
§1 ANTISLIDE3 ANTISLIDING BLOCKS 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Antisliding blocks. This program illustrates techniques of finding all nonequivalent solutions to an
exact cover problem. I wrote it after returning from Japan in November, 1996, because Nob was particularly
interested in the answers. (Two years ago I had written a similar program, which however did not remove
inequivalent solutions; in 1994 I removed them by hand after generating all possible solutions.)

The general question is to pack 2 × 2 × 1 blocks into an l ×m × n array in such a way that the blocks
cannot slide. This means that there should be at least one occupied cell touching each of the six faces of the
block; cells outside the array are always considered to be occupied. For example, one such solution when
l = m = n = 3 is

1 1 .

1 1 2

3 3 2

5 4 4

5 . 2

3 3 2

5 4 4

5 6 6

. 6 6 .

But
1 1 2

1 1 2

3 3 .

4 4 2

. . 2

3 3 .

4 4 .

. 5 5

. 5 5

is not a solution, because blocks 2, 3, and 5 can slide.
Two solutions are considered to be the same if they are isomorphic—that is, if there’s a symmetry that

takes one into the other. In this sense the solution

1 1 .

2 3 3

2 3 3

1 1 4

2 . 4

2 5 5

6 6 4

6 6 4

. 5 5

is no different from the first solution given above. Up to 48 symmetries are possible, obtained by permuting
and complementing the coordinates in three-dimensional space. It turns out that the 3× 3× 3 case has only
one solution, besides the trivial case in which no blocks at all are present.

Before writing this program I tried to find highly symmetric solutions to the 4 × 4 × 4 problem without
using a computer. I found a beautiful 12-block solution

. 1 1 .

2 1 1 3

2 4 4 3

. 4 4 .

5 5 6 6

2 . . 3

2 . . 3

7 7 8 8

5 5 6 6

9 . . A

9 . . A

7 7 8 8

. B B .

9 B B A

9 C C A

. C C .

which has 24 symmetries and leaves the center cells and corner cells empty. But I saw no easy way to prove
that an antisliding arrangement with fewer than 12 blocks is possible. This experience whetted my curiosity
and got me “hooked” on the problem, so I couldn’t resist writing this program even though I have many
other urgent things to do. I’m considering it the final phase of my exciting visit to Japan. (I apologize for
not having time to refine it further.)

Note: The program assumes that l = m if any two of the dimensions are equal. Then the number of
symmetries is 8 if l 6= m, or 16 if l = m 6= n, or 48 if l = m = n.

#define ll 4 /∗ the first dimension ∗/
#define mm 4 /∗ the second dimension ∗/
#define nn 4 /∗ the third ∗/
#define ss 48 /∗ the number of symmetries ∗/
#include <stdio.h>

〈Type definitions 3 〉
〈Global variables 2 〉
〈Subroutines 19 〉
main (argc , argv)

https://cs.stanford.edu/~knuth/programs.html

2 ANTISLIDING BLOCKS ANTISLIDE3 §1

int argc ;
char ∗argv [];

{
〈Local variables 24 〉;
if (argc > 1) {

verbose = argc − 1; /∗ set verbose to the number of command-line arguments ∗/
sscanf (argv [1], "%d",&spacing);

}
〈Set up data structures for antisliding blocks 8 〉;
〈Backtrack through all solutions 25 〉;
〈Make redundancy checks to see if the backtracking was consistent 47 〉;
printf ("Altogether %d solutions.\n", count);
if (verbose) 〈Print a profile of the search tree 45 〉;
}

2. 〈Global variables 2 〉 ≡
int verbose = 0; /∗ > 0 to show solutions, > 1 to show partial ones too ∗/
int count = 0; /∗ number of antisliding solutions found so far ∗/
int spacing = 1; /∗ if verbose , we output solutions when count % spacing ≡ 0 ∗/
int profile [ll ∗mm ∗nn +1], prof syms [ll ∗mm ∗nn +1], prof cons [ll ∗mm ∗nn +1], prof frcs [ll ∗mm ∗nn +1];

/∗ statistics ∗/
See also sections 5, 7, and 23.

This code is used in section 1.

§3 ANTISLIDE3 DATA STRUCTURES 3

3. Data structures. An exact cover problem is defined by a matrix M of 0s and 1s. The goal is to find
a set of rows containing exactly one 1 in each column.

In our case the rows stand for possible placements of blocks; the columns stand for cells of the l ×m× n
array. There are l(m− 1)(n− 1) + (l− 1)m(n− 1) + (l− 1)(m− 1)n rows for placements of 2× 2× 1 blocks
and an additional lmn rows for 1× 1× 1 blocks that correspond to unoccupied cells.

The heart of this program is its data structure for the matrix M . There is one node for each 1 in M , and
the 1s of each row are cyclically linked via left and right fields. Each node also contains an array of pointers
sym [0], sym [1], . . . , which point to the nodes that are equivalent under each symmetry of the problem.
Furthermore, the nodes for 1s in each column are doubly linked together by up and down fields.

Although the pointers are called left , right , up , and down , the row lists and column lists need not actually
be linked together in any particular order. The row lists remain unchanged, but the column lists will change
dynamically because we will implicitly remove rows from M that contain 1s in columns that are already
covered as we are constructing a solution.

〈Type definitions 3 〉 ≡
typedef struct node struct {

struct node struct ∗left , ∗right ; /∗ predecessor and successor in row ∗/
struct node struct ∗up , ∗down ; /∗ predecessor and successor in column ∗/
struct node struct ∗sym [ss]; /∗ symmetric equivalents ∗/
struct row struct ∗row ; /∗ the row containing this node ∗/
struct col struct ∗col ; /∗ the column containing this node ∗/
} node;

See also sections 4 and 6.

