81 ANTISLIDE-NOCORNER INTRODUCTION 1

(See htips://cs.stanford.edu/ knuth/programs.htm] for date.)

1. Introduction. This program finds all ways to pack 2 x 2 x 1 bricks into a 4 x 4 x 4 box in such a
way that each face of each brick touches the boundary of the box or the face of another brick. The program
is also designed to be readily modified so that it applies to other sorts of pieces in other sorts of boxes.

I'm writing it primarily to gain further experience of the technique of “dancing links,” which worked
so nicely in the XCOVER routine. Also I'm having fun today; I just finished a long, boring task and I'm
rewarding myself by taking time off from other duties.

#define n1 4 /* one box dimension */
#define n2 4 /* another */

#define n3 4 /* the last */

#define verbose (arge > 1)

#define very_verbose (argc > 2)

#define very_very_verbose (argc > 3)

#include <stdio.h>

(Type definitions 2)
(Global variables 3*)

tmp ()
{
printf ("tmp");
}
main (argc, argu)
int argc;
char xargv|]; /* the usual command-line parameters =/
{
register node xp, xq, *r;
register int stamp = 0;
(Initialize the data structures 4);
(Backtrack thru all possibilities 11);
(Report the answers 26);

}

https://cs.stanford.edu/~knuth/programs.html

2 DATA STRUCTURES ANTISLIDE-NOCORNER 82

2. Data structures. This program deals chiefly with three kinds of lists, representing cells, moves, and
constraints.
A move list is a circular list of nodes, one for each cell occupied by a particular placement of a piece. The
nodes are doubly linked by left and right pointers, which stay fixed throughout the algorithm.
A cell list is a circular list consisting of a header node and one additional node for each move that occupies
this cell. These nodes are doubly linked by up and down pointers; thus each node in a move list is also a
potential member of a cell list. Nodes leave a cell list when they belong to a move that conflicts with other
moves already made. A header node is recognizable by the fact that its left pointer is null.
A constraint is a sequence of pointers to cell headers, followed by a null pointer. It represents a set of
cells that should not all be empty, based on moves made so far. A constraint list is a sequence of pointers
to constraints, followed by a null pointer.
Nodes have a tag field that is used in a special “stamping” trick explained later. This field points to an
integer; its basic property is that two nodes have the same tag if and only if they are part of the same move.
(Type definitions 2) =
typedef struct node_struct {
struct node_struct xleft, xright; /* adjacent nodes of a move */
struct node_struct xup, xdown; /x adjacent nodes of a cell */
char xname; /* identification of this node for diagnostic printouts */
struct node_struct sxxclist; /* list of constraint lists for this move x/
int xtag; /* unique identification of a move x/

} node;

This code is used in section 1.

3* The sizes of the basic arrays were determined experimentally; originally I just set them to a large number
and ran the program.

(Global variables 3*) =
node headers[nl1][n2][n3]; /* cell header nodes */
node nodes|[432]; /* nodes in the move lists */
node *constraints[1674]; /* elements of constraints */
node xspecial_constraints|2]; /* we’ll use this at level 0 %/
node xxclists [558]; /+ elements of constraint lists x/
char names[nl * n2 x n3 x 4]; /* cell names x/
int tags[108]; /* the tag fields point into this array =/

See also section 10.

This code is used in section 1.

84 ANTISLIDE-NOCORNER DATA STRUCTURES

4. Here’s how we get everything started, when packing bricks as mentioned above.
(Initialize the data structures 4) =

{

register node xcur_node = &nodes|0], xxcur_con = &constraints|0], xxxcur_clist = &clists[0];
register char xcur_name = &names|[0];
register int xcur_tag = &tags[0];
register int i, j, k;
(Make all cell lists empty 5);
(Initialize all moves that have constant first coordinate 6*);
(Initialize all moves that have constant second coordinate 7*);
(Initialize all moves that have constant third coordinate 8*);
printf ("This problem involves %d namechars, %d moves, %d nodes,\n",
(cur_name — &names|0])/4, cur_tag — &tags[0], cur_node — &mnodes[0]);

printf ("u%duconstraint elements, %d clist elements.\n", cur_con — &constraints[0],
cur_clist — &clists[0]);

This code is used in section 1.

