The purpose of this program is to invent such
a puzzle, namely to find integers x and y whose partial products and final product have digits that match a
given binary pattern.

The pattern is given in stdin as a set of lines, with asterisks marking the position of the special digit. For
example, the ‘O’ shape in the puzzle above would be specified thus:

.**.

..

..

..

.**.

https://cs.stanford.edu/~knuth/programs.html

2 INTRO BACK-SKELETON §2

2. The examples above show that zeros in the multiplier will “offset” the shape in different ways. We try
all possible offsets, for a given number m of nonzero multiplier digits.

A second parameter, z, specifies the maximum number of zeros in the multiplier. Both m and z are
specified on the command line.

#define maxdigs 22 /∗ size of the longest numbers considered, plus 2 ∗/
#define maxdim 8 /∗ maximum size of pattern ∗/
#define bufsize maxdim + 5
#define maxm 8 /∗ m must be less than this ∗/
#define o mems ++

#define oo mems += 2

#include <stdio.h>

#include <stdlib.h>

〈Typedefs 6 〉;
int m; /∗ the number of nonzero digits in the multiplier ∗/
int z; /∗ the maximum number of zero digits in the multiplier ∗/
int vbose ; /∗ level of verbosity ∗/
char buf [bufsize]; /∗ buffer used when inputting the shape ∗/
char rawpat [maxdim][maxdim]; /∗ pixels of the raw pattern ∗/
char last [maxdim]; /∗ positions of the rightmost asterisks ∗/
int count ; /∗ this many solutions found ∗/
unsigned long long nodes ; /∗ size of the backtrack trees, times 10 ∗/
int unresolved ; /∗ this many cases left unresolved ∗/
unsigned long long mems ; /∗ memory accesses ∗/
〈Global variables 11 〉;
〈Subroutines 7 〉;
main (int argc , char ∗argv [])
{

register int d, i, ii , imax , j, jj , k, kk , l, lc , lj , n, t, tt , x, pos ,maxl , printed ;

〈Process the command line 3 〉;
〈 Input the pattern 4 〉;
〈Build the table of constants 10 〉;
〈Establish the minimum offsets 13 〉;
while (1) {
〈Create detailed specifications from the pattern 18 〉;
for (d = 0; d < 10; d++) {

if (vbose) fprintf (stderr , " *=%d:\n", d);
〈Find all solutions for the current offsets and special digit d 20 〉;

}
〈Advance to the next offset, or break if it needs too many zeros 14 〉;

}
fprintf (stderr , "Altogether %d solutions, %lld nodes, %lld mems.\n", count ,nodes/10,mems);
if (unresolved) fprintf (stderr , "... %d cases were unresolved!\n", unresolved);
}

§3 BACK-SKELETON INTRO 3

3. 〈Process the command line 3 〉 ≡
if (argc < 3 ∨ sscanf (argv [1], "%d",&m) 6= 1 ∨ sscanf (argv [2], "%d",&z) 6= 1) {

fprintf (stderr , "Usage: %s m z [verbose] [extraverbose] < foo.dots\n", argv [0]);
exit (−1);
}
if (m < 2 ∨m ≥ maxm) {

fprintf (stderr , "m should be between 2 and %d, not %d!\n",maxm − 1,m);
exit (−2);
}
if (m + z > maxdigs − 2) {

fprintf (stderr , "m+z should be at most %d, not %d!\n",maxdigs − 2,m + z);
exit (−3);
}
vbose = argc − 3;

This code is used in section 2.

4. 〈 Input the pattern 4 〉 ≡
for (n = k = 0; ; n++) {

if (¬fgets (buf , bufsize , stdin)) break;
if (n ≥ maxdim) {

fprintf (stderr , "Recompile me: I allow at most %d lines of input!\n",maxdim);
exit (−3);

}
〈 Input row n of the shape 5 〉;
}
fprintf (stderr , "OK, I’ve got a pattern with %d rows and %d asterisks.\n", n, k);
if (m < n− 1) {

fprintf (stderr , "So there must be at least %d multiplier digits, not %d!\n", n− 1,m);
exit (−2);
}

This code is used in section 2.

5. 〈 Input row n of the shape 5 〉 ≡
for (j = 0; buf [j] ∧ buf [j] 6= ’\n’; j++) {

if (buf [j] ≡ ’*’) {
if (j ≥ maxdim) {

fprintf (stderr , "Recompile me: I allow at most %d columns per row!\n",maxdim);
exit (−5);

}
oo , rawpat [n][j] = 1, k++, last [n] = j + 1;

}
}

This code is used in section 4.

4 BIGNUMS BACK-SKELETON §6

6. Bignums. We implement elementary decimal addition on nonnegative integers. Each integer is
represented by an array of bytes, in which the first byte specifies the number of significant digits, and
the remaining bytes specify the digits themselves (right to left).

〈Typedefs 6 〉 ≡
typedef char bignum[maxdigs];

This code is used in section 2.