This code is used in section 1.

4. Each column corresponds to a cell of the array. Special information for each cell is stored in an
appropriate record, which points to the 1 × 1 × 1 block node for that cell (also called the cell head). We
maintain a doubly linked list of the cells that still need to be covered, using next and prev fields; also a count
of the number of ways that remain to cover a given cell. A few other items are maintained to facilitate the
bookkeeping.

〈Type definitions 3 〉 +≡
typedef struct col struct {

node head ; /∗ the empty option for this cell ∗/
int len ; /∗ the number of options for covering it ∗/
int init len ; /∗ initial value of len , for redundancy check ∗/
struct col struct ∗prev , ∗next ; /∗ still-to-be-covered neighbors ∗/
node ∗filled ; /∗ node by which this column was filled ∗/
int empty ; /∗ is this cell covered by the empty (1× 1× 1) option? ∗/
int nonempty ; /∗ is this cell known to be nonempty? ∗/
char name [4]; /∗ coordinates of this cell, as a string for printing ∗/
struct col struct ∗invsym [ss]; /∗ reverse pointers to sym in head ∗/

} cell;

5. One cell struct is called the root. It serves as the head of the list of columns that need to be covered,
and is identifiable by the fact that its name is empty.

〈Global variables 2 〉 +≡
cell root ; /∗ gateway to the unsettled columns ∗/

4 DATA STRUCTURES ANTISLIDE3 §6

6. The rows of M also have special data structures: We need to know which sets of two or four cells are
neighbors of the faces of a block. These are listed in the option records, followed by null pointers.

〈Type definitions 3 〉 +≡
typedef struct row struct {

cell ∗neighbor [22]; /∗ sets of cells that shouldn’t all be empty ∗/
int neighbor ptr ; /∗ size of the neighbor info ∗/
} option;

§7 ANTISLIDE3 INITIALIZATION 5

7. Initialization. Like most table-driven programs, this one needs to construct its tables, using a rather
long and boring routine. In compensation, we will be able to avoid tedious details in the rest of the code.

〈Global variables 2 〉 +≡
cell cells [ll][mm][nn]; /∗ columns of the matrix ∗/
option opt [ll][mm][nn], optx [ll][mm − 1][nn − 1], opty [ll − 1][mm][nn − 1], optz [ll − 1][mm − 1][nn];
/∗ rows ∗/

node blockx [ll][mm − 1][nn − 1][4], blocky [ll − 1][mm][nn − 1][4], blockz [ll − 1][mm − 1][nn][4];
/∗ nodes ∗/

8. 〈Set up data structures for antisliding blocks 8 〉 ≡
〈Set up the cells 9 〉;
〈Set up the options 11 〉;
〈Set up the nodes 15 〉;

This code is used in section 1.

9. 〈Set up the cells 9 〉 ≡
q = &root ;
for (i = 0; i < ll ; i++)

for (j = 0; j < mm ; j++)
for (k = 0; k < nn ; k++) {
c = &cells [i][j][k];
q~next = c;
c~prev = q;
q = c;
p = &(c~head);
p~ left = p~right = p~up = p~down = p;
p~row = &opt [i][j][k];
p~col = c;
〈Fill in the symmetry pointers of c 10 〉;
c~name [0] = i+ ’0’;
c~name [1] = j + ’0’;
c~name [2] = k + ’0’;
c~ len = 1;

}
q~next = &root ;
root .prev = q;

This code is used in section 8.

6 INITIALIZATION ANTISLIDE3 §10

10. 〈Fill in the symmetry pointers of c 10 〉 ≡
for (s = 0; s < ss ; s++) {

switch (s� 3) {
case 0: ii = i;

jj = j;
kk = k;
break;

case 1: ii = j;
jj = i;
kk = k;
break;

case 2: ii = k;
jj = j;
kk = i;
break;

case 3: ii = i;
jj = k;
kk = j;
break;

case 4: ii = j;
jj = k;
kk = i;
break;

case 5: ii = k;
jj = i;
kk = j;
break;

}
if (s& 4) ii = ll − 1− ii ;
if (s& 2) jj = mm − 1− jj ;
if (s& 1) kk = nn − 1− kk ;
p~sym [s] = &(cells [ii][jj][kk].head);
cells [ii][jj][kk].invsym [s] = c;
}

This code is used in section 9.

11. 〈Set up the options 11 〉 ≡
〈Set up the optx options 12 〉;
〈Set up the opty options 13 〉;
〈Set up the optz options 14 〉;

This code is used in section 8.

§12 ANTISLIDE3 INITIALIZATION 7

12. #define ox (j1 , k1 , j2 , k2)
{

optx [i][j][k].neighbor [kk ++] = &cells [i][j1][k1];
optx [i][j][k].neighbor [kk ++] = &cells [i][j2][k2];
optx [i][j][k].neighbor [kk ++] = Λ;
}

#define oxx (i1)
{

optx [i][j][k].neighbor [kk ++] = &cells [i1][j][k];
optx [i][j][k].neighbor [kk ++] = &cells [i1][j][k + 1];
optx [i][j][k].neighbor [kk ++] = &cells [i1][j + 1][k];
optx [i][j][k].neighbor [kk ++] = &cells [i1][j + 1][k + 1];
optx [i][j][k].neighbor [kk ++] = Λ;
}

〈Set up the optx options 12 〉 ≡
for (i = 0; i < ll ; i++)

for (j = 0; j < mm − 1; j++)
for (k = 0; k < nn − 1; k++) {

kk = 0;
if (j) ox (j − 1, k, j − 1, k + 1);
if (j < mm − 2) ox (j + 2, k, j + 2, k + 1);
if (k) ox (j, k − 1, j + 1, k − 1);
if (k < nn − 2) ox (j, k + 2, j + 1, k + 2);
if (i) oxx (i− 1);
if (i < ll − 1) oxx (i+ 1);
optx [i][j][k].neighbor ptr = kk ;

}
This code is used in section 11.

