81 BACK-PI-DAY INTRO 1

1. Intro. Johan de Ruiter presented a beautiful puzzle on 14 March 2018, based on the first 32 digits
of 7.

It’s a special case of the following self-referential problem: Given a directed graph, find all vertex labelings
such that each vertex is labeled with the number of distinct labels on its successors.

In Johan’s puzzle, some of the labels are given, and we’re supposed to find the others. He also presented
the digraph in terms of a 10 x 10 array, with each cell pointing either north, south, east, or west; its successors
are the cells in that direction.

I've written this program so that it could be applied to fairly arbitrary digraphs, if I decide to make it
more general. The program uses bitmaps in interesting ways, not complicated.

#define N (0 < 4)

#define S (1< 4)

#define £ (2<4)

#define W (3« 4)

#define debug 1 /* for optional verbose printing */
#define verts 100 /* vertices in the digraph */
#define mazxd 9 /* maximum out-degree in the digraph; must be less than 16 */
#define bitmaz (1 < (mazd + 1))

#define infinity (unsigned long long)(—1)

#define 0 mems++

#define oo mems +=2

#define ooo mems +=3

#include <stdio.h>
#include <stdlib.h>
long mems;
char johan[10][10] = {
{S+3,W+1,E4+4W+0,S+1,W+0,5+5,5+0,5+9,5+ 0},
{E+0,S+0,W+2,§4+6,S+0,E+0,S+0,W+0,E+0,S+5},
{E4+0,S+0,E+0,E+0,5+0,S4+0,E+3,5+5W+8 W +9},
{F+0,E4+0,S4+0,N+0,S4+0,E+0,W+0,S+0,W +7,W + 0},
{E+9,E4+0,5+3,5+0,54+0,S+0,W+0,W+0,5+0,W + 0},
{E+0,E4+0,E4+0,W+0,S4+0,E+0,S4+0,E+2,5+0,5+ 3},
{E+0,E+8,S4+0,N+0,S4+0,S4+0,N+0,W+0,N+0,W + 0},
{N+4,E+6,S+2,N+6,S+0,E+0,S+0,W+0,5+0,N +0},
{N+4,E+0,E4+0,E4+0,S+0,W+0,W+3, W +3,W+0,N +0},
{E4+0,E4+8N+0,W+3,N+0,N+2,W+0,W+7,N+9 N+5}};
int nulbitmax], gnulbitmaz], un[bitmaz]; /* vk, 2% and plk] */
(Global variables 6);
(Subroutines 8);

main ()
{
register int a,d, g,1,7,k,1,q,t,u,v, x;
register unsigned long long p;
(Compute the nu tables 2);
(Set up the graph 3);
(Initialize the bitmaps 4);
(Initialize the active list 7);
(Achieve stability 16);
(Print the solution 17);

2 INTRO BACK-PI-DAY §2

2. (Compute the nu tables 2) =
for (o, gnul0] =1,k = 0; k < bitmaz; k +=2)
mems += 6, nu[k] = nulk > 1], nu[k + 1] = nulk] + 1, gnu[k] = gnulk > 1], gnu[k + 1] = gnu[k] < 1;
for (k=1; k < maxd; k++) o,un[l < k] = k;

This code is used in section 1.

3. The arcs from vertex v begin at arcs[v], as in the Stanford GraphBase. The reverse arcs that run to
vertex v begin at scra[v].
#define inz(i,5) (10 (i) + (4))
#define newarc(ii, jj)
mems += 8, next[++arcptr] = arcs[inz (3, j)|, tip[arcptr] = inz (i, jj), arcs[inz (i, j)] = arcptr,
next[++arcptr] = scralinz (i1, 37)], tip[arcptr] = inx (i, j), scralinz (i, jj)] = arcptr, d++
(Set up the graph 3) =
for (i =0; ¢ < 10; i++)
for (j =0; j <10; j++) {
v = ins(i,);
sprintf (name[v], "%02d", v);
known[v] = (johan[i][j] & #£ ? johan[i][j] & #£ : —1);
d=0;
switch (johanli][j] > 4) {
case N > 4:
for (k=0; k <i; k++) newarc(k,j); break;
case S > 4:
for (k=9; k> 1i; k—) newarc(k,j); break;
case £ > 4:
for (k=9; k> j; k—) newarc(i, k); break;
case W > 4:
for (k=0; k < j; k++) newarc(i, k); break;

}

if (d > mazd) {
forintf (stderr, "The outdegree of %s should be at most %d, not %d!\n", namev], mazd, d);
exit (—1);

¥

0, deg[v] = d;

if (d <1) knownlv] =d; /* we can consider this label prespecified */

}

This code is used in section 1.