7. For example, it’s easy to test equality of two such bignums, or to copy one to another.

〈Subroutines 7 〉 ≡
int isequal (bignum a,bignum b)
{

register int la = a[0], i;

if (oo , la 6= b[0]) return 0;
for (i = 1; i ≤ la ; i++)

if (oo , a[i] 6= b[i]) return 0;
return 1;
}
void copy (bignum a,bignum b)
{

register int lb = b[0], i;

for (o, i = 0; i ≤ lb ; i++) oo , a[i] = b[i];
}

See also sections 8 and 9.

This code is used in section 2.

8. Here’s the basic routine. It’s OK to have a = b or b = c. (But beware of a = c.)

〈Subroutines 7 〉 +≡
void add (bignum a,bignum b,bignum c, int p)
{ /∗ set a = b + 10pc ∗/

register int lb = b[0], lc = c[0], i, k, d;

if (oo , lc ≡ 0) {
copy (a, b);
return;

}
for (i = 1; i ≤ p ∧ i ≤ lb ; i++) oo , a[i] = b[i];
for (k = 0; i ≤ lb ∨ i ≤ lc + p ∨ k; i++) {
d = k + (i ≤ lb ? o, b[i] : 0) + (i ≤ lc + p ∧ i > p ? o, c[i− p] : 0);
if (d ≥ 10) k = 1, d −= 10; else k = 0;
o, a[i] = d;

}
o, a[0] = i− 1;
if (i ≥ maxdigs) {

fprintf (stderr , "Integer overflow, more than %d digits!\n",maxdigs − 1);
exit (−666);

}
if (a[a[0]] ≡ 0) fprintf (stderr , "why?\n");
}

§9 BACK-SKELETON BIGNUMS 5

9. 〈Subroutines 7 〉 +≡
void print bignum (bignum a)
{

register int i, la = a[0];

if (¬la) fprintf (stderr , "0");
else

for (i = la ; i; i−−) fprintf (stderr , "%d", a[i]);
}

10. We might as well have a primitive multiplication table.

〈Build the table of constants 10 〉 ≡
o, cnst [0][0] = 0;
for (k = 1; k < 10; k++) oo , cnst [k][0] = 1, cnst [k][1] = k;
for (; k ≤ 81; k++) oo , o, cnst [k][0] = 2, cnst [k][2] = k/10, cnst [k][1] = k % 10;

This code is used in section 2.

11. 〈Global variables 11 〉 ≡
bignum cnst [82];

See also sections 17, 21, and 40.

This code is used in section 2.

6 OFFSETS AND CONSTRAINTS BACK-SKELETON §12

12. Offsets and constraints. The kth partial product, for 0 ≤ k ≤ m, will be shifted left by off [k].
(When k = m this is the entire product, the sum of the shifted partials.) It inherits the constraints of row
k − (m + 1− n) of the n-row pattern in rawpat .

The data in rawpat appears “left to right,” but the constraints on digits are “right to left.” I mean,
column 0 in rawpat refers to the most significant digit that is constrained.

The constraints on a partial product (. . . p2p1p0)10 say that pi = d for certain i, while pi 6= d for the
others. We represent them as a bignum, with 1 in the “d” positions and 0 elsewhere.

For example, the opening problem in the introduction has m = 5, z = 1, offsets (0, 1, 3, 4, 5), and
constraints (0, 1100000, 100100, 10010, 1001, 11000000).

We do not constrain the length of the multiplicand or the partial products; we simply require that any
digits to the left of explicitly constrained positions must differ from d. This produces multiple potential
puzzles, some of which won’t have unique solutions.

13. 〈Establish the minimum offsets 13 〉 ≡
for (i = 0; i < m; i++) o, off [i] = i;

This code is used in section 2.

14. The offset table runs through all combinations s0 < s1 < · · · < sm−1 with s0 = 0 and sm−1 < m + z,
in lexicographic order.

〈Advance to the next offset, or break if it needs too many zeros 14 〉 ≡
for (i = m− 1; i > 0; i−−)

if (o, off [i] < i + z) break;
if (i ≡ 0) break;
o, off [i]++;
for (i++; i < m; i++) oo , off [i] = off [i− 1] + 1;

This code is used in section 2.

15. We must choose the position pos where column 0 of the raw pattern will appear in the final product.
Then column j of the kth partial product will be in position pos − off [k]− j.

In the rightmost (smallest) setting of pos , at least one of the constraints will end with 1. A harder puzzle is
obtained if pos exceeds this minimum. This program sets pos to the minimum possible, plus a compile-time
parameter called slack . Junja Take has published several examples with slack = 1, and I want to explore
such cases; however, the default version of this program sets slack = 0.

#define slack 0 /∗ amount to shift the pattern left in harder problems ∗/
〈Choose pos 15 〉 ≡

for (i = pos = 0; i ≤ m; i++)
if (oo , off [m + 1− n + i] + last [i] > pos) pos = off [m + 1− n + i] + last [i];

pos += slack − 1;

This code is used in section 18.