8 INITIALIZATION ANTISLIDE3 §13

13. #define oy (i1 , k1 , i2 , k2)
{

opty [i][j][k].neighbor [kk ++] = &cells [i1][j][k1];
opty [i][j][k].neighbor [kk ++] = &cells [i2][j][k2];
opty [i][j][k].neighbor [kk ++] = Λ;
}

#define oyy (j1)
{

opty [i][j][k].neighbor [kk ++] = &cells [i][j1][k];
opty [i][j][k].neighbor [kk ++] = &cells [i][j1][k + 1];
opty [i][j][k].neighbor [kk ++] = &cells [i+ 1][j1][k];
opty [i][j][k].neighbor [kk ++] = &cells [i+ 1][j1][k + 1];
opty [i][j][k].neighbor [kk ++] = Λ;
}

〈Set up the opty options 13 〉 ≡
for (i = 0; i < ll − 1; i++)

for (j = 0; j < mm ; j++)
for (k = 0; k < nn − 1; k++) {

kk = 0;
if (i) oy (i− 1, k, i− 1, k + 1);
if (i < ll − 2) oy (i+ 2, k, i+ 2, k + 1);
if (k) oy (i, k − 1, i+ 1, k − 1);
if (k < nn − 2) oy (i, k + 2, i+ 1, k + 2);
if (j) oyy (j − 1);
if (j < mm − 1) oyy (j + 1);
opty [i][j][k].neighbor ptr = kk ;

}
This code is used in section 11.

§14 ANTISLIDE3 INITIALIZATION 9

14. #define oz (i1 , j1 , i2 , j2)
{

optz [i][j][k].neighbor [kk ++] = &cells [i1][j1][k];
optz [i][j][k].neighbor [kk ++] = &cells [i2][j2][k];
optz [i][j][k].neighbor [kk ++] = Λ;
}

#define ozz (k1)
{

optz [i][j][k].neighbor [kk ++] = &cells [i][j][k1];
optz [i][j][k].neighbor [kk ++] = &cells [i][j + 1][k1];
optz [i][j][k].neighbor [kk ++] = &cells [i+ 1][j][k1];
optz [i][j][k].neighbor [kk ++] = &cells [i+ 1][j + 1][k1];
optz [i][j][k].neighbor [kk ++] = Λ;
}

〈Set up the optz options 14 〉 ≡
for (i = 0; i < ll − 1; i++)

for (j = 0; j < mm − 1; j++)
for (k = 0; k < nn ; k++) {

kk = 0;
if (i) oz (i− 1, j, i− 1, j + 1);
if (i < ll − 2) oz (i+ 2, j, i+ 2, j + 1);
if (j) oz (i, j − 1, i+ 1, j − 1);
if (j < mm − 2) oz (i, j + 2, i+ 1, j + 2);
if (k) ozz (k − 1);
if (k < nn − 1) ozz (k + 1);
optz [i][j][k].neighbor ptr = kk ;

}
This code is used in section 11.

15. 〈Set up the nodes 15 〉 ≡
〈Set up the blockx nodes 16 〉;
〈Set up the blocky nodes 17 〉;
〈Set up the blockz nodes 18 〉;

This code is used in section 8.

10 INITIALIZATION ANTISLIDE3 §16

16. 〈Set up the blockx nodes 16 〉 ≡
for (i = 0; i < ll ; i++)

for (j = 0; j < mm − 1; j++)
for (k = 0; k < nn − 1; k++) {

for (t = 0; t < 4; t++) {
p = &blockx [i][j][k][t];
p~right = &blockx [i][j][k][(t+ 1) & 3];
p~ left = &blockx [i][j][k][(t+ 3) & 3];
c = &cells [i][j + ((t& 2)� 1)][k + (t& 1)];
pp = c~head .up ;
pp~down = c~head .up = p;
p~up = pp ;
p~down = &(c~head);
p~row = &optx [i][j][k];
p~col = c;
c~ len ++;
}
make syms (blockx [i][j][k]);

}
This code is used in section 15.

17. 〈Set up the blocky nodes 17 〉 ≡
for (i = 0; i < ll − 1; i++)

for (j = 0; j < mm ; j++)
for (k = 0; k < nn − 1; k++) {

for (t = 0; t < 4; t++) {
p = &blocky [i][j][k][t];
p~right = &blocky [i][j][k][(t+ 1) & 3];
p~ left = &blocky [i][j][k][(t+ 3) & 3];
c = &cells [i+ ((t& 2)� 1)][j][k + (t& 1)];
pp = c~head .up ;
pp~down = c~head .up = p;
p~up = pp ;
p~down = &(c~head);
p~row = &opty [i][j][k];
p~col = c;
c~ len ++;

}
make syms (blocky [i][j][k]);
}

This code is used in section 15.

