
§1 BACK-DISSECT INTRO 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Intro. This is an experimental program in which I try to cut a square into a given number of pieces,
in such a way that the pieces can be reassembled to fill another given shape. (Everything is done pixelwise,
without “diagonal cuts.”) The pieces can be rotated but not flipped over.

I don’t insist that the pieces be internally connected. With change files I can add further restrictions.
The input on stdin is a sequence of lines containing periods and asterisks, where the asterisks mark usable

positions. The number of asterisks should be a perfect square.
The desired number of pieces is a command-line parameter.

#define maxn 32 /∗ maximum number of input lines and characters per line ∗/
#define maxd 7 /∗ maximum number of pieces ∗/
#define bufsize maxn + 5 /∗ size of the input buffer ∗/
#include <stdio.h>

#include <stdlib.h>

〈Type definitions 25 〉
int d; /∗ command-line parameter: the number of colors ∗/
char buf [bufsize];
int maxrow ; /∗ largest row number used in the shape ∗/
int maxcol ; /∗ largest column number used in the shape ∗/
char aname [maxn ∗maxn][8]; /∗ symbolic names of the cells in the square ∗/
char bname [maxn ∗maxn][8]; /∗ symbolic names of the cells in the shape ∗/
int site [maxn ∗maxn]; /∗ where the cells are in the shape ∗/
int vbose ; /∗ level of verbosity ∗/
〈Global variables 11 〉;
〈Subroutines 33 〉;
main (int argc , char ∗argv [])
{

register int a, b, dd , i, j, k, l, ll , lll ,m, n,nn , slack ;

〈Process the command line 2 〉;
〈 Input the shape 3 〉;
〈Find all solutions 6 〉;
〈Print statistics about the run 41 〉;
}

2. 〈Process the command line 2 〉 ≡
if (argc < 2 ∨ sscanf (argv [1], "%d",&d) 6= 1) {

fprintf (stderr , "Usage: %s d [verbose] [extra verbose] < foo.dots\n", argv [0]);
exit (−1);
}
if (d < 2 ∨ d > maxd) {

fprintf (stderr , "The number of pieces should be between 2 and %d, not %d!\n",maxd , d);
exit (−2);
}
vbose = argc − 2;

This code is used in section 1.

https://cs.stanford.edu/~knuth/programs.html

2 INTRO BACK-DISSECT §3

3. #define place (i, j) ((i) ∗maxn + (j))

〈 Input the shape 3 〉 ≡
for (i = nn = 0; ; i++) {

if (¬fgets (buf , bufsize , stdin)) break;
if (i ≥ maxn) {

fprintf (stderr , "Recompile me: I allow at most %d lines of input!\n",maxn);
exit (−3);

}
〈 Input row i of the shape 4 〉;
}
maxrow = i− 1;
if (maxrow < 0) {

fprintf (stderr , "There was no input!\n");
exit (−666);
}
fprintf (stderr , "OK, I’ve got a shape with %d lines and %d cells.\n", i,nn);
for (n = 1; n ∗ n < nn ; n++) ; /∗ the shape has nn asterisks ∗/
if (n ∗ n 6= nn) {

fprintf (stderr , "The number of cells should be a positive perfect square!\n");
exit (−4);
}
for (i = 0; i < n; i++)

for (j = 0; j < n; j++) sprintf (aname [place (i, j)], "%02da%02d", i, j);
complement = place (n− 1, n− 1);

This code is used in section 1.

4. 〈 Input row i of the shape 4 〉 ≡
for (j = 0; buf [j] ∧ buf [j] 6= ’\n’; j++) {

if (buf [j] ≡ ’*’) {
if (j > maxcol) {

maxcol = j;
if (j ≥ maxn) {

fprintf (stderr , "Recompile me: I allow at most %d columns of input!\n",maxn);
exit (−5);
}

}
site [nn ++] = place (i, j);
sprintf (bname [place (i, j)], "%02db%02d", i, j);

}
}

This code is used in section 3.

§5 BACK-DISSECT THE ALGORITHM 3

5. The algorithm. Let’s consider a special case of the problem, in order to build some intuition and
clarify the concepts. Suppose the input is

..

.***

and we want to cut the eight cells specified by these asterisks into d = 2 pieces that can be assembled into
a 3× 3 square. You can probably see one way to do the job: Break off the two cells in the leftmost column,
rotate them 90◦, and stick them into the “jaws” of the remaining seven. How can we get a computer to
discover this?