4. The set of possible labels for vertex v is kept in bits[v], a (mazd+1)-bit number. It’s either a single bit
(if v’s label was prespecified) or 1 + 2+ --- + 27 (if v has degree d and wasn’t given a label).
(Initialize the bitmaps 4) =
for (i = 0; i < 10; i++)
for (j =0; j <10; j++) {

0,v = inz(i,j),l = johanl[i][j] & #£;

if (known|v] > 0) o, bits[v] = 1 < known|[v];

else oo, bits[v] = (deg[v] 7 (1 < (deg[v] +1)) —2:1);

}

This code is used in section 1.

85 BACK-PI-DAY STABILITY 3

5. Stability. This program relies on an interesting notion of “stability.” Suppose the successors of v are
w1, ..., wq, and consider the set of all 1-bit codes (x1,...,zq) such that z; C bits[w;| and y = gnufzy |- |
xq) C bits[v].

We will use simple backtracking to compute a;, the bitwise OR of all such x;, as well as ag, the bitwise
OR of all such y.

If a; = bits[w;] for all j and ag = bits[v], we say that vertex v is stable. Otherwise we have reduced the
number of possibilities, so we’ve made progress.

When every vertex is stable, we hope that every bitmap has size 1.

Otherwise the problem will have to broken into cases. I'll cross that bridge only if I need to.

(I might as well note here that stability is a fairly weak condition. For example, v will be stable if
bits[v] = 29T — 1 and bits[w] = - - - = bits[wy], even though many possibilities might remain for the labels
of wy through wy. Yet I am optimistic, as well as curious, as I write this code.)

6. All vertices are initially “active.” The idea of our main algorithm is very simple: We shall choose an
active vertex v, test it for stability, and make it inactive (at least temporarily). Then, if that stability test
has changed bits[u], for any u € {v,wy,...,wq}, we activate u and all of its predecessors, because those
vertices may now be unstable. This downhill process continues until complete stability is achieved.
The list of active vertices is doubly linked, with links in [link and rlink, and with active as the header.
For each vertex we maintain size[v], the product of the cardinalities of its successor bitmaps bits[w;], so
that we can repeatedly choose an active vertex of minimum size.

#define active wverts

(Global variables 6) =
int [link [verts + 1], rlink [verts + 1];
int deg[verts], arcs|verts], scra[verts], bits[verts], isactive [verts], known [verts];
unsigned long long size|verts];

char name[verts][8]; /* each vertex name is assumed to be at most seven characters */
int tip[2 * verts x verts], next[2 x verts x verts|;
int arcptr = 0; /* this many entries of tip and next are in use */

See also sections 15 and 18.

This code is used in section 1.

7. (Initialize the active list 7) =
for (v=0; v < wverts; v++) {
00, llink[v] = (v ? v —1: active), rlink[v] = v+ 1;
for (o,p=1,a = arcs[v]; a; o,a = nextla]) ooo,p x= nu[bits[tip[a]]l;
00, isactive[v] = 1, size[v] = p;

oo, llink[active] = active — 1, rlink[active] = 0;

This code is used in section 1.

4 STABILITY BACK-PI-DAY §8

8. When I'm debugging, I'll probably want to print status information.

(Subroutines 8) =
void printvert (int v, FILE xstream)

{
register int b,d;
forintf (stream, "%s (", name[v]);
for (b= bits[v],d=0; (1< d)<b; d++)

if (1<d)&b) fprintf (stream,"%x",d);

forintf (stream,")");

}

See also sections 9 and 12.

This code is used in section 1.