§18 ANTISLIDE3 INITIALIZATION 11

18. 〈Set up the blockz nodes 18 〉 ≡
for (i = 0; i < ll − 1; i++)

for (j = 0; j < mm − 1; j++)
for (k = 0; k < nn ; k++) {

for (t = 0; t < 4; t++) {
p = &blockz [i][j][k][t];
p~right = &blockz [i][j][k][(t+ 1) & 3];
p~ left = &blockz [i][j][k][(t+ 3) & 3];
c = &cells [i+ ((t& 2)� 1)][j + (t& 1)][k];
pp = c~head .up ;
pp~down = c~head .up = p;
p~up = pp ;
p~down = &(c~head);
p~row = &optz [i][j][k];
p~col = c;
c~ len ++;
}
make syms (blockz [i][j][k]);

}
This code is used in section 15.

19. 〈Subroutines 19 〉 ≡
make syms (pp)

node pp [];
{

register char ∗q;
register int s, t, imax , imin , jmax , jmin , kmax , kmin , i, j, k;

for (s = 0; s < ss ; s++) {
imax = jmax = kmax = −1;
imin = jmin = kmin = 1000;
for (t = 0; t < 4; t++) {
q = pp [t].col~head .sym [s]~col~name ;
i = q[0]− ’0’;
j = q[1]− ’0’;
k = q[2]− ’0’;
if (i < imin) imin = i;
if (i > imax) imax = i;
if (j < jmin) jmin = j;
if (j > jmax) jmax = j;
if (k < kmin) kmin = k;
if (k > kmax) kmax = k;

}
if (imin ≡ imax) 〈Map to blockx nodes 20 〉
else if (jmin ≡ jmax) 〈Map to blocky nodes 21 〉
else 〈Map to blockz nodes 22 〉;

}
}

See also sections 27, 28, and 43.

This code is used in section 1.

12 INITIALIZATION ANTISLIDE3 §20

20. 〈Map to blockx nodes 20 〉 ≡
for (t = 0; t < 4; t++) {
q = pp [t].col~head .sym [s]~col~name ;
i = q[0]− ’0’;
j = q[1]− ’0’;
k = q[2]− ’0’;
pp [t].sym [s] = &blockx [i][jmin][kmin][(j − jmin) ∗ 2 + k − kmin];
}

This code is used in section 19.

21. 〈Map to blocky nodes 21 〉 ≡
for (t = 0; t < 4; t++) {
q = pp [t].col~head .sym [s]~col~name ;
i = q[0]− ’0’;
j = q[1]− ’0’;
k = q[2]− ’0’;
pp [t].sym [s] = &blocky [imin][j][kmin][(i− imin) ∗ 2 + k − kmin];

}
This code is used in section 19.

22. 〈Map to blockz nodes 22 〉 ≡
for (t = 0; t < 4; t++) {
q = pp [t].col~head .sym [s]~col~name ;
i = q[0]− ’0’;
j = q[1]− ’0’;
k = q[2]− ’0’;
pp [t].sym [s] = &blockz [imin][jmin][k][(i− imin) ∗ 2 + j − jmin];
}

This code is used in section 19.

§23 ANTISLIDE3 BACKTRACKING AND ISOMORPH REJECTION 13

23. Backtracking and isomorph rejection. The basic operation of this program is a backtrack search,
which repeatedly finds an uncovered cell and tries to cover it in all possible ways. We save lots of work if
we always choose a cell that has the fewest remaining options. The program considers each of those options
in turn; a given option covers certain cells and removes all other options that cover those cells. We must
backtrack if we run out of options for any uncovered cell.

The solutions are sequences a1 a2 . . . al, where each ak is a node. Node ak belongs to column ck, the cell
chosen for covering at level k, and to row rk, the option chosen for covering that cell.

With 48 symmetries we can reduce the number of cases considered by a factor of up to 48 if we spend a bit
more time on each case, by being careful to weed out solutions that are isomorphic to others that have been
or will be found. If a1 a2 . . . al is a solution that defines a covering C, and if σ is a symmetry of the problem,
the nodes σa1, σa2, . . . , σal define a covering σC that is isomorphic to C. For each k in the range 1 ≤ k ≤ l,
let a′k be the node for which σa′k is the node that covers σck in σC. We will consider only solutions such that
a′1 a

′
2 . . . a

′
l is lexicographically less than or equal to a1 a2 . . . al; this will guarantee that we obtain exactly

one solution from every equivalence class of isomorphic coverings. (Notice that the number of symmetries of
a given solution a1 a2 . . . al is the number of σ for which we have a′1 a

′
2 . . . a

′
l = a1 a2 . . . al.)

If al a2 . . . al is a partial solution and σ is any symmetry, we can compute a′1 a
′
2 . . . a

′
j where j is the

smallest subscript such that σcj+1 has not yet been covered. The partial solution al a2 . . . al can be rejected
if a′1 a

′
2 . . . a

′
j is lexicographically less than a1 a2 . . . aj . The symmetry σ need not be monitored in extensions

of al a2 . . . al to higher levels if a′1 a
′
2 . . . a

′
j is lexicographically greater than a1 a2 . . . aj . We keep a list at

level l of all (σ, j) for which a′1 a
′
2 . . . a

′
j = a1 a2 . . . aj , where j is defined as above; this is called the symcheck

list. The symcheck list is the key to isomorph rejection.
We also maintain a list of constraints: Sets of uncovered cells that must not all be empty; these constraints

ensure an antisliding solution.