A solution to the general problem can be regarded as a way to color the square with d colors. The cells of
the square are (i, j) for 0 ≤ i, j < n, and each of these cells is supposed to be mapped into a distinct position
(i′, j′) of the other shape, by rotation and shifting. The amount of rotation and shift must be the same for
all cells of the same color. In the example, we can color the cells

111

221

111

and map those of color 1 by shifting one space right; those of color 2 are mapped by, say, rotating 90◦

clockwise about the square’s center, then shifting one space left. The result is

2111

2..1

.111

as desired. These two color labelings are written to stdout .
There’s always a set of allowable shift amounts, (a0, b0), (a1, b1), . . . , (am−1, bm−1); these are the ways to

shift the square so that it overlaps the other shape in at least one cell. Our example problem has m = 29
such shifts, namely 2̄2̄, 2̄1̄, 2̄0, 2̄1, 2̄2, 2̄3, 1̄2̄, 1̄1̄, 1̄0, 1̄1, 1̄2, 1̄3, 02̄, 01̄, 00, 01, 02, 03, 12̄, 11̄, 10, 11, 12, 13,
21̄, 20, 21, 22, 23. (Here 2̄ stands for −2, and so on; our program uses row-and-column coordinates (i, j), so
the left coordinate of a shift refers to shifting downward and the right coordinate refers to shifting rightward.
This list of acceptable shifts includes all values (a, b) with −2 ≤ a ≤ 2 and −2 ≤ b ≤ 3 except for 22̄. The
latter is omitted, because shifting the square down 2 and left 2 does not intersect with the other shape.)

Each mapping can be specified by a pair (s, t) where 0 ≤ s < m and 0 ≤ t < 4, meaning “rotate 90t
degrees clockwise, then shift by (as, bs).” The outer loop of the algorithm below runs through all possible
mappings (s1, t1), . . . , (sd, td), and tries to solve the corresponding bipartite matching problem that involves
those maps. For example, if (s1, t1) is the map “shift right 1” and (s2, t2) is the map “rotate 90 and shift
left 1,” the bipartite graph for which a perfect matching describes a solution to the example problem has
the edges

0a0−−−0b1, 0a1−−−0b2, 0a2−−−0b3, 1a2−−−1b3, 2a0−−−2b1, 2a1−−−2b2, 2a2−−−2b3

for color 1 and
0a0−−−0b1, 0a2−−−2b1, 1a0−−−0b0, 1a1−−−1b0

for color 2. (Here 0a0 stands for the cell in row 0 and column 0 of the square, while 0b0 stands for the cell
in row 0 and column 0 of the other shape.) Notice that the edge 0a0 −−− 0b1 occurs twice, once for each
color; this leads to another solution:

211

221

111

2211

2..1

.111

4 THE ALGORITHM BACK-DISSECT §6

6. We save a factor of roughly d! by assuming that

(s1, t1) ≤ (s2, t2) ≤ · · · ≤ (sd, td), lexicographically,

because a permutation of the colors doesn’t change the solution. Furthermore we gain another factor of 4
by assuming that t1 = 0, because rotation is a symmetry of the square.

(I could actually have written (s1, t1) < · · · < (sd, td), with ‘<’ instead of ‘≤’; the case (sk, tk) =
(sk+1, tk+1) won’t occur in a solution for minimum d, because colors k and k + 1 could be merged in
such a case. However, equality might arise in extensions of this problem that involve further constraints.
For example, we might require color classes to be connected, or to have a bounded size.)

Most of the matching problems that arise are obviously unsolvable, because they have isolated vertices.
And most of those that remain are quite easy to solve, because many vertices have degree 1 and their partner
is forced. The algorithm looks at all

(
m+d−1

d

)
sets of shifts with s1 ≤ · · · ≤ sd, and explores further only if

those shifts cover all cells of the given shape. In the latter case, 4d−1 choices of t2, . . . , td are considered,
and the matching process is inaugurated only if those rotations cover all cells of the square.

For example, the only shifts that cover more than four cells of the shape in our toy problem are 00, 01,
and 02. At least one of these is needed, because we need to cover nine cells with two shifts. Thus

(
m+d−1

d

)
is not a scary number of subproblems to consider.

〈Find all solutions 6 〉 ≡
〈Generate the table of legal shifts 8 〉;
while (1) {
〈 If the shape isn’t covered by {s1, . . . , sd}, goto shapenot 9 〉;
counta ++;
〈Run through all sequences of shifts, (t2, . . . , td) 7 〉;

shapenot : for (k = d; s[k] ≡ m− 1; k−−) ;
if (k ≡ 0) break;
for (j = s[k] + 1; k ≤ d; k++) s[k] = j;
}

This code is used in section 1.

7. 〈Run through all sequences of shifts, (t2, . . . , td) 7 〉 ≡
for (k = 2; k ≤ d; k++) t[k] = 0;
while (1) {

for (k = 2; k ≤ d; k++)
if (s[k] ≡ s[k − 1] ∧ t[k] ≡ t[k − 1]) goto squarenot ;

〈 If the square isn’t covered by {(s1, t1), . . . , (sd, td)}, goto squarenot 10 〉;
countb ++;
〈Check for a perfect matching 12 〉;

squarenot : for (k = d; t[k] ≡ 3; k−−) t[k] = 0;
if (k ≡ 1) break;
t[k]++;
}

This code is used in section 6.