5. (Make all cell lists empty 5) =
for (i=0; i <nl; i++)
for (7 =0; j <n2; j++)
for (k=0; k< n8; k++) {
xcur-name =1+ ’07;
*(cur-name + 1) = j 4 ’07;
*(cur_name +2) =k +°07;
headers[i][j][k].name = cur_name;
cur_-name +=4;
headers[i][j][k].up = headers[i][j][k].down = &headers|[i][j][k];
}

This code is used in section 4.

4 DATA STRUCTURES ANTISLIDE-NOCORNER

6¥* Hdefine new_node (i, jj, kk)
{
cur_node~-right = cur_node + 1; cur_node~left = cur_node — 1,
p = &headers[i][jj][kk]; g = p~down;
cur-node~name = p~name;
cur_node-up = p; cur-node~down = q; p~down = cur-node; q~up = cur-node;
cur_node-tag = cur-tag;
cur_node~clist = cur_clist;
cur_node ++;

}

#define start_con xcur_clist = cur_con /* begin making a constraint list */
#define new_con(ii,jj, kk) =xcur_con++ = &headersii][jj][kk] /* add a cell to it */
#define wrap_con cur_con++, cur_clist ++ /* finish making a constraint list */

(Initialize all moves that have constant first coordinate 6*) =
for (i=0; i <nl; i++)
for (j=0; j+1<n2; j++)
for (k=0; k+1<n8; k++) {
register node xfirst_node = cur_node;
if ((=0Vi+l=nl)A({G=0Vji+2=n2)A(k=0VEk+2=n3)) continue;
new_node (i, 7, k);
new_node (i, 7,k + 1);
new_node (i, j + 1, k);
new_node (i,j + 1,k + 1);
first_node~left = cur_node — 1;
(cur_node — 1)~right = first_node;
if (i>0) {
start_con;
new_con (i — 1,7, k);
new_con(i — 1,7,k + 1);
new_con(i — 1,7 + 1, k);
new-con(i — 1,5+ 1,k + 1);
wrap_con;

if (+1<n1){
start_con;
new_con (i + 1,7, k);
new-con(i+ 1,5,k + 1);
new_con(i + 1,5+ 1, k);
new_con(i+ 1,5+ 1,k + 1);
wrap_con;

}

i (> 0) {
start_con;
new_con(i,j — 1, k);
new_con(i,j — 1,k + 1);
wrap_con;

}

if (j+2<n2) {
start_con;
new_con(i,j + 2, k);
new_con(i,j + 2,k + 1);
wrap_con;

56

86 ANTISLIDE-NOCORNER DATA STRUCTURES 5

}

if (k>0) {
start_con;
new_con (i,j,k — 1);
new-con(i,j + 1,k — 1);
wrap_con;

if (k+2<n8) {
start_con;
new_con (i, j, k + 2);
new-con(i,j + 1,k + 2);
wrap_con;
}
cur_clist ++;
cur_tag ++;
if (very_very_verbose) (Print the move that starts with first_node 9);

}

This code is used in section 4.

6 DATA STRUCTURES ANTISLIDE-NOCORNER 87

7% (Initialize all moves that have constant second coordinate 7+) =
for (i=0; i+1<nl;i+)
for (j=0; j <n2; j++)
for (k=0; k+1<n8; k++) {
register node xfirst_node = cur_node;
if ((=0Vi+2=nl)A({J=0Vji+1=n2)A(k=0VEk+2=n3)) continue;
new_node (i, 7, k);
new_node (i, 7,k + 1);
new_node (i + 1,7, k);
new_node (i + 1,7,k + 1);
first_node~left = cur_node — 1;
(cur_node — 1)~right = first_node;
if (j > 0) {
start_con;
new_con(i,j — 1, k);
new_con(i,j — 1,k + 1);
new_con(i+1,j — 1,k);
new-con(i+ 1,5 — 1,k + 1);
wrap_con;

if (j+1<n2) {
start_con;
new_con(i,j + 1, k);
new-con(i,j + 1,k + 1);
new_con(i+ 1,5 + 1, k);
new_con(i+ 1,7+ 1,k + 1);
wrap_con;