〈Global variables 2 〉 +≡
int symcheck sig [(ll ∗mm ∗ nn + 1) ∗ (ss − 1)], symcheck j [(ll ∗mm ∗ nn + 1) ∗ (ss − 1)];
/∗ symcheck list elements ∗/

int symcheck ptr [ll ∗mm ∗ nn + 2]; /∗ beginning of symcheck list on each level ∗/
cell ∗constraint [ll ∗mm ∗ nn ∗ 22]; /∗ sets of cells that shouldn’t all be empty ∗/
int constraint ptr [ll ∗mm ∗ nn + 2]; /∗ beginning of constraint list on each level ∗/
cell ∗force [ll ∗mm ∗ nn]; /∗ list of cells forced to be nonempty ∗/
int force ptr [ll ∗mm ∗ nn + 1]; /∗ beginning of force records on each level ∗/
cell ∗best cell [ll ∗mm ∗ nn + 1]; /∗ cell chosen for covering on each level ∗/
node ∗move [ll ∗mm ∗ nn + 1]; /∗ the nodes ak on each level ∗/

24. 〈Local variables 24 〉 ≡
register int i, j, k, s; /∗ miscellaneous indices ∗/
register int l; /∗ the current level ∗/
register cell ∗c; /∗ the cell being covered on the current level ∗/
register node ∗p; /∗ the current node of interest ∗/
register cell ∗q; /∗ the current cell of interest ∗/
register option ∗r; /∗ the current option of interest ∗/
int ii , jj , kk , t;
node ∗pp ;

This code is used in section 1.

14 BACKTRACKING AND ISOMORPH REJECTION ANTISLIDE3 §25

25. As usual, I’m using labels and goto statements as I backtrack, and making only a half-hearted apology
for my outrageous style.

〈Backtrack through all solutions 25 〉 ≡
〈 Initialize for level 0 46 〉;
l = 1; goto choose ;

advance : 〈Remove options that cover cells other than best cell [l] 29 〉;
if (verbose) 〈Handle diagnostic info 44 〉;
l++;

choose : 〈Choose the moves at level l 26 〉;
backup : l−−;

if (l ≡ 0) goto done ;
〈Unremove options that cover cells other than best cell [l] 30 〉;
goto unmark ; /∗ reconsider the move on level l ∗/

solution : 〈Record a solution 42 〉;
goto backup ; done :

This code is used in section 1.

26. The usual trick in backtracking is to update the data structures in such a way that we can faithfully
downdate them as we back up. The harder cases, namely the symcheck list and the constraint list, are
explicitly recomputed on each level so that downdating is unnecessary. The force ptr array is used to
remember where forcing moves need to be downdating.

〈Choose the moves at level l 26 〉 ≡
〈Select c = best cell [l], or goto solution if all cells are covered 31 〉;
force ptr [l] = force ptr [l − 1];
cover (c); /∗ remove options that cover best cell [l] ∗/
c~empty = 1;
〈Set al to the empty option of c; goto try again if that option isn’t allowed 41 〉;

try : 〈Mark the newly covered elements 32 〉;
〈Compute the new constraint list; goto unmark if previous choices are disallowed 34 〉;
〈Compute the new symcheck list; goto unmark if a1 a2 . . . al is rejected 40 〉;
goto advance ;

unmark : 〈Unmark the newly covered elements 33 〉;
〈Delete the new forcing table entries 39 〉;

try again : move [l] = move [l]~up ;
best cell [l]~empty = 0;
if (move [l]~right 6= move [l]) goto try ; /∗ al not the empty option ∗/
c = best cell [l];
uncover (c);

This code is used in section 25.

§27 ANTISLIDE3 BACKTRACKING AND ISOMORPH REJECTION 15

27. Here’s a subroutine that removes all options that cover cell c from all cell lists except list c.

〈Subroutines 19 〉 +≡
cover (c)

cell ∗c;
{ register cell ∗l, ∗r;

register node ∗rr , ∗pp , ∗uu , ∗dd ;

l = c~prev ; r = c~next ;
l~next = r; r~prev = l;
for (rr = c~head .down ; rr 6= &(c~head); rr = rr~down)

for (pp = rr~right ; pp 6= rr ; pp = pp~right) {
uu = pp~up ; dd = pp~down ;
uu~down = dd ; dd~up = uu ;
pp~col~ len−−;

}
}

28. Uncovering is done in precisely the reverse order. The pointers thereby execute an exquisitely choreo-
graphed dance, which returns them almost magically to their former state—because the old pointers still
exist! (I think this technique was invented in Japan.)

〈Subroutines 19 〉 +≡
uncover (c)

cell ∗c;
{ register cell ∗l, ∗r;

register node ∗rr , ∗pp , ∗uu , ∗dd ;

for (rr = c~head .up ; rr 6= &(c~head); rr = rr~up)
for (pp = rr~ left ; pp 6= rr ; pp = pp~ left) {

uu = pp~up ; dd = pp~down ;
uu~down = dd~up = pp ;
pp~col~ len ++;

}
l = c~prev ; r = c~next ;
l~next = r~prev = c;
}

29. 〈Remove options that cover cells other than best cell [l] 29 〉 ≡
for (p = move [l]~right ; p 6= move [l]; p = p~right) cover (p~col);

This code is used in section 25.

30. 〈Unremove options that cover cells other than best cell [l] 30 〉 ≡
for (p = move [l]~ left ; p 6= move [l]; p = p~ left) uncover (p~col);

This code is used in section 25.

31. 〈Select c = best cell [l], or goto solution if all cells are covered 31 〉 ≡
q = root .next ;
if (q ≡ &root) goto solution ;
for (c = q, j = q~ len , q = q~next ; q 6= &root ; q = q~next)

if (q~ len < j) c = q, j = q~ len ;
best cell [l] = c;

This code is used in section 26.