§8 BACK-DISSECT THE ALGORITHM 5

8. 〈Generate the table of legal shifts 8 〉 ≡
for (m = 0, a = 1− n; a ≤ maxrow ; a++)

for (b = 1− n; b ≤ maxcol ; b++) {
for (k = 0, i = (a < 0 ? −a : 0); i < n ∧ a + i ≤ maxrow ; i++)

for (j = (b < 0 ? −b : 0); j < n ∧ b + j ≤ maxcol ; j++)
if (bname [place (a + i, b + j)][0]) bcover [m][k++] = place (a + i, b + j);

if (k) {
if (vbose > 1) fprintf (stderr , " S[%d]=(%d,%d)\n",m, a, b);
shift [m] = place (a, b), bcovered [m++] = k;

}
}

if (vbose) fprintf (stderr , "There are %d legal shifts.\n",m);

This code is used in section 6.

9. 〈 If the shape isn’t covered by {s1, . . . , sd}, goto shapenot 9 〉 ≡
for (slack = −nn , k = 1; k ≤ d; k++) slack += bcovered [s[k]];
if (slack < 0) goto shapenot ;
for (k = 0; k < nn ; k++) blen [site [k]] = 0;
for (k = 1; k ≤ d; k++) {

for (i = 0, j = s[k]; i < bcovered [j]; i++) {
l = bcover [j][i];
if (¬blen [l]) blen [l] = 1;
else {

if (¬slack) goto shapenot ;
slack −−;
blen [l]++;

}
}
}

This code is used in section 6.

6 THE ALGORITHM BACK-DISSECT §10

10. While we make the second check for coverage, we also build the table of edges. Each edge is represented
by its color and the position of the neighbor.

#define pack (c, p) (((c)� 16) + (p))

〈 If the square isn’t covered by {(s1, t1), . . . , (sd, td)}, goto squarenot 10 〉 ≡
for (k = 0; k < nn ; k++) blen [site [k]] = 0;
for (i = 0; i < n; i++)

for (j = 0; j < n; j++) alen [place (i, j)] = 0;
for (slack = −nn , k = 1; k ≤ d; k++) slack += bcovered [s[k]];
for (k = 1; k ≤ d; k++) {

for (i = 0, j = s[k]; i < bcovered [j]; i++) {
l = bcover [j][i];
ll = l − shift [j];
if (t[k] & 1) {

register int q = ll /maxn , r = ll % maxn ;

ll = place (r, n− 1− q); /∗ rotate clockwise ∗/
}
if (t[k] & 2) ll = complement − ll ;
if (alen [ll]) {

if (¬slack) goto squarenot ;
slack −−;

}
aa [ll][alen [ll]++] = pack (k, l);
bb [l][blen [l]++] = pack (k, ll);

}
}

This code is used in section 7.

11. 〈Global variables 11 〉 ≡
char alen [maxn ∗maxn]; /∗ how many moves remain at this cell in the square ∗/
char blen [maxn ∗maxn]; /∗ how many moves remain at this cell in the shape ∗/
int aa [maxn ∗maxn][maxd]; /∗ moves for the square ∗/
int bb [maxn ∗maxn][maxd]; /∗ moves for the shape ∗/
int shift [4 ∗maxn ∗maxn]; /∗ offsets in the shifts ∗/
int complement ; /∗ offset used for 180-degree rotation ∗/
int bcover [4 ∗maxn ∗maxn][maxn ∗maxn]; /∗ cells covered by the shifts ∗/
int bcovered [4 ∗maxn ∗maxn]; /∗ how many cells are covered ∗/
int s[maxd + 1]; /∗ the current sequence of shifts ∗/
int t[maxd + 1]; /∗ the current sequence of rotations ∗/

See also sections 22 and 28.

This code is used in section 1.

§12 BACK-DISSECT PREMATCHING 7

12. Prematching. When we’ve managed to jump through all those hoops, we’re left with a perfect
matching problem. And most of the time that matching problem is quite trivial; so we might as well throw
out the easy cases before trying to do anything fancy.

In most cases some of the moves turn out to be forced, because a cell of the square has only one possible
shape-mate or vice versa. We start by making all of those no-brainer moves.

〈Check for a perfect matching 12 〉 ≡
if (vbose > 1) 〈Display the matching problem on stderr 13 〉;
〈Make forced moves from the square, or goto done 14 〉;
countc ++;
〈Make forced moves from the shape, or goto done 16 〉;
〈Make all remaining forced moves 18 〉;
countd ++;
〈Find all perfect matchings in the remaining bigraph 23 〉;
done :

This code is used in section 7.

13. 〈Display the matching problem on stderr 13 〉 ≡
{

fprintf (stderr , " Trying to match");
for (k = 1; k ≤ d; k++) fprintf (stderr , " %d^%d", s[k], t[k]);
fprintf (stderr , ":\n");
for (i = 0; i < n; i++)

for (j = 0; j < n; j++) {
fprintf (stderr , " %s −−", aname [place (i, j)]);
for (k = 0; k < alen [place (i, j)]; k++)

fprintf (stderr , " %s.%d", bname [aa [place (i, j)][k] & #ffff], aa [place (i, j)][k]� 16);
fprintf (stderr , "\n");

}
}

This code is used in section 12.