§16 BACK-SKELETON OFFSETS AND CONSTRAINTS 7

16. Sometimes two constraints are identical, and we’ll want to know that fact. So we set up a table called
id , where id [j] = id [k] if and only if cj = ck.

〈Set up the constraints 16 〉 ≡
for (k = ids = 0; k ≤ m; k++) {
o, i = k − (m + 1− n), constr [k][0] = 0;
if (i ≥ 0) {

for (oo , j = pos − off [k]− last [i] + 1; j ≥ 0; j−−) o, constr [k][j] = 0;
for (o, j = last [i]− 1; j ≥ 0; j−−) {

if (o, rawpat [i][j]) oo , o, constr [k][pos − off [k]− j + 1] = 1, constr [k][0] = pos − off [k]− j + 1;
else oo , constr [k][pos − off [k]− j + 1] = 0;

}
}
for (j = k − 1; j ≥ 0; j−−)

if (oo , isequal (constr [j], constr [k])) break;
if (j ≥ 0) oo , id [k] = id [j]; else o, id [k] = ids ++;

}
This code is used in section 18.

17. 〈Global variables 11 〉 +≡
char off [maxm]; /∗ blanks at right of partial products ∗/
bignum constr [maxm]; /∗ the constraint patterns, decimalized ∗/
char id [maxm]; /∗ equivalence class number for a given constraint ∗/
char ids ; /∗ how many classes are there? ∗/

18. 〈Create detailed specifications from the pattern 18 〉 ≡
{
〈Choose pos 15 〉;
〈Set up the constraints 16 〉;
if (vbose) {

fprintf (stderr , "Constraints for offsets");
for (k = 0; k ≤ m; k++) fprintf (stderr , " %d", off [k]);
fprintf (stderr , ":");
for (k = 0; k ≤ m; k++) {

fprintf (stderr , " ");
print bignum (constr [k]);

}
fprintf (stderr , ".\n");

}
}

This code is used in section 2.

8 BACKTRACKING BACK-SKELETON §19

19. Backtracking. Let the multiplicand be (al . . . a2a1a0)10. We proceed by trying all possibilities 6= d
for a0, then all possibilities consistent with a0 for a1, and so on. The upper limit on l is maxdigs − 2− sm−1,
because of our limit on the size of bignums; but I doubt if we’ll often get really big solutions.

(If slack > 0, we forbid a0 = 0, because those solutions would have been obtained with lesser slack .)
The basic ideas will become clear if we look more closely at the constraints and offsets of our running

example, supposing for convenience that d = 1. The multiplier is (b5b4b30b1b0)10, because of the given offsets.
The partial products (p0, p1, p2, p3, p4, p5) apply respectively to b0, b1, b3, b4, b5, and the grand total. They
are supposed to satisfy the constraints (0, 1100000, 100100, 10010, 1001, 11000000), as stated earlier.

Suppose a0 = 3. Then we must have b5 = 7; that’s the only way to have p4 end with 1.
And b5 = 7 implies that b0, b1, b3, b4 can’t be 7: All five constraints are different in this problem, hence

no two b’s can be equal.
Moving on, if a0 = 3 we cannot have a1 = 3. The reason is that the candidates for multiplier digits are 2

thru 9, and the values of 33k mod 100 for 2 ≤ k ≤ 9 are respectively (66, 99, 32, 65, 98, 31, 64, 97); none of
those is suitable for the constraint 10010.

If a0 = 3 and a1 = 4, we must have b5 = 7 and b4 = 5. Furthermore, a2 = 4 will mess up the constraint
1001, because 443× 7 = 3101. The values a2 ∈ {3, 8, 9} are also impossible, because they yield no multiplier
digits for the constraint 100100. Thus a2 must be 0, 2, or 6.

Proceeding in this way, we’re able to rule out most of the potential trailing digits of the multiplicand
before exploring very far. When we’re choosing suitable values of al, we check the least significant l digits
of each constraint ck for 0 ≤ k < m; at least one of the eight possible nonzero multiplier digits 6= d must
satisfy it. Furthermore, if exactly one multiplier digit is valid, we’ve forced one of the multiplier digits bi to
a particular value.

When sufficiently many multiplier digits are forced, we can begin to enforce the final constraint cm (i.e.,
the constraint on the total product). This program does that only if the current number of ways to satisfy
the other m constraints individually is less than a certain threshold. Suppose, for example, that m = 5
and the current “status” is 33121, meaning that constraints (c0, c1, c2, c3, c4) can be individually satisfied in
(3, 3, 1, 2, 1) ways. Then we test cm only if the threshold is 18 or more.

A constraint that is satisfied to infinite precision, not just with respect to the l trailing digits, is said to
be totally satisfied. Whenever all constraints are totally satisfied, we have a solution.

