81 BACK-PDI INTRO 1

1. Imtro. This program finds all “perfect digital invariants” of order m in the decimal system, namely
all integers that satisfy m,,x = =, where 7, takes an integer into the sum of the mth powers of its digits.

It can be shown without difficulty that such integers have at most m + 1 digits. Indeed, if 107 < z < 10P+!
we have 7,2 < 10?7 whenever p > m. (The proof follows from the fact that (m + 1)9™ < 10™*1.)

It’s an interesting backtrack program, in which I successively choose the digits 9 > z; > z9 > .-+ >
Zm+1 > 0 that will be the digits of (in some order). Lower bounds and upper bounds on x are sufficiently
sharp to rule out lots of cases before very many of those digits have been specified. (And if m is small, I
could even run through all such sequences of digits, because there are only (mgm) of them. That’s about
2.5 billion when m = 40.)

The only high-precision arithmetic needed here is addition. I implement it with binary-coded decimal
representation (15 digits per octabyte), using bitwise techniques as suggested in exercise 7.1.3-100.

Memory references (mems) are counted as if an optimizing compiler were doing things like inlining
subroutines, and as if the distribution arrays were packed into a single octabyte. I actually keep the elements
unpacked, to keep debugging simple.

#define marm 1000

#define mazdigs (1 + (mazm/15)) /x octabytes per binary-coded decimal number */
#define o mems++

#define oo mems +=2

#include <stdio.h>
#include <stdlib.h>
int m; /* command-line parameter x/
typedef unsigned long long ull;
ull mems;
ull nodes;
ull thresh = 10000000000; /* reporting time */
ull profile[mazm + 3J;
int count;
int vbose; /* level of verbosity */

(Global variables 8);
(Subroutines 4);

main (int argc, char xargv[])
{
register int j k,l,p,r.t, pd, alt, blt, xl, change;
(Process the command line 3);
(Precompute the power tables 7);
(Backtrack through all cases 11);
forintf (stderr, "Altogether, %d, solutions for m=Y%d,(%11lu nodes, %llu mems).\n", count,m,
nodes, mems);
if (vbose) (Print the profile 2);

2. (Print the profile 2) =

{

fp’mntf (Stder’l“, "Profile: |_||_||_|_||_,|_||_||_||_||_,1\n");
for (k=2; k <m+2; k++) fprintf (stderr,"%1911d\n", profile[k]);

}

This code is used in section 1.

2 INTRO BACK-PDI §3

3. (Process the command line 3) =

if (arge < 2V sscanf (argv[1],"%d", &m) # 1) {
forintf (stderr, "Usage: s m, [profilel [verbosel [extraverbosel\n", argu|0]);
exit (—1);

}

vbose = argc — 2;

if (m<2vm>mazm) {
forintf (stderr, "Sorry, m_ should be between 2, and %d, mnot,%d!\n", marm,m);
exit(—2);

}

mdigs = 14 (m/15);

This code is used in section 1.

§4 BACK-PDI TRICKY ARITHMETIC 3

4. Tricky arithmetic. I've got to deal with biggish numbers and inspect their decimal digits. But I'm
using a binary computer and I don’t want to be repeatedly dividing by powers of 10. So I have an addition
routine that computes (say) the sum of hexadecimal-coded numbers #344159959 and #271828043, giving
#615988002 as if the numbers were decimal instead.

(Subroutines 4) =
void add (ull *p,ull xq,ull *r)
{ /x add p to ¢, giving r x/
register int £k, c;
register ull ¢, w, z,y;
for (k=c=0; k < mdigs; k++) (Add c+ x(p+ k) to x(q + k), giving *(r + k) and carry c 5);
if (¢) { /* this shouldn’t happen */
forintf (stderr, "Overflow!\n");
exit (—999);
}
}

See also sections 6 and 10.

This code is used in section 1.