14. 〈Make forced moves from the square, or goto done 14 〉 ≡
for (acount = i = 0; i < n; i++)

for (j = 0; j < n; j++) {
if (alen [place (i, j)] > 1) apos [place (i, j)] = acount , alist [acount ++] = place (i, j);
else {
l = aa [place (i, j)][0] & #ffff;
if (¬blen [l]) goto done ; /∗ that position of the shape is already taken ∗/
acolor [place (i, j)] = bcolor [l] = aa [place (i, j)][0]� 16;
if (blen [l] ≡ 1) blen [l] = 0;
else 〈Remove all other edges that go to shape position l 15 〉;

}
}

This code is used in section 12.

8 PREMATCHING BACK-DISSECT §15

15. Premature optimization is the root of all evil in programming. Yet I couldn’t resist trying to make
this program efficient in special cases.

The removal of edges might reduce alen to 1 for square cells that are in the alist , thus forcing further
moves. I won’t worry about that until later.

〈Remove all other edges that go to shape position l 15 〉 ≡
{

for (k = 0; k < blen [l]; k++) {
ll = bb [l][k] & #ffff;
if (ll 6= place (i, j)) {

register int opp = (bb [l][k] & #ffff0000) + l; /∗ the opposite version of this edge ∗/
dd = alen [ll]− 1, alen [ll] = dd ;
if (¬dd) goto done ;
for (a = 0; aa [ll][a] 6= opp ; a++) ;
if (a > dd) debug ("ahi");
if (a 6= dd) aa [ll][a] = aa [ll][dd];

}
}
blen [l] = 0;
}

This code is used in section 14.

16. 〈Make forced moves from the shape, or goto done 16 〉 ≡
if (acount) {

for (bcount = i = 0; i < nn ; i++) {
l = site [i];
if (¬blen [l]) continue; /∗ we’ve been forced to match this cell already ∗/
if (blen [l] > 1) bpos [l] = bcount , blist [bcount ++] = l;
else {

ll = bb [l][0] & #ffff;
if (¬alen [ll]) goto done ; /∗ that position of the square is already taken ∗/
acolor [ll] = bcolor [l] = bb [l][0]� 16;
acount −−;
〈Make square cell ll inactive 17 〉;

}
}
if (acount 6= bcount) debug ("count mismatch");
}

This code is used in section 12.

§17 BACK-DISSECT PREMATCHING 9

17. 〈Make square cell ll inactive 17 〉 ≡
j = apos [ll];
if (j 6= acount) lll = alist [acount], alist [j] = lll , apos [lll] = j;
if (alen [ll] 6= 1) {

for (k = 0; k < alen [ll]; k++) {
lll = aa [ll][k] & #ffff;
if (lll 6= l) {

register int opp = (aa [ll][k] & #ffff0000) + ll ; /∗ the opposite version of this edge ∗/
dd = blen [lll]− 1, blen [lll] = dd ;
if (¬dd) goto done ;
for (b = 0; bb [lll][b] 6= opp ; b++) ;
if (b > dd) debug ("bhi");
if (b 6= dd) bb [lll][b] = bb [lll][dd];

}
}
alen [ll] = 0;
}

This code is used in sections 16 and 21.

18. Beware: I’m using acount and bcount in a somewhat tricky way here: The old acount is kept in bcount
so that a change can be detected. (Again I apologize for weak resistance.)

〈Make all remaining forced moves 18 〉 ≡
while (acount) {

for (i = 0; i < acount ; i++)
if (alen [ll = alist [i]] ≡ 1) 〈Force a move from ll 19 〉;

for (i = 0; i < acount ; i++)
if (blen [l = blist [i]] ≡ 1) 〈Force a move from l 21 〉;

if (acount ≡ bcount) break;
bcount = acount ;
}

This code is used in section 12.

19. 〈Force a move from ll 19 〉 ≡
{

acount −−;
if (i < acount) lll = alist [acount], alist [i] = lll , apos [lll] = i−−;
l = aa [ll][0] & #ffff;
acolor [ll] = bcolor [l] = aa [ll][0]� 16;
〈Make shape cell l inactive 20 〉;
}

This code is used in section 18.

10 PREMATCHING BACK-DISSECT §20

20. 〈Make shape cell l inactive 20 〉 ≡
j = bpos [l];
if (j < acount) lll = blist [acount], blist [j] = lll , bpos [lll] = j;
if (blen [l] 6= 1) {

for (k = 0; k < blen [l]; k++) {
lll = bb [l][k] & #ffff;
if (lll 6= ll) {

register int opp = (bb [l][k] & #ffff0000) + l; /∗ the opposite version of this edge ∗/
dd = alen [lll]− 1, alen [lll] = dd ;
if (¬dd) goto done ;
for (a = 0; aa [lll][a] 6= opp ; a++) ;
if (a > dd) debug ("chi");
if (a 6= dd) aa [lll][a] = aa [lll][dd];

}
}
}

This code is used in section 19.

21. 〈Force a move from l 21 〉 ≡
{

acount −−;
if (i < acount) lll = blist [acount], blist [i] = lll , bpos [lll] = i−−;
ll = bb [l][0] & #ffff;
acolor [ll] = bcolor [l] = bb [l][0]� 16;
〈Make square cell ll inactive 17 〉;
}

This code is used in section 18.