9. (Subroutines 8) +=
void printact(void)
{
register int v;
for (v = rlink[active]; v # active; v = rlink[v]) {
if (llink[v] # active) fprintf (stderr,",");
printvert (v, stderr);

}
forintf (stderr,"\n");

}

810 BACK-PI-DAY THE STABILITY TEST 5

10. The stability test. Here’s the fun routine that motivated me to write this program.

The total number of solutions (z1,...,z4) to v’s stability problem is at most size[v]. But of course we
hope to cut this number way down. The nicest part of the following code is its calculation of goal bits, to
rule out impossible partial solutions.

Once again I follow Algorithm 7.2.2B.

(Backtrack through v’s successor labels 10) =
b1: mems += 4,w[0] = v, wb[0] = bits[v], wbp[0] = 0;
for (0,a = arcs[v],d = 0; a; 0,a = next|a],d++)
mems += 5, w[d + 1] = tip[a], wb[d + 1] = bits[tip|a]], wbp[d + 1] = 0;
for (o,k =d,g = bits[v]; k; k—) o,goallk] =g,9=(g| (g > 1)) & ((1 < k) — 1);
=1
b2: if (I > d) (Visit a solution and goto b5 11);
o,z = wh[l] & —wbll]; /* the lowest bit x/
b3: oo,s[l] = s[l —1] | x;
if (oo, gnu[sl]] & goal[l]) {
o, move[l++] = x;
goto b2;
}
b4: for (z <=1; o,z < wh[l]; x «=1)
if (z & wb[l]) goto b3;

by: if (—1) {
0,z = movell];
goto b4;

}

(Activate vertices whose bitmaps have changed, and their predecessors 13);

This code is used in section 16.

11. (Visit a solution and goto b5 11) =
{
if (debug) printsol(d);
for (k=1; k<l; k++) oo, wbp[k] |= movelk];
000, wbp[0] |= gnu[s[l — 1]];
goto b5;
}

This code is used in section 10.

12. (Subroutines 8) +=
void printsol(int d)
{
register int k;
forintf (stderr, "hs—>", name w[0]]);
for (k=1; k <d; k++) fprintf (stderr,"%d", un[movek]]);
forintf (stderr, "\n");

6 THE STABILITY TEST BACK-PI-DAY 813

13. If there were no solutions, we’ve been given an impossible problem.
(Activate vertices whose bitmaps have changed, and their predecessors 13) =
for (k=0; k <d; k++)
if (0o, wbp[k] # wb[k]) {
if (wbp[k] =0) {
forintf (stderr, "Contradiction reached while testing stability,of %s!\n", namew[0]]);
exit (—666);

o,u = wlkl;

00, bits|u] = wbp[k];

if (debug) {
forintf (stderr, "L now,");
printvert (u, stderr);
forintf (stderr, "\n");

(Activate u 14);
for (0,a = scralul; a; 0,a = nextla]) {
o,u = tip[al;
000, size[u] = (size[u]/nu[wb[k]]) * nu[wbp[k]];
(Activate u 14);
}
}
This code is used in section 10.
14. (Activate u 14) =
if (o, —isactive[u]) {
mems += 5,t = llink[active], rlink[t] = llink[active] = u, llink[u] = t, rlink[u] = active;
0, isactive[u] = roundno + 1;

}

This code is used in section 13.

15. (Global variables 6) +=
int w[maxzd + 1], wb[mazd + 1], wbp[mazd + 1], goal[mazd + 1], move[maxd + 1], simazd + 1];

§16 BACK-PI-DAY THE MAIN LOOP 7

16. The main loop. Hurray: We're ready to put everything together.

Besides our desire to choose an active item of minimum size, we want to keep cycling through the array.
So we choose each item at most once per “round.” The value of isactive[v] tells in which round v will become
activated.

(Achieve stability 16) =
while (o, rlink[active] # active) {

for (o,u = rlink[active],q = roundno + 2; u # active; o,u = rlink[u])
if (o, isactive[u] < q) o,q = isactive|u],p = size[u],v = u;
else if (isactive[u] = q A (o, size[u] < p)) p = size[u],v = u;

o, isactive[v] = 0, roundno = g;

mems += 4,u = llink[v],t = rlink[v], rlink [u] = t, llink[t] = u;

tests ++;

if (debug) {
forintf (stderr, "%d: ", tests);
printvert (v, stderr);
forintf (stderr, ",=>,");
for (a = arcs[v]; a; a = next[a]) printvert(tip[a], stderr);
forintf (stderr, "\n");

(Backtrack through v’s successor labels 10);

}

This code is used in section 1.