5. It’s interesting that I must add ¢ to x here, not to y. Otherwise the nondecimal digit a might appear
in the result.

(Add ¢+ *(p + k) to x(q + k), giving x(r + k) and carry ¢ 5) =

o,x =x(p+k)+¢ /* x might have a nondecimal digit now */

0,y =#*(q+ k) + *666666666666666; /* no cross-digit carries occur */

t=x+vy;

w=(tdrdy) &*1111111111111110; /* this is where cross-digit carries happen x/
w=(wd*1111111111111110) > 3;

t—=w+ (w<1); /* subtract 6 where there were no carries */
o0,%(r+k) =t & *EEEEEFEEFELFELS;
c=1>60;

}

This code is used in section 4.

6. At the beginning of this program, I need a table of 0™, 1™ 2™ ... 9™. So why not compute it via
addition?
(Subroutines 4) +=
void kmult (int k,ull *a)
{ /* multiply a by k */
switch (k) {
case 8: add(a,qa,a
case 4: add(a,a,a);

)

()
case 2: add(a,a,a); break;
case 6: add(a,a,a);
case 3: add(a,a,z); add(a,z,a); break;
case 5: add(a,a,z); add(z,z,z); add(a,z,a); break;
case 9: add(a,a,z); add(z,z,z2); add(z,z,z2); add(a,z,a); break;
case T: add(a,a,z); add(a,z,z); add(z,z,2); add(a,z,a); break;

case 0: case 1: break;

}

4 TRICKY ARITHMETIC BACK-PDI 87

7. (Precompute the power tables 7) =
for (k=1; k< 10; k++) {
table[1][k][0] = k;
for (j =2; j <m; j++) kmult(k, table[1][k]); /* compute kK™ x/
for (j =2; j <m+1; j++) add(table[1][k], table[j — 1][k], table[]][k]); /* compute j - k™ %/

}

This code is used in section 1.

8. (Global variables 8) =

int mdigs; /* our multiprecision arithmetic routine uses this many octabytes */
ull table[maxm + 2][10][mazdigs]; /* precomputed tables of j - k™ x/
ull z[mazdigs]; /* temporary buffer for bignums */

See also section 14.

This code is used in section 1.

9. Here’s a macro that delivers a given digit (nybble) of a multibyte number.
#define nybb(a,p) (int)((a[p/15] > (4 (p % 15))) & #£)

10. When debugging, or operating verbosely, I want to see all digits of a multiprecise number, with a
vertical bar just before digit number t.
(Subroutines 4) +=
void printnum (ull xa,int t)
{
register int k;
for (k=m; k>0; k—) {
if (t=k) fprintf(stderr,"|");
forintf (stderr, "%d", nybb(a, k));
}
}

811 BACK-PDI THE ALGORITHM 5

11. The algorithm. This program has the overall structure of a typical backtrack program, with a few
twists. One of those twists is the state parameter pd, which is nonzero when the move at level [— 1 was
forced. (Such cases are rare, but important.)

(Backtrack through all cases 11) =
b1: (Initialize the data structures 15);
b2: profile[l]++, nodes++;
(Report the current state, if mems > thresh 12);
for (k=0; k< 10; k++) {
pdist[l][k] = pdist[l — 1][k];
dist[l][k] = dist[l — 1][k] + (k=L 7 1: 0);

00, 00; /* two mems to copy pdist and dist, which could have been packed */
if (pd) (Absorb a forced move 22)
else {

if (r=0) goto b5; /* we haven’t room to accept a new digit =l */

r——, add(sig[l — 1], table[1][zl], sig[l]);
}
if (I >m+1) (Print a solution and goto b5 17);
b3: if (vbose > 1) fprintf (stderr,"Level %d, trying %d,(%11ld mems)\n", I, zl, mems);
(If there’s an easy way to prove that z; can’t be < i, goto b5 18);
move: (Advance to the next level with z; = 2l and goto b2 16);

bg: if (zl) {
zl—;
o0, pd = pdistl][zl]; /*x dist[l][zl] was zero x/
goto b3;
}
by if (—1) {

0, pd = pdsavel[l[;

if (pd) goto b5;

(Restore the previous state at level [21);
goto b4;

}

This code is used in section 1.