}

if (i>0) {
start_con;
new_con (i — 1,7, k);
new_con(i — 1,7,k + 1);
wrap_con;

}

if (i+2<nl) {
start_con;
new_con (i + 2, j, k);
new_con (i + 2,5,k + 1);
wrap_con;

}

if (k>0) {
start_con;
new_con(i,5,k — 1);
new_con(i+ 1,5,k — 1);
wrap_con;

}

if (k+2<n8) {
start_con;
new_con (i, 5, k + 2);
new-con(i+ 1,4,k + 2);
wrap_con;

§7 ANTISLIDE-NOCORNER DATA STRUCTURES 7

cur_clist ++;
cur_tag ++;
if (very_very_-verbose) (Print the move that starts with first_node 9);

}

This code is used in section 4.

8 DATA STRUCTURES

8% (Initialize all moves that have constant third coordinate 8*) =

for (i=0; i+1<nl;i+)
for (j=0; j+1<n2; j++)
for (k=0; k< n3; k++) {

register node xfirst_node = cur_node;

ANTISLIDE-NOCORNER

if ((=0Vi+2=nl)A({=0Vji+2=n2)A(k=0VEk+1=n3)) continue;
new_node (i, 7, k);
new_node (i + 1, j, k);
new_node (i, j + 1, k);
new_node(i+ 1,5 + 1, k);

first_node~left = cur_node — 1;
(cur_node — 1)~right = first_node;

it (k>0) {

if

start_con;

new_con (i, j, k — 1);
new_con(i+ 1,5,k — 1);
new_con(i,j + 1,k — 1);
new-con(i+ 1,5+ 1,k — 1);
wrap_con;

(k+1<nd) {

start_con;

new_con (i,j, k + 1);
new-con(i+ 1,5,k + 1);
new_con(i,j+ 1,k + 1);
new_con(i+ 1,7+ 1,k + 1);
wrap_con;

}
if (>0) {

}

start_con;

new_con(i,j — 1, k);
new_con(i+ 1,7 — 1,k);
wrap_con;

if (j+2<n2) {

start_con;

new_con (i,j + 2, k);
new_con(i+ 1,7 + 2, k);
wrap_con;

if (i >0) {

}

start_con;

new_con (i — 1, j, k);
new_con(i — 1,5 + 1, k);
wrap_con;

if (i+2<n1) {

start_con;

new_con (i + 2, j, k);
new-con(i+2,j + 1,k);
wrap_con;

68

88 ANTISLIDE-NOCORNER DATA STRUCTURES 9

cur_clist ++;
cur_tag ++;
if (very_very_-verbose) (Print the move that starts with first_node 9);

}

This code is used in section 4.

9. (Print the move that starts with first_-node 9) =

{

node xxpl, *xxxcl;
for (p = first_node; ; p = p~right) {

printf ("%hsu", p-name);
if (p~right = first_.node) break;

printf ("=>");

for (cI = p-clist; xcl; cl++) {
for (pl = xcl; xpl; pl++) printf ("%s,", (xpI)>name);
printf ("u");

printf ("\n");
}

This code is used in sections 6*, 7*, and 8*.

10 BACKTRACKING ANTISLIDE-NOCORNER 810

10. Backtracking. At level [, we've made [moves, and we assume that we’ve got to satisfy constraints
¢ for constr(l] < ¢ < ctop. We decide which of those constraints is strongest, in the sense that it a
minimal number of moves will satisfy it; we record those moves in an array of pointers m to move nodes, for
first[l] < m < mtop, and we try each of them in turn.