17. (Print the solution 17) =

forintf (stderr, "Stability achieved after %d tests, %d rounds, %ld mems.\n", tests, roundno,
mems);

for (v =0; v < verts; v++) {
if (v) printf ("u");
printvert (v, stdout);

printf ("\a");

This code is used in section 1.

18. (Global variables 6) +=
int tests, roundno;

8 INDEX

19. Index.

a: 1.

active: 6, 7, 9, 14, 16.
arcptr: 3, 6.

arcs: 3, 6, 7, 10, 16.
b: 8.

bitmaz: 1, 2.

bits: 4, 5, 6, 7, 8, 10, 13.
b1: 10.

b2: 10.

b3: 10.

b4: 10.

b5: 10, 11.

d: 1, 8, 12.

debug: 1, 11, 13, 16.
deg: 3, 4, 6.

E 1

exit: 3, 13.

forintf: 3, 8,9, 12, 13, 16, 17.

g 1.

gnu: 1, 2, 5, 10, 11.
goal: 10, 15.

i 1.

w: 3.

infinity: 1.

mnx: 3, 4.

isactive: 6, 7, 14, 16.
7o 1.

g 3.

johan: 1, 3, 4.

k: 1, 12.

known: 3, 4, 6.

l: 1.

link: 6, 7,9, 14, 16.
main: 1
maxd: 1, 2, 3, 4, 15.

mems: 1, 2, 3, 10, 14, 16, 17.
move: 10, 11, 12, 15.

N: 1.

name: 3, 6, 8, 12, 13.
newarc: 3.

next: 3, 6, 7, 10, 13, 16.

nu: 1, 2, 7, 13.

o: 1.

oo: 1,4, 7,10, 11, 13.

ooo: 1, 7, 11, 13.

—_

p: 1.
printact: 9.
printf: 17.

printsol: 11, 12.
printvert: 8, 9, 13, 16, 17.
q 1.

BACK-PI-DAY

rlink: 6, 7, 9, 14, 16.
roundno: 14, 16, 17, 18.

S: 1

s: 15.

scra: 3, 6, 13.

size: 6, 7, 10, 13, 16.
sprintf: 3.

stderr: 3,9, 12, 13, 16, 17.
stdout: 17.

stream: 8.

t: 1.

tests: 16, 17, 18.

tip: 3, 6, 7, 10, 13, 16.
u: 1.

un: 1, 2, 12.

v: 1, 8, 9.

verts: 1, 6, 7, 17.

W:
w:
wb: 10, 13, 15.
wbp: 10, 11, 13, 15.
x: 1.

[

§19

BACK-PI-DAY NAMES OF THE SECTIONS 9

(Achieve stability 16) Used in section 1.

(Activate vertices whose bitmaps have changed, and their predecessors 13) Used in section 10.
(Activate u 14) Used in section 13.

(Backtrack through v’s successor labels 10) Used in section 16.
(Compute the nu tables 2) Used in section 1.

<G10ba1 variables 6, 15, 18> Used in section 1.

(Initialize the active list 7> Used in section 1.

(Initialize the bitmaps 4) Used in section 1.

(Print the solution 17) Used in section 1.

(Set up the graph 3) Used in section 1.

<Subroutines 8, 9, 12> Used in section 1.

(Visit a solution and goto b5 11) Used in section 10.

BACK-PI-DAY

Section Page

IntrO o 1 1
Sty .o 5 3
The stability testo 10 5
The main 100D . ..ot 16 7
Index .o 19 8

	Intro
	Stability
	The stability test
	The main loop
	Index
	Names of the sections
	Achieve stability
	Activate vertices whose bitmaps have changed, and their predecessors
	Activate u
	Backtrack through v's successor labels
	Compute the nu tables
	Global variables
	Initialize the active list
	Initialize the bitmaps
	Print the solution
	Set up the graph
	Subroutines
	Visit a solution and goto b5