22. 〈Global variables 11 〉 +≡
int alist [maxn ∗maxn], blist [maxn ∗maxn]; /∗ list of cells not yet matched ∗/
int apos [maxn ∗maxn], bpos [maxn ∗maxn]; /∗ inverses of those lists ∗/
int acount , bcount ; /∗ the lengths of those lists ∗/
int acolor [maxn ∗maxn], bcolor [maxn ∗maxn]; /∗ color patterns in a solution ∗/
unsigned long long count ; /∗ the number of solutions ∗/
unsigned long long counta , countb , countc , countd , counte ;
/∗ the number of times we reached key points ∗/

§23 BACK-DISSECT MATCHING 11

23. Matching. Sometimes we actually have real work to do.
At first I didn’t think the problem would often be challenging. So I just used brute-force backtracking,

à la Algorithm 7.2.2B.
But a surprising number of large subproblems arose. So I’m now implementing a version of the original

dancing links algorithm, hacked from DANCE.

〈Find all perfect matchings in the remaining bigraph 23 〉 ≡
if (acount ≡ 0) 〈Print a solution 40 〉
else {
〈Local variables 27 〉;
counte ++;
if (vbose > 1) 〈Display the remaining matching problem on stderr 24 〉;
〈 Initialize for dancing 29 〉;
〈Dance 31 〉;
}

This code is used in section 12.

24. 〈Display the remaining matching problem on stderr 24 〉 ≡
{

fprintf (stderr , " which reduces to:\n");
for (i = 0; i < acount ; i++) {

fprintf (stderr , " %s −−", aname [alist [i]]);
for (k = 0; k < alen [alist [i]]; k++)

fprintf (stderr , " %s.%d", bname [aa [alist [i]][k] & #ffff], aa [alist [i]][k]� 16);
fprintf (stderr , "\n");

}
}

This code is used in section 23.

25. The DANCE program was developed to solve exact cover problems, and bipartite matching is a
particularly easy case of that problem: Every column to be covered is a primary column, and every row
specifies exactly two primary columns.

Each column of the exact cover matrix is represented by a column struct, and each row is represented as
a linked list of node structs. There’s one node for each nonzero entry in the matrix.

More precisely, the nodes are linked circularly within each row, in both directions. The nodes are also
linked circularly within each column; the column lists each include a header node, but the row lists do not.
Column header nodes are part of a column struct, which contains further info about the column.

Each node contains six fields. Four are the pointers of doubly linked lists, already mentioned; the fifth
points to the column containing the node; the sixth ties this node to the dissection problem we’re solving.

〈Type definitions 25 〉 ≡
typedef struct node struct {

struct node struct ∗left , ∗right ; /∗ predecessor and successor in row ∗/
struct node struct ∗up , ∗down ; /∗ predecessor and successor in column ∗/
struct col struct ∗col ; /∗ the column containing this node ∗/
int info ; /∗ square position, shape position, and color of this edge ∗/
} node;

See also section 26.

This code is used in section 1.

12 MATCHING BACK-DISSECT §26

26. Each column struct contains five fields: The head is a node that stands at the head of its list of nodes;
the len tells the length of that list of nodes, not counting the header; the name is a user-specified identifier;
next and prev point to adjacent columns, when this column is part of a doubly linked list.

As backtracking proceeds, nodes will be deleted from column lists when their row has been blocked by
other rows in the partial solution. But when backtracking is complete, the data structures will be restored
to their original state.

〈Type definitions 25 〉 +≡
typedef struct col struct {

node head ; /∗ the list header ∗/
int len ; /∗ the number of non-header items currently in this column’s list ∗/
char ∗name ; /∗ symbolic identification of the column, for printing ∗/
struct col struct ∗prev , ∗next ; /∗ neighbors of this column ∗/
} column;

27. One column struct is called the root. It serves as the head of the list of columns that need to be
covered, and is identifiable by the fact that its name is empty.

#define root col array [0] /∗ gateway to the unsettled columns ∗/
〈Local variables 27 〉 ≡

register column ∗cur col ;
register node ∗cur node ;

See also sections 32 and 38.

This code is used in section 23.

28. #define max cols (2 ∗maxn ∗maxn)
#define max nodes (maxn ∗maxn ∗maxn ∗maxn ∗maxd)

〈Global variables 11 〉 +≡
column col array [max cols + 2]; /∗ place for column records ∗/
node node array [max nodes]; /∗ place for nodes ∗/
column ∗acol [maxn ∗maxn], ∗bcol [maxn ∗maxn];
node ∗choice [maxn ∗maxn]; /∗ the row and column chosen on each level ∗/

29. 〈 Initialize for dancing 29 〉 ≡
for (i = 0; i < acount ; i++) {

ll = alist [i], l = blist [i];
acol [ll] = &col array [i + i + 1], col array [i + i + 1].name = aname [ll];
bcol [l] = &col array [i + i + 2], col array [i + i + 2].name = bname [l];
}
root .prev = &col array [acount + acount];
root .prev~next = &root ;
for (cur col = col array + 1; cur col ≤ root .prev ; cur col ++) {

cur col~head .up = cur col~head .down = &cur col~head ;
cur col~ len = 0;
cur col~prev = cur col − 1, (cur col − 1)~next = cur col ;
}
for (cur node = node array , i = 0; i < acount ; i++) {

ll = alist [i];
for (k = 0; k < alen [ll]; k++) 〈Create the node for the kth edge from ll 30 〉;
}

This code is used in section 23.