After a solution is found, we can sometimes extend it by prepending nonzero digits to the multiplicand.
For example, we know that a = 2208068, b = 357029, d = 4 leads to a valid puzzle for the O pattern; so does
a = 302208068, b = 357029, d = 4. The extra prefix ‘30’ doesn’t introduce any unwanted 4’s into the partial
products or the total product.

§20 BACK-SKELETON BACKTRACKING 9

20. Such considerations lead us to a standard backtracking scheme that takes the following overall form,
if we follow the recipe of Algorithm 7.2.2B:

〈Find all solutions for the current offsets and special digit d 20 〉 ≡
b1 : o,maxl = maxdigs − 2− off [m− 1];
l = 0;
〈 Initialize the data structures 22 〉;

b2 : nodes += 10;
if (vbose > 1) {

fprintf (stderr , "Level %d,", l);
〈Print the csize status information 23 〉;
}
if (l ≥ maxl) 〈Check for unusual solutions and goto b5 34 〉;
〈 If all constraints are totally satisfied, print a solution 30 〉;
x = 0;

b3 : if (slack ∧ l ≡ 0 ∧ x ≡ 0) goto b4 ;
if (x ≡ d) goto b4 ;
if (vbose > 2) fprintf (stderr , " testing %d\n", x);
〈 If some constraint can’t be satisfied when al = x, goto b4 24 〉;
o, a[l] = x;
if (vbose > 1) fprintf (stderr , "Trying a[%d]=%d\n", l, x);
〈Update the data structures 28 〉;
l = l + 1; goto b2 ;

b4 : if (x ≡ 9) goto b5 ;
x = x + 1; goto b3 ;

b5 : l = l − 1;
if (l ≥ 0) {

if (vbose > 1) fprintf (stderr , "Back to level %d\n", l);
o, x = a[l];
〈Downdate the data structures 29 〉;
goto b4 ;
}

This code is used in section 2.

21. What data structures will support this computation nicely? First, there’s an array of bignums: ja [l][j]
contains j times the partial multiplier (al . . . a0)10 at a given level. Clearly ja [l][j] is ja [l−1][j] plus j ·10lal.
These entries are computed only for values of j that are necessary; stamp [l][j] contains the node number at
which they were most recently computed (actually it contains nodes + x).

We also maintain arrays called choice [k], which list the all nonzero multiplier digits that haven’t been
ruled out for constraint k. Their sizes at level l are csize [l][k]. Actually choice [k] is a permutation
of {0, 1, . . . , 9}, and where [k] is the inverse permutation; the viable elements at level l are those j with
where [k][j] < csize [l][k]. This setup permits easy deletion from the lists while backtracking.

〈Global variables 11 〉 +≡
bignum ja [maxdigs][10]; /∗ multiples of the multiplicand ∗/
unsigned long long stamp [maxdigs][10]; /∗ when they were computed ∗/
char choice [maxm][10],where [maxm][10]; /∗ available multipliers, ranked ∗/
char csize [maxdigs][maxm]; /∗ current degree of viability ∗/
char stack [maxm]; /∗ constraints that have become uniquely satisfied ∗/
char stackptr ; /∗ current size of stack ∗/
char a[maxdigs]; /∗ the multiplicand ∗/
bignum total ; /∗ grand total when checking for a solution ∗/

10 BACKTRACKING BACK-SKELETON §22

22. 〈 Initialize the data structures 22 〉 ≡
if (d ≡ 0 ∧ off [m− 1] ≥ m) goto b5 ; /∗ forbid zeros in multiplier if d = 0 ∗/
for (i = 0, j = 1; j < 10; j++)

if (j 6= d) {
for (k = 0; k < m; k++) oo , choice [k][i] = j,where [k][j] = i;
i++;

}
for (k = 0; k < m; k++) oo , oo , csize [0][k] = i, choice [k][i] = d,where [k][d] = i,where [k][0] = 9;

/∗ note that i = 9 if d = 0, otherwise 8 ∗/
This code is used in section 20.

23. 〈Print the csize status information 23 〉 ≡
for (k = 0; k < m; k++) fprintf (stderr , "%d", csize [l][k]);
fprintf (stderr , "\n");

This code is used in section 20.

24. #define thresh 25

〈 If some constraint can’t be satisfied when al = x, goto b4 24 〉 ≡
for (stackptr = 0, k = m− 1; k ≥ 0; k−−) 〈 If constraint k can’t be satisfied when al = x, goto b4 25 〉;
while (stackptr) {
o, k = stack [−−stackptr];
if (vbose > 2) fprintf (stderr , " b%d must be %d\n", off [k], choice [k][0]);
〈Delete choice [k][0] from all constraints 6= ck 27 〉;
}
for (o, t = csize [l + 1][0], k = 1; k < m ∧ t ≤ thresh ; k++) o, t ∗= csize [l + 1][k];
if (t ≤ thresh) {
〈Test the overall product constraint cm 35 〉;
while (stackptr) {

o, k = stack [−−stackptr];
if (vbose > 2) fprintf (stderr , " b%d has to be %d\n", off [k], choice [k][0]);
〈Delete choice [k][0] from all constraints 6= ck 27 〉;

}
}

This code is used in section 20.