#define mowve_stack_size 1000

#define constr_stack_size 1000
#define maz_level (((nl *n2 xn3) > 2)—2)

(Global variables 3*) +=
node xmove_stack [move_stack_sizel;
node xxconstr_stack[constr_stack_size];

node xxfirst[maz_level]; /* beginning move on a given level */
node xxmove [maz_level]; /* current move being explored */
node xxxconstr[maz_level]; /* first constraint on a given level */

int totsols[maz_level]; /+ the number of solutions we found =/

811 ANTISLIDE-NOCORNER BACKTRACKING 11

11. DI'm using goto statements, as usual when I backtrack.
(Backtrack thru all possibilities 11) =

{
register node xxmtop = &move_stack[0];
register node xxxctop = &constr_stack|0];
register node xxpp, kxxcc;
register int [= 0;
constr|[0] = ctop;
(Put the initial constraints onto the constraint stack 15*);
newlevel: first[l] = mtop;
if (constr([l] = ctop) {
(Record a solution 25);
if (I = maxz_level — 1) goto backtrack;
(Put all remaining moves on the move stack 23);

else if (I = maz_level — 1) goto backtrack;
else (Find a constraint to branch on, and put its moves on the move stack 12);
pp = first[l];
goto advance;
backtrack: (Reinstate all moves from this level 22);

mtop = first[l];
if (I=0) goto done;
l—;

pp = movell];
(Unmake move xpp 19);
(Disallow move xpp 21);
ppt+;
advance:
if (pp = mitop) goto backtrack;
movell] = pp;
(Make move *pp 16);
if (very_verbose) (Print a progress report 24);
l-H—;
goto newlevel;
done: ;

}

This code is used in section 1.

12. (Find a constraint to branch on, and put its moves on the move stack 12) =

{

register int count;
node *xcbest;
int best_count = 100000;
for (cc = constr[l]; cc < ctop; cc++) {
(If constraint xcc has smaller count than best_count, set cbest = xcc 13);
}

(Put the moves for cbest on the move stack 14);

}

This code is used in section 11.

12 BACKTRACKING ANTISLIDE-NOCORNER 813

13. Here’s where the tag fields become important. Pay attention now.

A constraint is a list of cells, at least one of which must be occupied by a future move. We find all ways
to satisfy the constraint by going through all moves on those cell lists. But we don’t want to count a move
twice when it covers more than one cell on the list. So we put a time stamp in the tag field of each move,
telling us whether we’ve already seen that move while processing the current constraint.

(If constraint *cc has smaller count than best_count, set cbest = xcc 13) =
count = 0;
stamp ++;
for (pp = xcc; *pp; pp++)
for (p = (xpp)-down; p-left; p = p~down)
if (x(p~tag) # stamp) count++, *(p-tag) = stamp;
if (very_verbose) {
printf ("Constraint,,");
for (pp = *cc; *pp; pp++) printf ("%s,", (xpp)-name);
printf ("Lhd\n", count);
}
if (count < best_count) best_count = count, cbest = xcc;

This code is used in section 12.

14. Fdefine panic(s)
{
printf ("sustack overflow!\n");
exit(—1);
}
(Put the moves for cbest on the move stack 14) =
stamp ++;
for (pp = cbest; *pp; pp++)
for (p = (xpp)~down; p-left; p = p~down)
if (x(p-tag) # stamp) *xmtop++ = p, *(p~tag) = stamp;
if (mtop > &move_stack|[move_stack_size]) panic(move);

This code is used in section 12.

15¥% In this variation, we have omitted all moves that occupy the corners. It’s easy to see that it is then
necessary to occupy at least one cell next to a corner. So I make that the initial constraint.

(Put the initial constraints onto the constraint stack 15*) =
special_constraints[0] = &headers[0][0][1];
xctop++ = &special_constraints|0];

This code is used in section 11.

816 ANTISLIDE-NOCORNER BACKTRACKING 13

16. This step changes pp, inside of section (If constraint pp = *cc is not satisfied, put it on the constraint
stack 18). (I could have used another variable, but I'm from an older generation that tries to conserve the
number of registers used. Silly of me.)