§30 BACK-DISSECT MATCHING 13

30. 〈Create the node for the kth edge from ll 30 〉 ≡
{

register column ∗ccol ;

l = aa [ll][k] & #ffff;
j = ((aa [ll][k]� 16)� 24) + (l� 12) + ll ;
ccol = acol [ll];
cur node~ left = cur node~right = cur node + 1;
cur node~col = ccol , cur node~ info = j;
cur node~up = ccol~head .up , ccol~head .up~down = cur node ;
ccol~head .up = cur node , cur node~down = &ccol~head ;
ccol~ len ++;
cur node ++;
ccol = bcol [l];
cur node~ left = cur node~right = cur node − 1;
cur node~col = ccol , cur node~ info = j;
cur node~up = ccol~head .up , ccol~head .up~down = cur node ;
ccol~head .up = cur node , cur node~down = &ccol~head ;
ccol~ len ++;
cur node ++;
}

This code is used in section 29.

31. Our strategy for generating all exact covers will be to repeatedly choose always the column that appears
to be hardest to cover, namely the column with shortest list, from all columns that still need to be covered.
And we explore all possibilities via depth-first search.

The neat part of this algorithm is the way the lists are maintained. Depth-first search means last-in-first-
out maintenance of data structures; and it turns out that we need no auxiliary tables to undelete elements
from lists when backing up. The nodes removed from doubly linked lists remember their former neighbors,
because we do no garbage collection.

The basic operation is “covering a column.” This means removing it from the list of columns needing to
be covered, and “blocking” its rows: removing nodes from other lists whenever they belong to a row of a
node in this column’s list.

〈Dance 31 〉 ≡
level = 0;

forward : 〈Set best col to the best column for branching 37 〉;
cover (best col);
cur node = choice [level] = best col~head .down ;

advance :
if (cur node ≡ &(best col~head)) goto backup ;
if (vbose > 1) fprintf (stderr , "L%d: %s %s\n", level , cur node~col~name , cur node~right~col~name);
〈Cover all other columns of cur node 35 〉;
if (root .next ≡ &root) 〈Record solution and goto recover 39 〉;
level ++;
goto forward ;

backup : uncover (best col);
if (level ≡ 0) goto done ;
level −−;
cur node = choice [level]; best col = cur node~col ;

recover : 〈Uncover all other columns of cur node 36 〉;
cur node = choice [level] = cur node~down ; goto advance ;

This code is used in section 23.

14 MATCHING BACK-DISSECT §32

32. 〈Local variables 27 〉 +≡
register int level ;
register column ∗best col ; /∗ column chosen for branching ∗/

33. When a row is blocked, it leaves all lists except the list of the column that is being covered. Thus a
node is never removed from a list twice.

〈Subroutines 33 〉 ≡
cover (c)

column ∗c;
{ register column ∗l, ∗r;

register node ∗rr , ∗nn , ∗uu , ∗dd ;
register k = 1; /∗ updates ∗/
l = c~prev ; r = c~next ;
l~next = r; r~prev = l;
for (rr = c~head .down ; rr 6= &(c~head); rr = rr~down)

for (nn = rr~right ; nn 6= rr ; nn = nn~right) {
uu = nn~up ; dd = nn~down ;
uu~down = dd ; dd~up = uu ;
k++;
nn~col~ len−−;

}
}

See also sections 34 and 42.

This code is used in section 1.

34. Uncovering is done in precisely the reverse order. The pointers thereby execute an exquisitely choreo-
graphed dance which returns them almost magically to their former state.

〈Subroutines 33 〉 +≡
uncover (c)

column ∗c;
{ register column ∗l, ∗r;

register node ∗rr , ∗nn , ∗uu , ∗dd ;

for (rr = c~head .up ; rr 6= &(c~head); rr = rr~up)
for (nn = rr~ left ; nn 6= rr ; nn = nn~ left) {

uu = nn~up ; dd = nn~down ;
uu~down = dd~up = nn ;
nn~col~ len ++;

}
l = c~prev ; r = c~next ;
l~next = r~prev = c;
}

35. 〈Cover all other columns of cur node 35 〉 ≡
cover (cur node~right~col);

This code is used in section 31.

§36 BACK-DISSECT MATCHING 15

36. We included left links, thereby making the rows doubly linked, so that columns would be uncovered
in the correct LIFO order in this part of the program. (The uncover routine itself could have done its job
with right links only.) (Think about it.)

(Thus the present implementation is overkill, for the special case of bipartite matching.)

〈Uncover all other columns of cur node 36 〉 ≡
uncover (cur node~ left~col);

This code is used in section 31.