16 BACKTRACKING AND ISOMORPH REJECTION ANTISLIDE3 §32

32. 〈Mark the newly covered elements 32 〉 ≡
for (p = move [l]~right ; p 6= move [l]; p = p~right) {
p~col~filled = p;
p~col~nonempty ++;
}
p~col~filled = p;
if (p~right 6= p) p~col~nonempty ++;

This code is used in section 26.

33. 〈Unmark the newly covered elements 33 〉 ≡
for (p = move [l]~ left ; p 6= move [l]; p = p~ left) {
p~col~filled = Λ;
p~col~nonempty −−;
}
p~col~filled = Λ;
if (p~right 6= p) p~col~nonempty −−;

This code is used in section 26.

34. 〈Compute the new constraint list; goto unmark if previous choices are disallowed 34 〉 ≡
j = constraint ptr [l − 1];
k = constraint ptr [l];
if (p~right ≡ p)
〈Delete current cell from the constraint list, possibly forcing other cells to be nonempty 35 〉

else {
〈Add new constraints; goto unmark if previous choices are disallowed 37 〉;
〈Copy former constraints that are still unsatisfied 38 〉;
}
constraint ptr [l + 1] = k;

This code is used in section 26.

35. 〈Delete current cell from the constraint list, possibly forcing other cells to be nonempty 35 〉 ≡
{
c = p~col ;
while (j < constraint ptr [l]) {

kk = k;
while ((q = constraint [j])) {

if (q 6= c) constraint [k++] = q;
j++;

}
j++;
if (k ≡ kk + 1) 〈Force constraint [kk] to be nonempty 36 〉
else constraint [k++] = Λ;

}
}

This code is used in section 34.

§36 ANTISLIDE3 BACKTRACKING AND ISOMORPH REJECTION 17

36. 〈Force constraint [kk] to be nonempty 36 〉 ≡
{
k = kk ;
q = constraint [k];
if (¬q~nonempty) {
q~nonempty = 1;
q~ len−−;
force [force ptr [l]++] = q;

}
}

This code is used in section 35.

37. 〈Add new constraints; goto unmark if previous choices are disallowed 37 〉 ≡
r = p~row ;
for (i = 0; i < r~neighbor ptr ; i++) {

kk = k;
while ((q = r~neighbor [i])) {

if (q~nonempty) { /∗ constraint is satisfied ∗/
do i++; while (r~neighbor [i]);
goto no problem ;

}
else if (¬q~empty) constraint [k++] = q;
i++;

}
if (k > kk + 1) {

constraint [k++] = Λ;
continue;

}
if (k ≡ kk) goto unmark ; /∗ all were covered by empty cells ∗/
q = constraint [kk];
q~nonempty = 1;
q~ len−−;
force [force ptr [l]++] = q;

no problem : k = kk ;
}

This code is used in section 34.

18 BACKTRACKING AND ISOMORPH REJECTION ANTISLIDE3 §38

38. 〈Copy former constraints that are still unsatisfied 38 〉 ≡
while (j < constraint ptr [l]) {

kk = k;
while ((q = constraint [j])) {

if (q~nonempty) goto flush ; /∗ constraint is satisfied ∗/
constraint [k++] = q;
j++;

}
constraint [k++] = Λ;
j++;
continue;

flush : do j++; while (constraint [j]);
k = kk ;
j++;
}

This code is used in section 34.

39. 〈Delete the new forcing table entries 39 〉 ≡
while (force ptr [l] 6= force ptr [l − 1]) {
q = force [−−force ptr [l]];
q~ len ++;
q~nonempty = 0;
}

This code is used in section 26.

40. 〈Compute the new symcheck list; goto unmark if a1 a2 . . . al is rejected 40 〉 ≡
for (k = symcheck ptr [l − 1], kk = symcheck ptr [l]; k < symcheck ptr [l]; k++) {

for (i = symcheck sig [k], j = symcheck j [k] + 1; j ≤ l; j++) {
c = best cell [j]~ invsym [i]; /∗ σci ∗/
if (¬c~filled) break;
p = c~filled~sym [i]; /∗ a′i ∗/
if (p < move [j]) goto unmark ;
if (p > move [j]) goto okay ;

}
symcheck sig [kk] = i;
symcheck j [kk] = j − 1;
kk ++;

okay : ;
}
symcheck ptr [l + 1] = kk ;

This code is used in section 26.

41. 〈Set al to the empty option of c; goto try again if that option isn’t allowed 41 〉 ≡
move [l] = &(c~head);
if (c~nonempty) goto try again ;

This code is used in section 26.

§42 ANTISLIDE3 BACKTRACKING AND ISOMORPH REJECTION 19

42. 〈Record a solution 42 〉 ≡
count ++;
if (verbose) {

if (count % spacing ≡ 0) {
printf ("%d: ", count);
for (j = 1; j < l; j++) print move (move [j]);
if (symcheck ptr [l] ≡ symcheck ptr [l− 1]) printf ("(1 sym, %d blks)\n", (ll ∗mm ∗ nn + 1− l)/3);
else

printf ("(%d syms, %d blks)\n", symcheck ptr [l]−symcheck ptr [l−1]+1, (ll ∗mm ∗nn +1− l)/3);
}
}

This code is used in section 25.