12. (Report the current state, if mems > thresh 12) =
if (mems > thresh) {
thresh += 10000000000;
forintf (stderr, "After %11d, mems:", mems);
for (k=2; k <l; k++) fprintf (stderr,"u%11d", profile[k]);
forintf (stderr, "\n");

}

This code is used in section 11.

6 THE ALGORITHM BACK-PDI 813

13. The purpose of backtrack level [is to compute the [th largest digit, x;, of a solution z, assuming that
1, ..., x;—1 have already been specified.

The main idea is to compute bounds a; and b; such that a; < x < b; must be valid, whenever z1, ..., x;_1
have the given values and x; is at most a given threshold value z/. Those bounds, like all of the multiprecise
numbers in this computation, are (m+ 1)-digit numbers whose individual digits are agy, . . . ajo and by, . .. byg.
They share a common prefix p,, ... pg1 of length m + 1 —¢; thus if a; < by we have 0 <t < 'm and aj; < by.

The main point is that each of the digits in the multiset P = {py,,...,ps+1} must appear in z, and so
must each of the digits in the multiset D = {d,...,d;—1}. Therefore we know that each of the digits in
S = PUD must be present in any solution x. (Recall that if d appears a times in a multiset A and b times
in a multiset B, then it appears max(a,b) times in AU B.)

The digit d occurs dist[l][d] times in D and pdist[l][d] times in P. If d > 2l we must have pdist[l][d] <
dist[l][d]. If d = ol we set pd = max(0, pdist[l|[d] — dist[l][d]). Thus, if 2l occurs thrice in D but only once
in P, we have pd = 0; but if zl occurs thrice in P but only once in D, we have pd = 2. In the latter case we
must choose x; = 2zl and also x;41 = zl.

Let r be the number of unknown digits of . (When pd = 0, this is m 4 1 minus |S|, the number of known
digits.) If aj < by < zl, we know that r > 0 and that one of the unknown digits lies between a;; and by,
inclusive.

When zl decreases, the bounds get tighter, hence the prefix can become longer. And that’s good.

These are the key facts governing our bounds a; and b;. In order to do the computations conveniently we
maintain the sum of known digits, sig[l] = Zﬁl:_ol pdist[l][k] - K™ + Zile dist[l][k] - k™ + pd - ™.

14. (Global variables 8) +=
int dist[mazm + 1][16], pdist[maxzm + 1][16];
ull a[mazm + 1|[mazdigs], b[maxzm + 1][maxdigs], sig[maxzm + 1][mazdigs];
int x[mazm + 1], rsave[maxm + 1], tsave[mazm + 1], pdsave[mazm + 1];

15. (Initialize the data structures 15) =
=1,
pd = pdsave[l] = 0;
alt =0,blt =9;
t=m,r=m+1;
xl =9;
profile[1] = 1;

goto b3; /* I really don’t want to do step b2 at root levell x/

This code is used in section 11.

16. (Advance to the next level with z; = 2/ and goto b2 16) =
00, tsave[l] = t, rsave[l] = r;
o, pdsavell] = pd;
o0, x[l++] = al;
goto b2;

This code is used in section 11.

817 BACK-PDI THE ALGORITHM 7

17. (Print a solution and goto b5 17) =
{
count ++;
printf ("hd:L", count);
for (k=1; k <m+1; k++) printf ("%d", z[k]);
printf ("->");
for (k=m; k> 0; k—) pringf ("%d", nybd(sig[l], k));
printf ("\n");
goto bJ;

}

This code is used in section 11.

18. When this code is performed, sig[l] and dist[l] and pdist[l] are supposed to be up to date, as well as
zl, t, r, alt, and blt.