(Make move *pp 16) =
if (stamp = 1620) tmp();
for (p = *pp; ; p = p-right) {
{Remove all other moves in the cell list containing p from their other cell lists 17);
if (p-right = *pp) break;

constr[l + 1] = ctop;
for (cc = constr(l]; cc < constr[l 4+ 1]; cc++)
(If constraint pp = xcc is not satisfied, put it on the constraint stack 18);
for (cc = pclist; xcc; cc++) (If constraint pp = *cc is not satisfied, put it on the constraint stack 18);
if (ctop > &constr_stack[constr_stack_size]) panic(constraint);

This code is used in section 11.

17. When a cell is occupied by the move at level I, we put [4+ 1 into the right field of its header node.
That way we can tell if the cell is occupied.

The “dancing links” trick is used here: When node r is removed from its list, we don’t change r~up and
r~down, and we don’t lose the links that led us to r. That means it will be easy to restore the list when
backtracking.

(Remove all other moves in the cell list containing p from their other cell lists 17) =
for (¢ = p~down; q # p; q = q-down) {
if (¢-left = A) g-right = (node *)(I + 1);
else
for (r = g-left; r#q; r=r-left) {
roup~down = r-down;
rodown-up = r-up;
}
}

This code is used in section 16.

18. (If constraint pp = xcc is not satisfied, put it on the constraint stack 18) =
{
for (pp = *cc; *pp; pp++)
if ((xpp)-right) break;
if (—xpp) *ctop++ = xcc;
}
This code is cited in section 16.

This code is used in section 16.

14 BACKTRACKING ANTISLIDE-NOCORNER 819

19. The links do their dance in this step. We have to reconstruct the lists in exact reverse order of the
way we constructed them. (That’s why I provided both left and right links in the move lists. Otherwise the
program would try to insert a node into its list twice.)

The significant aspect to note about dancing links in this algorithm is the order in which moves are
disallowed and reinstated, as well as the order in which they are make and unmade.

(Unmake move xpp 19) =
for (p = (xpp)-left; ; p=p-left) {
(Unremove all other moves in the cell list containing p from their other cell lists 20);
if (p==x*pp) break;
}
ctop = constr(l + 1];

This code is used in section 11.

20. (Unremove all other moves in the cell list containing p from their other cell lists 20) =
for (¢ = prup; q¢#p; q=qup) {
if (¢-left = A) g-right = A;
else
for (r = g~right; r # q; r = r~right) {
roup~down = r;
r-down-up = r;
}
}

This code is used in section 19.

21. (Disallow move *xpp 21) =
for (p = (xpp)-right; 5 p = p-right) {

q = p~down;
T =p-up;
qrup =

r~down = q;
if (p =x*pp) break;
¥

This code is used in section 11.

22. (Reinstate all moves from this level 22) =
for (pp = mtop —1; pp > first[l]; pp—)
for (p = (xpp)-right; ; p = p-right) {
q = p~down;
T =pup;
qup = r~down = p;
if (p = xpp) break;

This code is used in section 11.

623 ANTISLIDE-NOCORNER

23.
{

(Put all remaining moves on the move stack 23) =

stamp ++;
for (p = &headers[0][0][0]; p < &headers[n1][0][0]; p++)
if (—p-right)
for (q = p~down; q # p; q = q~down)
if (x(g~tag) # stamp) xmtop++ = ¢, x(q~tag) = stamp;

This code is used in section 11.

24. (Print a progress report 24> =
{

printf ("Move %d:",l + 1);

for (p = (xmovell])~right; ; p = p~right) {
printf ("u%hs", p-name);
if (p = *xmovell]) break;

}

printf ("L \n", stamp);

}

This code is used in section 11.

25. (Record a solution 25) =
totsols[l]++;
if (verbose) {
int i, 5, kk;
printf ("%d.%d:", 1, totsols[l]);
for (ii = 0; ii < nl; ii++) {
printf ("u");
for (jj =0; jj <n2; jj++)
for (kk = 0; kk < n3; kk++) {
register int ¢ = (int) headers[ii][jj][kk].right;
printf ("%he",c>97¢c—10+’a’ :c+ 0’);
}
}
printf ("a");

}

This code is used in section 11.

26. (Report the answers 26) =
printf ("Total solutions found:\n");

{

register int lev;

for (lev = 0; lev < maz_level; lev++)
if (totsols[lev]) printf ("u level kd, %hd\n", lev, totsols|lev]);

This code is used in section 1.