43. 〈Subroutines 19 〉 +≡
print move (p)

node ∗p;
{

register node ∗q;
for (q = p~right ; q 6= p; q = q~right) printf ("%s−", q~col~name);
printf ("%s ", q~col~name);
}

44. 〈Handle diagnostic info 44 〉 ≡
{

profile [l]++;
prof syms [l] += symcheck ptr [l + 1]− symcheck ptr [l] + 1;
prof cons [l] += constraint ptr [l + 1]− constraint ptr [l];
prof frcs [l] += force ptr [l]− force ptr [l − 1];
if (verbose > 1) {

printf ("Level %d, ", l);
print move (move [l]);
printf ("(%d,%d,%d)\n", symcheck ptr [l + 1]− symcheck ptr [l] + 1,

constraint ptr [l + 1]− constraint ptr [l], force ptr [l]− force ptr [l − 1]);
}
}

This code is used in section 25.

45. 〈Print a profile of the search tree 45 〉 ≡
{

for (j = 1; j ≤ ll ∗mm ∗ nn ; j++)
printf (" Level %d: %d sols, %#.1f syms, %#.1f cons, %#.1f frcs\n", j, profile [j],

(double) prof syms [j]/(double) profile [j], (double) prof cons [j]/(double) profile [j],
(double) prof frcs [j]/(double) profile [j]);

}
This code is used in section 1.

20 BACKTRACKING AND ISOMORPH REJECTION ANTISLIDE3 §46

46. 〈 Initialize for level 0 46 〉 ≡
for (i = 0; i < ll ; i++)

for (j = 0; j < mm ; j++)
for (k = 0; k < nn ; k++) {
c = &cells [i][j][k];
c~ init len = c~ len ;

}
for (k = 0; k < ss ; k++) symcheck sig [k] = k + 1;
symcheck ptr [1] = ss − 1;

This code is used in section 25.

47. 〈Make redundancy checks to see if the backtracking was consistent 47 〉 ≡
q = &root ;
for (i = 0; i < ll ; i++)

for (j = 0; j < mm ; j++)
for (k = 0; k < nn ; k++) {
c = &cells [i][j][k];
if (c~nonempty ∨ c~ len 6= c~ init len ∨ c~prev 6= q ∨ q~next 6= c)

printf ("Trouble at cell %s!\n", c~name);
q = c;

}
This code is used in section 1.

§48 ANTISLIDE3 INDEX 21

48. Index.

advance : 25, 26.
argc : 1.
argv : 1.
backup : 25.
best cell : 23, 26, 31, 40.
blockx : 7, 16, 20.
blocky : 7, 17, 21.
blockz : 7, 18, 22.
c: 24, 27, 28.
cell: 4, 5, 6, 7, 23, 24, 27, 28.
cells : 7, 9, 10, 12, 13, 14, 16, 17, 18, 46, 47.
choose : 25.
col : 3, 9, 16, 17, 18, 19, 20, 21, 22, 27, 28, 29,

30, 32, 33, 35, 43.
col struct: 3, 4.
constraint : 23, 35, 36, 37, 38.
constraint ptr : 23, 34, 35, 38, 44.
count : 1, 2, 42.
cover : 26, 27, 29.
dd : 27, 28.
done : 25.
down : 3, 9, 16, 17, 18, 27, 28.
empty : 4, 26, 37.
filled : 4, 32, 33, 40.
flush : 38.
force : 23, 36, 37, 39.
force ptr : 23, 26, 36, 37, 39, 44.
head : 4, 9, 10, 16, 17, 18, 19, 20, 21, 22, 27, 28, 41.
i: 19, 24.
ii : 10, 24.
imax : 19.
imin : 19, 21, 22.
init len : 4, 46, 47.
invsym : 4, 10, 40.
i1 : 12, 13, 14.
i2 : 13, 14.
j: 19, 24.
jj : 10, 24.
jmax : 19.
jmin : 19, 20, 22.
j1 : 12, 13, 14.
j2 : 12, 14.
k: 19, 24.
kk : 10, 12, 13, 14, 24, 35, 36, 37, 38, 40.
kmax : 19.
kmin : 19, 20, 21.
k1 : 12, 13, 14.
k2 : 12, 13.
l: 24, 27, 28.
left : 3, 9, 16, 17, 18, 28, 30, 33.
len : 4, 9, 16, 17, 18, 27, 28, 31, 36, 37, 39, 46, 47.

ll : 1, 2, 7, 9, 10, 12, 13, 14, 16, 17, 18, 23,
42, 45, 46, 47.

main : 1.
make syms : 16, 17, 18, 19.
mm : 1, 2, 7, 9, 10, 12, 13, 14, 16, 17, 18, 23,

42, 45, 46, 47.
move : 23, 26, 29, 30, 32, 33, 40, 41, 42, 44.
name : 4, 5, 9, 19, 20, 21, 22, 43, 47.
neighbor : 6, 12, 13, 14, 37.
neighbor ptr : 6, 12, 13, 14, 37.
next : 4, 9, 27, 28, 31, 47.
nn : 1, 2, 7, 9, 10, 12, 13, 14, 16, 17, 18, 23,

42, 45, 46, 47.
no problem : 37.
node: 3, 4, 7, 19, 23, 24, 27, 28, 43.
node struct: 3.
nonempty : 4, 32, 33, 36, 37, 38, 39, 41, 47.
okay : 40.
opt : 7, 9.
option: 6, 7, 24.
optx : 7, 12, 16.
opty : 7, 13, 17.
optz : 7, 14, 18.
ox : 12.
oxx : 12.
oy : 13.
oyy : 13.
oz : 14.
ozz : 14.
p: 24, 43.
pp : 16, 17, 18, 19, 20, 21, 22, 24, 27, 28.
prev : 4, 9, 27, 28, 47.
print move : 42, 43, 44.
printf : 1, 42, 43, 44, 45, 47.
prof cons : 2, 44, 45.
prof frcs : 2, 44, 45.
prof syms : 2, 44, 45.
profile : 2, 44, 45.
q: 19, 24, 43.
r: 24, 27, 28.
right : 3, 9, 16, 17, 18, 26, 27, 29, 32, 33, 34, 43.
root : 5, 9, 31, 47.
row : 3, 9, 16, 17, 18, 37.
row struct: 3, 6.
rr : 27, 28.
s: 19, 24.
solution : 25, 31.
spacing : 1, 2, 42.
ss : 1, 3, 4, 10, 19, 23, 46.
sscanf : 1.
sym : 3, 4, 10, 19, 20, 21, 22, 40.