37. 〈Set best col to the best column for branching 37 〉 ≡
minlen = max nodes ;
if (vbose > 2) fprintf (stderr , "Level %d:", level);
for (cur col = root .next ; cur col 6= &root ; cur col = cur col~next) {

if (vbose > 2) fprintf (stderr , " %s(%d)", cur col~name , cur col~ len);
if (cur col~ len < minlen) best col = cur col ,minlen = cur col~ len ;
}
if (vbose > 2) fprintf (stderr , " branching on %s(%d)\n", best col~name ,minlen);

This code is used in section 31.

38. 〈Local variables 27 〉 +≡
register int minlen ;
register int j, k, x;

39. 〈Record solution and goto recover 39 〉 ≡
{

if (vbose > 1) fprintf (stderr , "(a good dance)\n");
for (k = 0; k ≤ level ; k++) {
j = choice [k]~ info ;
acolor [j & #fff] = bcolor [(j � 12) & #fff] = j � 24;

}
〈Print a solution 40 〉;
goto recover ;
}

This code is used in section 31.

16 MATCHING BACK-DISSECT §40

40. 〈Print a solution 40 〉 ≡
{

register int OK = 1; /∗ this (declaration facilitates change files) ∗/
if (OK) {

count ++;
printf ("Solution %lld, from", count);
for (k = 1; k ≤ d; k++) printf (" %d^%d", s[k], t[k]);
printf (":\n");
for (i = 0; i < n ∨ i ≤ maxrow ; i++) {

for (j = 0; j < n; j++) printf ("%c", i < n ? acolor [place (i, j)] + ’0’ : ’ ’);
if (i ≤ maxrow) {

printf (" ");
for (j = 0; j ≤ maxcol ; j++)

printf ("%c", bname [place (i, j)][0] ? bcolor [place (i, j)] + ’0’ : ’.’);
}
printf ("\n");

}
}
}

This code is used in sections 23 and 39.

41. 〈Print statistics about the run 41 〉 ≡
fprintf (stderr , "%lld solutions; run stats %d,%lld,%lld,%lld,%lld,%lld.\n", count ,m, counta ,

countb , countc , countd , counte);

This code is used in section 1.

42. 〈Subroutines 33 〉 +≡
void debug (char ∗s)
{

fflush (stdout);
fprintf (stderr , "***%s!\n", s);
}

§43 BACK-DISSECT INDEX 17

43. Index.

a: 1.
aa : 10, 11, 13, 14, 15, 17, 19, 20, 24, 30.
acol : 28, 29, 30.
acolor : 14, 16, 19, 21, 22, 39, 40.
acount : 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 29.
advance : 31.
alen : 10, 11, 13, 14, 15, 16, 17, 18, 20, 24, 29.
alist : 14, 15, 17, 18, 19, 22, 24, 29.
aname : 1, 3, 13, 24, 29.
apos : 14, 17, 19, 22.
argc : 1, 2.
argv : 1, 2.
b: 1.
backup : 31.
bb : 10, 11, 15, 16, 17, 20, 21.
bcol : 28, 29, 30.
bcolor : 14, 16, 19, 21, 22, 39, 40.
bcount : 16, 18, 22.
bcover : 8, 9, 10, 11.
bcovered : 8, 9, 10, 11.
best col : 31, 32, 37.
blen : 9, 10, 11, 14, 15, 16, 17, 18, 20.
blist : 16, 18, 20, 21, 22, 29.
bname : 1, 4, 8, 13, 24, 29, 40.
bpos : 16, 20, 21, 22.
buf : 1, 3, 4.
bufsize : 1, 3.
c: 33, 34.
ccol : 30.
choice : 28, 31, 39.
col : 25, 30, 31, 33, 34, 35, 36.
col array : 27, 28, 29.
col struct: 25, 26.
column: 26, 27, 28, 30, 32, 33, 34.
complement : 3, 10, 11.
count : 22, 40, 41.
counta : 6, 22, 41.
countb : 7, 22, 41.
countc : 12, 22, 41.
countd : 12, 22, 41.
counte : 22, 23, 41.
cover : 31, 33, 35.
cur col : 27, 29, 37.
cur node : 27, 29, 30, 31, 35, 36.
d: 1.
dd : 1, 15, 17, 20, 33, 34.
debug : 15, 16, 17, 20, 42.
done : 12, 14, 15, 16, 17, 20, 31.
down : 25, 29, 30, 31, 33, 34.
exit : 2, 3, 4.
fflush : 42.