§25 BACK-SKELETON BACKTRACKING 11

25. Now we’ve come to the heart and soul of the program. As we test each constraint, we also store some
data that will be needed on level l + 1 if we get there.

〈 If constraint k can’t be satisfied when al = x, goto b4 25 〉 ≡
{
o, imax = csize [l][k]; /∗ how many multipliers worked in the previous level? ∗/
for (i = 0; i < imax ; i++) {
o, j = choice [k][i];
〈 If j remains satisfactory when al = x, goto jok 26 〉;
if (vbose > 2) fprintf (stderr , " c%d loses option %d\n", k, j);
if (−−imax ≡ 0) goto b4 ; /∗ we’ve lost the last option ∗/
if (i 6= imax) oo , oo , oo , choice [k][i] = choice [k][imax],where [k][choice [k][imax]] = i−−,

choice [k][imax] = j,where [k][j] = imax ;
/∗ swap j into last position (for easy backtracking) ∗/

jok : continue;
}
o, csize [l + 1][k] = imax ;
if (imax ≡ 1 ∧ (o, csize [l][k] 6= 1)) o, stack [stackptr ++] = k;
}

This code is used in section 24.

26. We’ve previously verified constraint k in the least significant l digits, and those digits don’t depend on
al. Thus it suffices to do an “incremental” test, looking only at digit l of the constraint.

〈 If j remains satisfactory when al = x, goto jok 26 〉 ≡
if (o, stamp [l][j] 6= nodes + x) { /∗ have we already updated ja [l]? ∗/
o, stamp [l][j] = nodes + x;
if (l ≡ 0) oo , copy (ja [0][j], cnst [x ∗ j]);
else oo , add (ja [l][j], ja [l − 1][j], cnst [x ∗ j], l);
}
oo , t = (ja [l][j][0] ≤ l ? 0 : ja [l][j][l + 1]);
o, tt = (constr [k][0] ≤ l ? 0 : o, constr [k][l + 1]);
if ((tt ≡ 1 ∧ t ≡ d) ∨ (tt 6= 1 ∧ t 6= d)) goto jok ;

This code is used in section 25.

27. 〈Delete choice [k][0] from all constraints 6= ck 27 〉 ≡
for (o, kk = 0, j = choice [k][0]; kk < m; kk ++)

if (oo , id [kk] 6= id [k]) {
oo , i = csize [l + 1][kk]− 1, ii = where [kk][j];
if (ii ≤ i) {

if (i ≡ 0) goto b4 ;
o, csize [l + 1][kk] = i;
if (i ≡ 1) o, stack [stackptr ++] = kk ;
if (ii 6= i) oo , oo , oo , choice [kk][ii] = choice [kk][i],where [kk][choice [kk][i]] = ii , choice [kk][i] = j,

where [kk][j] = i;
}

}
This code is used in section 24.

12 BACKTRACKING BACK-SKELETON §28

28. The data structures that I’ve got don’t seem to need any updating (other than what has already been
done during the tests), except in one respect: When a zero digit is prepended to the multiplicand, we may
have already printed the current solution. Otherwise we haven’t.

〈Update the data structures 28 〉 ≡
if (x) printed = 0;

This code is used in section 20.

29. Downdating seems to be completely unnecessary, thanks largely to the choice and csize mechanism,
and the fact that other data is recomputed at each level.

〈Downdate the data structures 29 〉 ≡
This code is used in section 20.

30. 〈 If all constraints are totally satisfied, print a solution 30 〉 ≡
if (printed) goto nope ; /∗ we’ve already printed this guy ∗/
for (k = 0; k < m; k++)

if (o, csize [l][k] > 1) goto nope ;
for (k = m− 1; k ≥ 0; k−−) 〈 If constraint ck isn’t totally satisfied, goto nope 31 〉;
〈 If constraint cm isn’t totally satisfied, goto nope 32 〉;
〈Print a solution 33 〉;
nope :

This code is used in section 20.

31. 〈 If constraint ck isn’t totally satisfied, goto nope 31 〉 ≡
{

oo , o, j = choice [k][0], lj = ja [l − 1][j][0], lc = constr [k][0];
if (lc > lj) goto nope ; /∗ this is correct even if d = 0 ∗/
for (i = 1; i ≤ lj ; i++) {
o, t = ja [l − 1][j][i], tt = (i ≤ lc ? o, constr [k][i] : 0);
if ((t ≡ d ∧ tt ≡ 0) ∨ (t 6= d ∧ tt 6= 0)) goto nope ;

}
}

This code is used in section 30.