22 INDEX ANTISLIDE3 §48

symcheck j : 23, 40.
symcheck ptr : 23, 40, 42, 44, 46.
symcheck sig : 23, 40, 46.
t: 19, 24.
try : 26.
try again : 26, 41.
uncover : 26, 28, 30.
unmark : 25, 26, 37, 40.
up : 3, 9, 16, 17, 18, 26, 27, 28.
uu : 27, 28.
verbose : 1, 2, 25, 42, 44.

ANTISLIDE3 NAMES OF THE SECTIONS 23

〈Add new constraints; goto unmark if previous choices are disallowed 37 〉 Used in section 34.

〈Backtrack through all solutions 25 〉 Used in section 1.

〈Choose the moves at level l 26 〉 Used in section 25.

〈Compute the new constraint list; goto unmark if previous choices are disallowed 34 〉 Used in section 26.

〈Compute the new symcheck list; goto unmark if a1 a2 . . . al is rejected 40 〉 Used in section 26.

〈Copy former constraints that are still unsatisfied 38 〉 Used in section 34.

〈Delete current cell from the constraint list, possibly forcing other cells to be nonempty 35 〉 Used in

section 34.

〈Delete the new forcing table entries 39 〉 Used in section 26.

〈Fill in the symmetry pointers of c 10 〉 Used in section 9.

〈Force constraint [kk] to be nonempty 36 〉 Used in section 35.

〈Global variables 2, 5, 7, 23 〉 Used in section 1.

〈Handle diagnostic info 44 〉 Used in section 25.

〈 Initialize for level 0 46 〉 Used in section 25.

〈Local variables 24 〉 Used in section 1.

〈Make redundancy checks to see if the backtracking was consistent 47 〉 Used in section 1.

〈Map to blockx nodes 20 〉 Used in section 19.

〈Map to blocky nodes 21 〉 Used in section 19.

〈Map to blockz nodes 22 〉 Used in section 19.

〈Mark the newly covered elements 32 〉 Used in section 26.

〈Print a profile of the search tree 45 〉 Used in section 1.

〈Record a solution 42 〉 Used in section 25.

〈Remove options that cover cells other than best cell [l] 29 〉 Used in section 25.

〈Select c = best cell [l], or goto solution if all cells are covered 31 〉 Used in section 26.

〈Set al to the empty option of c; goto try again if that option isn’t allowed 41 〉 Used in section 26.

〈Set up data structures for antisliding blocks 8 〉 Used in section 1.

〈Set up the cells 9 〉 Used in section 8.

〈Set up the nodes 15 〉 Used in section 8.

〈Set up the options 11 〉 Used in section 8.

〈Set up the blockx nodes 16 〉 Used in section 15.

〈Set up the blocky nodes 17 〉 Used in section 15.

〈Set up the blockz nodes 18 〉 Used in section 15.

〈Set up the optx options 12 〉 Used in section 11.

〈Set up the opty options 13 〉 Used in section 11.

〈Set up the optz options 14 〉 Used in section 11.

〈Subroutines 19, 27, 28, 43 〉 Used in section 1.

〈Type definitions 3, 4, 6 〉 Used in section 1.

〈Unmark the newly covered elements 33 〉 Used in section 26.

〈Unremove options that cover cells other than best cell [l] 30 〉 Used in section 25.

ANTISLIDE3

Section Page
Antisliding blocks . 1 1
Data structures . 3 3
Initialization . 7 5
Backtracking and isomorph rejection . 23 13
Index . 48 21

	Antisliding blocks
	Data structures
	Initialization
	Backtracking and isomorph rejection
	Index
	Names of the sections
	Add new constraints; goto unmark if previous choices are disallowed
	Backtrack through all solutions
	Choose the moves at level l
	Compute the new constraint list; goto unmark if previous choices are disallowed
	Compute the new symcheck list; goto unmark if a_1a_2a_l is rejected
	Copy former constraints that are still unsatisfied
	Delete current cell from the constraint list, possibly forcing other cells to be nonempty
	Delete the new forcing table entries
	Fill in the symmetry pointers of c
	Force constraint[kk] to be nonempty
	Global variables
	Handle diagnostic info
	Initialize for level 0
	Local variables
	Make redundancy checks to see if the backtracking was consistent
	Map to blockx nodes
	Map to blocky nodes
	Map to blockz nodes
	Mark the newly covered elements
	Print a profile of the search tree
	Record a solution
	Remove options that cover cells other than best_cell[l]
	Select c=best_cell[l], or goto solution if all cells are covered
	Set a_l to the empty option of c; goto try_again if that option isn't allowed
	Set up data structures for antisliding blocks
	Set up the cells
	Set up the nodes
	Set up the options
	Set up the blockx nodes
	Set up the blocky nodes
	Set up the blockz nodes
	Set up the optx options
	Set up the opty options
	Set up the optz options
	Subroutines
	Type definitions
	Unmark the newly covered elements
	Unremove options that cover cells other than best_cell[l]