fgets : 3.
forward : 31.
fprintf : 2, 3, 4, 8, 13, 24, 31, 37, 39, 41, 42.
head : 26, 29, 30, 31, 33, 34.
i: 1.
info : 25, 30, 39.
j: 1, 38.
k: 1, 33, 38.
l: 1, 33, 34.
left : 25, 30, 34, 36.
len : 26, 29, 30, 33, 34, 37.
level : 31, 32, 37, 39.
ll : 1, 10, 15, 16, 17, 18, 19, 20, 21, 29, 30.
lll : 1, 17, 19, 20, 21.
m: 1.
main : 1.
max cols : 28.
max nodes : 28, 37.
maxcol : 1, 4, 8, 40.
maxd : 1, 2, 11, 28.
maxn : 1, 3, 4, 10, 11, 22, 28.
maxrow : 1, 3, 8, 40.
minlen : 37, 38.
n: 1.
name : 26, 27, 29, 31, 37.
next : 26, 29, 31, 33, 34, 37.
nn : 1, 3, 4, 9, 10, 16, 33, 34.
node: 25, 26, 27, 28, 33, 34.
node array : 28, 29.
node struct: 25.
OK: 40.
opp : 15, 17, 20.
pack : 10.
place : 3, 4, 8, 10, 13, 14, 15, 40.
prev : 26, 29, 33, 34.
printf : 40.
q: 10.
r: 10, 33, 34.
recover : 31, 39.
right : 25, 30, 31, 33, 35, 36.
root : 27, 29, 31, 37.
rr : 33, 34.
s: 11, 42.
shapenot : 6, 9.
shift : 8, 10, 11.
site : 1, 4, 9, 10, 16.
slack : 1, 9, 10.
sprintf : 3, 4.
squarenot : 7, 10.
sscanf : 2.
stderr : 2, 3, 4, 8, 13, 24, 31, 37, 39, 41, 42.

18 INDEX BACK-DISSECT §43

stdin : 1, 3.
stdout : 5, 42.
t: 11.
uncover : 31, 34, 36.
up : 25, 29, 30, 33, 34.
uu : 33, 34.
vbose : 1, 2, 8, 12, 23, 31, 37, 39.
x: 38.

BACK-DISSECT NAMES OF THE SECTIONS 19

〈Check for a perfect matching 12 〉 Used in section 7.

〈Cover all other columns of cur node 35 〉 Used in section 31.

〈Create the node for the kth edge from ll 30 〉 Used in section 29.

〈Dance 31 〉 Used in section 23.

〈Display the matching problem on stderr 13 〉 Used in section 12.

〈Display the remaining matching problem on stderr 24 〉 Used in section 23.

〈Find all perfect matchings in the remaining bigraph 23 〉 Used in section 12.

〈Find all solutions 6 〉 Used in section 1.

〈Force a move from ll 19 〉 Used in section 18.

〈Force a move from l 21 〉 Used in section 18.

〈Generate the table of legal shifts 8 〉 Used in section 6.

〈Global variables 11, 22, 28 〉 Used in section 1.

〈 If the shape isn’t covered by {s1, . . . , sd}, goto shapenot 9 〉 Used in section 6.

〈 If the square isn’t covered by {(s1, t1), . . . , (sd, td)}, goto squarenot 10 〉 Used in section 7.

〈 Initialize for dancing 29 〉 Used in section 23.

〈 Input row i of the shape 4 〉 Used in section 3.

〈 Input the shape 3 〉 Used in section 1.

〈Local variables 27, 32, 38 〉 Used in section 23.

〈Make all remaining forced moves 18 〉 Used in section 12.

〈Make forced moves from the shape, or goto done 16 〉 Used in section 12.

〈Make forced moves from the square, or goto done 14 〉 Used in section 12.

〈Make shape cell l inactive 20 〉 Used in section 19.

〈Make square cell ll inactive 17 〉 Used in sections 16 and 21.

〈Print a solution 40 〉 Used in sections 23 and 39.

〈Print statistics about the run 41 〉 Used in section 1.

〈Process the command line 2 〉 Used in section 1.

〈Record solution and goto recover 39 〉 Used in section 31.

〈Remove all other edges that go to shape position l 15 〉 Used in section 14.

〈Run through all sequences of shifts, (t2, . . . , td) 7 〉 Used in section 6.

〈Set best col to the best column for branching 37 〉 Used in section 31.

〈Subroutines 33, 34, 42 〉 Used in section 1.

〈Type definitions 25, 26 〉 Used in section 1.

〈Uncover all other columns of cur node 36 〉 Used in section 31.

BACK-DISSECT

Section Page
Intro . 1 1
The algorithm . 5 3
Prematching . 12 7
Matching . 23 11
Index . 43 17

	Intro
	The algorithm
	Prematching
	Matching
	Index
	Names of the sections
	Check for a perfect matching
	Cover all other columns of cur_node
	Create the node for the kth edge from ll
	Dance
	Display the matching problem on stderr
	Display the remaining matching problem on stderr
	Find all perfect matchings in the remaining bigraph
	Find all solutions
	Force a move from ll
	Force a move from l
	Generate the table of legal shifts
	Global variables
	If the shape isn't covered by {s_1,,s_d}, goto shapenot
	If the square isn't covered by {(s_1,t_1),,(s_d,t_d)}, goto squarenot
	Initialize for dancing
	Input row i of the shape
	Input the shape
	Local variables
	Make all remaining forced moves
	Make forced moves from the shape, or goto done
	Make forced moves from the square, or goto done
	Make shape cell l inactive
	Make square cell ll inactive
	Print a solution
	Print statistics about the run
	Process the command line
	Record solution and goto recover
	Remove all other edges that go to shape position l
	Run through all sequences of shifts, (t_2,,t_d)
	Set best_col to the best column for branching
	Subroutines
	Type definitions
	Uncover all other columns of cur_node