32. 〈 If constraint cm isn’t totally satisfied, goto nope 32 〉 ≡
oo , oo , add (total , ja [l − 1][choice [0][0]], ja [l − 1][choice [1][0]], off [1]);
for (k = 2; k < m; k++) oo , o, add (total , total , ja [l − 1][choice [k][0]], off [k]);
o, lj = total [0], lc = constr [m][0];
if (lc > lj) goto nope ; /∗ this is correct even if d = 0 ∗/
for (i = 1; i ≤ lj ; i++) {
o, t = total [i], tt = (i ≤ lc ? o, constr [m][i] : 0);
if ((t ≡ d ∧ tt ≡ 0) ∨ (t 6= d ∧ tt 6= 0)) goto nope ;
}

This code is used in section 30.

§33 BACK-SKELETON BACKTRACKING 13

33. When a solution is found, I first print out the lengths of the multiplicand, multiplier, partial products,
and total product. (By sorting these lines later, I can distinguish unique solutions.) Then I print the
multiplicand, multiplier, d, and the solution number.

〈Print a solution 33 〉 ≡
count ++;
for (i = l − 1; a[i] ≡ 0; i−−) ; /∗ bypass leading zeros of multiplicand ∗/
printf ("%d,%d;", i + 1, off [m− 1] + 1);
for (k = 0; k < m; k++) printf ("%d|%d,", ja [l − 1][choice [k][0]][0], off [k]);
printf ("%d, ", total [0]);
for (; i ≥ 0; i−−) printf ("%d", a[i]);
printf (" x ");
for (k = m− 1, i = off [k]; k ≥ 0; k−−, i−−) {

while (i > off [k]) printf ("0"), i−−;
printf ("%d", choice [k][0]);
}
printf (",d=%d (#%d)\n", d, count);
printed = 1;

This code is used in section 30.

34. It’s conceivable that we’ve constructed a max-length multiplicand without finding enough obstructions
to force all digits of the multiplier. In such cases constraint m (the constraint on the entire product) has
probably not yet been fully tested. We should therefore backtrack over all choices of multipliers, in order to
be sure that no solutions have been overlooked.

Pathological patterns can make this happen, but I don’t think it will occur in the cases that interest me.
So I am simply reporting the unusual case here. Then I can follow up later if additional investigations are
called for.

(If al−1! = 0, there might exist very long solutions that cannot be tested without exceeding our maxdigits
precision.)

#define show unresolved 0

〈Check for unusual solutions and goto b5 34 〉 ≡
{

for (k = 0; k < m; k++)
if (o, csize [l][k] > 1) break;

if (k < m) {
unresolved ++;
if (o, a[l − 1] ≡ 0 ∨ show unresolved) {

fprintf (stderr , "Unresolved case with d=%d and offsets", d);
for (k = 0; k < m; k++) fprintf (stderr , " %d", off [k]);
fprintf (stderr , ":\n a=...");
for (k = l − 1; k ≥ 0; k−−) fprintf (stderr , "%d", a[k]);
fprintf (stderr , ", status ");
for (k = 0; k < m; k++) fprintf (stderr , "%d", csize [l][k]);
fprintf (stderr , "!\n");

}
}
goto b5 ;
}

This code is used in section 20.

14 AN INNER LOOP BACK-SKELETON §35

35. An inner loop. When we’re testing the “bottom line” constraint cm, we might need to vary several
of the multiplier digits independently. The process is a bit tedious, but straightforward: It’s just a loop over
all m-tuples that haven’t yet been filtered out, and we know that the total number of such m-tuples is thresh
or less.

The multiplier digit that is subject to constraint ck is one of the csize [l + 1][k] possibilities that appear at
the beginning of the list choice [k]. So we represent it by an index g[k], meaning that the digit we’re trying
is choice [k][g[k]].

For every such m-tuple g0g1 . . . gm−1, we check if constraint cm holds in its rightmost l + 1 digits. If so,
we set bit gk to 1 in shadow [k], for 0 ≤ k < m, thereby indicating that gk is valid in at least one solution.

After running through all the m-tuples, we can backtrack if no solutions were found. Otherwise the
shadows will tell us whether any of the csize entries can be lowered.

I could do this step in a fancier way, by working only “incrementally” after having gotten l-digit compliance
instead of always working to higher and higher precision. (In such a case I’d have to save the sum of carries
from the lower l digits, for use in testing the (l + 1)st digit incrementally.)

I could also avoid many of the m-tuples by backtracking during this process, because cm can be tested
digit-by-digit as those digits become known.

But I don’t think this step will be a bottleneck, so I’ve opted for simplicity.

〈Test the overall product constraint cm 35 〉 ≡
{

for (k = 0; k < m; k++) o, shadow [k] = 0;
〈Run through all m-tuples g0 . . . gm−1 36 〉;
if (o, shadow [0] ≡ 0) goto b4 ; /∗ there were no solutions ∗/
for (k = 0; k < m; k++) {

if (oo , shadow [k] + 1 6= 1� csize [l + 1][k]) 〈Remove items from choice [k] 39 〉;
}
}

This code is used in section 24.