(If there’s an easy way to prove that z; can’t be < al, goto b5 18) =
loop: if (t>0) {
change = 0;
(Recompute a; and b; 19);
if (vbose > 2) {
forintf (stderr, "La=");
printnum (a[l], t);
forintf (stderr," ,b=");
printnum (bl], t);
forintf (stderr, "\n");

if (change) goto loop; /* either a; or b; or both can be improved */
while (alt = blt) (Increase the current prefix, or goto b5 20);
if (change) goto loop;

}

This code is used in section 11.

8 THE ALGORITHM BACK-PDI

19. The numbers alt and blt just past the prefix give important constraints on what the future can bring.

If we can improve them, we can often improve them further yet, and possibly even extend the prefix.
(Recompute a; and b 19) =
if (bt < xl) {
if (r=0) goto b5;
add (sig[l], table[1][alt], a[l]); /% ap < sigll] + alt™ */
add (sig[l], table[1][blt], b[l]);
add (b]l], table[r — 1][zl], b[1]); [* by« sig[l] +0it™ + (r —1) - 2l™ x/
} else {
for (k =0; k < mdigs; k++) oo,all][k] = sig[l][k]; /% ap < sig[l] =/
add (sig[l], table[r][l], b]l]); [by <= sig[l] +r-2l™ */

S~ o~

if (o, alt # nybb(a[l],t)) {
if (alt > nybb(all],t)) {
forintf (stderr, "Confusion,(a decreased) !\n");
exit(—13);

alt = nybb(a[l], t);

)

if (blt < zl) change = 1;

if (o, blt # nybb(b]l],t)) {
if (blt < nybb(b]l],t)) {
fprintf (stderr, "Confusiony, (b increased) '\n");
exit(—14);

}

blt = nybb(b[l], t);

if (blt < zl) change = 1;
}

This code is used in section 18.

§20 BACK-PDI THE ALGORITHM 9

20. Here’s the most delicate (and most important) part, as we’ve learned another digit of z.

Incidentally, here’s an interesting example of a “flowchart” where a goto statement seems necessary
without repeating code. Consider two conditions A and B, and two actions a and 8. If A and B, we want
to do « then S; if A and not B, we want to do nothing; if not A, we want to do 8. Without a goto I must
either evaluate A twice (as in ‘if (not A) or B then (if A do «; do 3)’) or code g twice (as in ‘if A then (if
B do « and) else do).

(Increase the current prefix, or goto b5 20) =
{
o,p = pdist[l][blt];
if (blt > xl) {
if (o,p < dist[l][blt]) goto okay; /% a “necessary” goto! x/
if (blt > zl) goto b5; /* oops, we've already saturated that digit */
pd = p—+ 1 — dist[l][blt]; /* pd becomes positive, if it wasn’t already */
}
if (—r < 0) goto b5;
add (sig[l], table[1][blt], sig[l]); /* newly known digit less than zl */
okay: o, pdist|l][blt] = p+ 1;
t—, change = 1;
if (t <0) break;
00, alt = nybb(a[l],t), blt = nybbd(b[l],t);

This code is used in section 18.

21. (Restore the previous state at level [21) =
0o, t = tsave[l],r = rsave[l];
if (¢t >0) oo, alt = nybb(a[l],t), blt = nybdb(bl], t);
else alt = blt = 9;
o0, zl = z[l];

This code is used in section 11.

22. When dist is “catching up” with pdist, we don’t change sig, because a digit that occurred in the prefix
was already accounted for; we knew that an z/ would be coming, and it has finally arrived. (Also ¢ and r
remain unchanged.)

(Absorb a forced move 22) =
if (vbose > 1) fprintf (stderr,"Level %d, that %d was forced\n",l, zl);
for (k =0; k < mdigs; k++) oo, sig[l][k] = sig[l — 1][k];
if (—pd) goto move;

This code is used in section 11.