36. 〈Run through all m-tuples g0 . . . gm−1 36 〉 ≡
bb1 : k = 0;
bb2 : if (k ≡ m) 〈Test compliance with cm and goto bb5 38 〉;
g[k] = 0;

bb3 : 〈Set acc [k] to the least significant digits of the kth partial sum 37 〉;
k++;
goto bb2 ;

bb4 : oo , g[k]++;
if (o, g[k] < csize [l + 1][k]) goto bb3 ;

bb5 : k−−;
if (k ≥ 0) goto bb4 ;

This code is used in section 35.

37. 〈Set acc [k] to the least significant digits of the kth partial sum 37 〉 ≡
oo , o, j = choice [k][g[k]], lj = ja [l][j][0];
for (i = 0; o, i < off [k]; i++) oo , acc [k][i] = acc [k − 1][i];
for (ii = 1, kk = 0; i ≤ l; i++, ii ++) {
t = (k > 0 ? o, acc [k − 1][i] + kk : kk);
if (ii ≤ lj) o, t += ja [l][j][ii];
if (t ≥ 10) o, acc [k][i] = t− 10, kk = 1; else o, acc [k][i] = t, kk = 0;
}

This code is used in section 36.

§38 BACK-SKELETON AN INNER LOOP 15

38. 〈Test compliance with cm and goto bb5 38 〉 ≡
{

for (o, i = 0, lc = constr [m][0]; i ≤ l; i++) {
o, t = acc [m− 1][i];
if (i < lc) o, tt = constr [m][i + 1]; else tt = 0;
if ((t ≡ d ∧ tt ≡ 0) ∨ (t 6= d ∧ tt 6= 0)) goto noncomp ;

}
if (vbose > 2) {

fprintf (stderr , " ok ");
for (k = m− 1; k ≥ 0; k−−) fprintf (stderr , "%d", choice [k][g[k]]);
fprintf (stderr , "\n");

}
for (k = 0; k < m; k++) oo , shadow [k] |= 1� g[k];

noncomp : goto bb5 ;
}

This code is used in section 36.

39. 〈Remove items from choice [k] 39 〉 ≡
{
o, imax = csize [l + 1][k];
for (i = imax − 1; i ≥ 0; i−−)

if (o, (shadow [k] & (1� i)) ≡ 0) {
o, j = choice [k][i];
if (vbose > 2) fprintf (stderr , " b%d ain’t %d\n", k, j);
imax −−;
if (i 6= imax) oo , oo , oo , choice [k][i] = choice [k][imax],where [k][choice [k][imax]] = i,

choice [k][imax] = j,where [k][j] = imax ;
}

o, csize [l + 1][k] = imax ;
if (imax ≡ 1) o, stack [stackptr ++] = k;
}

This code is used in section 35.

40. 〈Global variables 11 〉 +≡
char acc [maxm][maxdigs]; /∗ partial sums ∗/
char g[maxm]; /∗ indices for inner loop ∗/
int shadow [maxm]; /∗ bits where solutions were found ∗/

16 INDEX BACK-SKELETON §41

41. Index.

a: 7, 8, 9, 21.
acc : 37, 38, 40.
add : 8, 26, 32.
argc : 2, 3.
argv : 2, 3.
b: 7, 8.
bb1 : 36.
bb2 : 36.
bb3 : 36.
bb4 : 36.
bb5 : 36, 38.
bignum: 6, 7, 8, 9, 11, 17, 21.
buf : 2, 4, 5.
bufsize : 2, 4.
b1 : 20.
b2 : 20.
b3 : 20.
b4 : 20, 25, 27, 35.
b5 : 20, 22, 34.
c: 8.
choice : 21, 22, 24, 25, 27, 29, 31, 32, 33, 35,

37, 38, 39.
cnst : 10, 11, 26.
constr : 16, 17, 18, 26, 31, 32, 38.
copy : 7, 8, 26.
count : 2, 33.
csize : 21, 22, 23, 24, 25, 27, 29, 30, 34, 35, 36, 39.
d: 2, 8.
exit : 3, 4, 5, 8.
fgets : 4.
fprintf : 2, 3, 4, 5, 8, 9, 18, 20, 23, 24, 25, 34, 38, 39.
g: 40.
i: 2, 7, 8, 9.
id : 16, 17, 27.
ids : 16, 17.
ii : 2, 27, 37.
imax : 2, 25, 39.
isequal : 7, 16.
j: 2.
ja : 21, 26, 31, 32, 33, 37.
jj : 2.
jok : 25, 26.
k: 2, 8.
kk : 2, 27, 37.
l: 2.
la : 7, 9.
last : 2, 5, 15, 16.
lb : 7, 8.
lc : 2, 8, 31, 32, 38.
lj : 2, 31, 32, 37.
m: 2.

main : 2.
maxdigits : 34.
maxdigs : 2, 3, 6, 8, 19, 20, 21, 40.
maxdim : 2, 4, 5.
maxl : 2, 20.
maxm : 2, 3, 17, 21, 40.
mems : 2.
n: 2.
nodes : 2, 20, 21, 26.
noncomp : 38.
nope : 30, 31, 32.
o: 2.
off : 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 32,