10 INDEX
23. Index.
a: 6, 10, 14.

add: 4, 6, 7, 11, 19, 20.
alt: 1, 15, 18, 19, 20, 21.
arge: 1, 3.

argv: 1, 3.

b: 14.

blt: 1, 15, 18, 19, 20, 21.
b1: 11.

b2: 11, 15, 16.

b3: 11, 15.

b4: 11.

b5: 11, 17, 19, 20.

c 4.

change: 1, 18, 19, 20.
count: 1, 17.

dist: 11, 13, 14, 18, 20, 22.
exit: 3, 4, 19.

forintf: 1,2, 3, 4, 10, 11, 12, 18, 19, 22.
7o 1.

k: 1, 4, 6, 10.

kmult: 6, 7.

. 1.

loop: 18.

m: 1.

main: 1.

mazdigs: 1, 8, 14.
mazm: 1, 3, 8, 14.
mdigs: 3, 4, 8, 19, 22.
mems: 1, 11, 12.

move: 11, 22.

nodes: 1, 11.

nybb: 9, 10, 17, 19, 20, 21.
o: 1.

okay: 20.

oo: 1, 11, 16, 19, 20, 21, 22.
p: 1, 4

pd: 1, 11, 13, 15, 16, 20, 22.
pdist: 11, 13, 14, 18, 20, 22.
pdsave: 11, 14, 15, 16.

printf: 17.

printnum: 10, 18.

profile: 1, 2, 11, 12, 15.

q: 4.

ro 1, 4

rsave: 14, 16, 21.

sig: 11, 13, 14, 17, 18, 19, 20, 22.
sscanf: 3.

stderr: 1, 2, 3, 4, 10, 11, 12, 18, 19, 22.
t: 1, 4, 10.

table: 7, 8, 11, 19, 20.

thresh: 1, 12.

BACK-PDI
tsave: 14, 16, 21.
ull: 1, 4, 6, 8, 10, 14.
vbose: 1, 3, 11, 18, 22.
w: 4.
x: 4, 14.
xl: 1, 11, 13, 15, 16, 18, 19, 20, 21, 22.
y: 4.
z: 8.

§23

BACK-PDI NAMES OF THE SECTIONS

Absorb a forced move 22) Used in section 11.

Add ¢+ *(p+ k) to x(qg+ k), giving *(r + k) and carry ¢ 5) Used in section 4.
Advance to the next level with z; = 2l and goto b2 16) Used in section 11.
Backtrack through all cases 11) Used in section 1.

Global variables 8, 14> Used in section 1.

If there’s an easy way to prove that x; can’t be < zl, goto b5 18) Used in section 11.
Increase the current prefix, or goto b5 20) Used in section 18.

Initialize the data structures 15) Used in section 11.

Precompute the power tables 7) Used in section 1.

Print a solution and goto b5 17) Used in section 11.

Print the profile 2) Used in section 1.

Process the command line 3) Used in section 1.

Recompute a; and b; 19) Used in section 18.

Report the current state, if mems > thresh 12) Used in section 11.

Restore the previous state at level I 21) Used in section 11.

Subroutines 4, 6, 10> Used in section 1.

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

11

BACK-PDI

Section Page

0T o O 1 1
Tricky arithmetic 4 3
The algorithimo 11 5

I .o 23 10

	Intro
	Tricky arithmetic
	The algorithm
	Index
	Names of the sections
	Absorb a forced move
	Add c+*(p+k) to *(q+k), giving *(r+k) and carry c
	Advance to the next level with x_l=xl and goto b2
	Backtrack through all cases
	Global variables
	If there's an easy way to prove that x_l can't be <= xl, goto b5
	Increase the current prefix, or goto b5
	Initialize the data structures
	Precompute the power tables
	Print a solution and goto b5
	Print the profile
	Process the command line
	Recompute a_l and b_l
	Report the current state, if mems>=thresh
	Restore the previous state at level l
	Subroutines