33, 34, 37.
oo : 2, 5, 7, 8, 10, 14, 15, 16, 22, 25, 26, 27, 31,

32, 35, 36, 37, 38, 39.
p: 8.
pos : 2, 15, 16.
print bignum : 9, 18.
printed : 2, 28, 30, 33.
printf : 33.
rawpat : 2, 5, 12, 16.
shadow : 35, 38, 39, 40.
show unresolved : 34.
slack : 15, 19, 20.
sscanf : 3.
stack : 21, 24, 25, 27, 39.
stackptr : 21, 24, 25, 27, 39.
stamp : 21, 26.
stderr : 2, 3, 4, 5, 8, 9, 18, 20, 23, 24, 25, 34, 38, 39.
stdin : 1, 4.
t: 2.
thresh : 24, 35.
total : 21, 32, 33.
tt : 2, 26, 31, 32, 38.
unresolved : 2, 34.
vbose : 2, 3, 18, 20, 24, 25, 38, 39.
where : 21, 22, 25, 27, 39.
x: 2.
z: 2.

BACK-SKELETON NAMES OF THE SECTIONS 17

〈Advance to the next offset, or break if it needs too many zeros 14 〉 Used in section 2.

〈Build the table of constants 10 〉 Used in section 2.

〈Check for unusual solutions and goto b5 34 〉 Used in section 20.

〈Choose pos 15 〉 Used in section 18.

〈Create detailed specifications from the pattern 18 〉 Used in section 2.

〈Delete choice [k][0] from all constraints 6= ck 27 〉 Used in section 24.

〈Downdate the data structures 29 〉 Used in section 20.

〈Establish the minimum offsets 13 〉 Used in section 2.

〈Find all solutions for the current offsets and special digit d 20 〉 Used in section 2.

〈Global variables 11, 17, 21, 40 〉 Used in section 2.

〈 If all constraints are totally satisfied, print a solution 30 〉 Used in section 20.

〈 If constraint ck isn’t totally satisfied, goto nope 31 〉 Used in section 30.

〈 If constraint cm isn’t totally satisfied, goto nope 32 〉 Used in section 30.

〈 If constraint k can’t be satisfied when al = x, goto b4 25 〉 Used in section 24.

〈 If some constraint can’t be satisfied when al = x, goto b4 24 〉 Used in section 20.

〈 If j remains satisfactory when al = x, goto jok 26 〉 Used in section 25.

〈 Initialize the data structures 22 〉 Used in section 20.

〈 Input row n of the shape 5 〉 Used in section 4.

〈 Input the pattern 4 〉 Used in section 2.

〈Print a solution 33 〉 Used in section 30.

〈Print the csize status information 23 〉 Used in section 20.

〈Process the command line 3 〉 Used in section 2.

〈Remove items from choice [k] 39 〉 Used in section 35.

〈Run through all m-tuples g0 . . . gm−1 36 〉 Used in section 35.

〈Set up the constraints 16 〉 Used in section 18.

〈Set acc [k] to the least significant digits of the kth partial sum 37 〉 Used in section 36.

〈Subroutines 7, 8, 9 〉 Used in section 2.

〈Test compliance with cm and goto bb5 38 〉 Used in section 36.

〈Test the overall product constraint cm 35 〉 Used in section 24.

〈Typedefs 6 〉 Used in section 2.

〈Update the data structures 28 〉 Used in section 20.

BACK-SKELETON

Section Page
Intro . 1 1
Bignums . 6 4
Offsets and constraints . 12 6
Backtracking . 19 8
An inner loop . 35 14
Index . 41 16

	Intro
	Bignums
	Offsets and constraints
	Backtracking
	An inner loop
	Index
	Names of the sections
	Advance to the next offset, or break if it needs too many zeros
	Build the table of constants
	Check for unusual solutions and goto b5
	Choose pos
	Create detailed specifications from the pattern
	Delete choice[k][0] from all constraints c_k
	Downdate the data structures
	Establish the minimum offsets
	Find all solutions for the current offsets and special digit d
	Global variables
	If all constraints are totally satisfied, print a solution
	If constraint c_k isn't totally satisfied, goto nope
	If constraint c_m isn't totally satisfied, goto nope
	If constraint k can't be satisfied when a_l=x, goto b4
	If some constraint can't be satisfied when a_l=x, goto b4
	If j remains satisfactory when a_l=x, goto jok
	Initialize the data structures
	Input row n of the shape
	Input the pattern
	Print a solution
	Print the csize status information
	Process the command line
	Remove items from choice[k]
	Run through all m-tuples g_0g_m-1
	Set up the constraints
	Set acc[k] to the least significant digits of the kth partial sum
	Subroutines
	Test compliance with c_m and goto bb5
	Test the overall product constraint c_m
	Typedefs
	Update the data structures