BACKTRACKING

15

16 INDEX

27* Index.

ANTISLIDE-NOCORNER

The following sections were changed by the change file: 3, 6, 7, 8, 15, 27.

advance: 11.

argc: 1.

argv: 1.

backtrack: 11.

best_count: 12, 13.

c. 25.

chest: 12, 13, 14.

cc: 11, 12, 13, 16, 18.
clist: 2, 69, 16.

clists: 3% 4.

constr: 10, 11, 12, 16, 19.
constr_stack: 10, 11, 16.
constr_stack_size: 10, 16.
constraint: 16.

constraints: 3¥ 4.

count: 12, 13.

ctop: 10, 11, 12, 15¥ 16, 18, 19.
cur_clist: 4, 6¥ 7F 8%
cur_con: 4, 6¥

cur_name: 4, 5.

cur_node: 4, 6¥ T7F 8*
cur_tag: 4, 6F TF 8*F

cl: 9.

done: 11.

down: 2,5, 6¥13, 14, 17, 20, 21, 22, 23.
erit: 14.

first: 10, 11, 22.
first_node: 6F 7F 8F9.
headers: 3% 5, 6F15F 23, 25.

i 4.

. 6F 25.
7 4.

Jj: 6F 25.
k: 4.

kk: 6F 25.
[11.

left: 2, 6¥7F8F13, 14, 17, 19, 20.
lev: 26.

main: 1.

maz_level: 10, 11, 26.
move: 10, 11, 14, 24.
move_stack: 10, 11, 14.
move_stack_size: 10, 14.
mtop: 10, 11, 14, 22, 23.
name: 2, 5, 6¥9, 13, 24.
names: 3F 4.

new-con: 6F 7F 8*
new_node: 6F 7F 8%
newlevel: 11.

node: 1,2, 3%4, 6X7%8%9, 10, 11, 12, 17.

node_struct: 2.

nodes: 3% 4.

nl: 1, 3¥5, 6F¥7F8F10, 23, 25.
n2: 1, 3¥5, 67 7F8F 10, 25.

n3: 1, 3¥5, 6F TF8F 10, 25.

p: 1

panic: 14, 16.

pp: 11, 13, 14, 16, 18, 19, 21, 22.
printf: 1, 4,9, 13, 14, 24, 25, 26.
pl: 9.

q:

-

e L

23, 24, 25.
special_constraints: 3F 15%
stamp: 1, 13, 14, 16, 23, 24.
start_con: 6F 7F 8*
tag: 2, 3¥6¥ 13, 14, 23.
tags: 3F 4.
tmp: 1, 16.
totsols: 10, 25, 26.
up: 2, 5, 6% 17, 20, 21, 22.
verbose: 1, 25.
very_verbose: 1, 11, 13.
very_very_verbose: 1, 6F TF 8*
wrap_con: 6¥ 7F 8*

right: 2, 6% 7%8%9, 16, 17, 18, 19, 20, 21, 22,

ANTISLIDE-NOCORNER NAMES OF THE SECTIONS 17

Backtrack thru all possibilities 11) Used in section 1.

Disallow move *pp 21) Used in section 11.

Find a constraint to branch on, and put its moves on the move stack 12) Used in section 11.

Global variables 3*, 10> Used in section 1.

If constraint *cc has smaller count than best_count, set cbest = *cc 13) Used in section 12.

If constraint pp = *cc is not satisfied, put it on the constraint stack 18) Cited in section 16. Used in
section 16.

Initialize all moves that have constant first coordinate 6*) Used in section 4.

Initialize all moves that have constant second coordinate 7*) Used in section 4.

Initialize all moves that have constant third coordinate 8*) Used in section 4.

Initialize the data structures 4) Used in section 1.

Make all cell lists empty 5) Used in section 4.

Make move *pp 16) Used in section 11.

Print a progress report 24) Used in section 11.

Print the move that starts with first_node 9> Used in sections 6%, 7* and 8%*.

Put all remaining moves on the move stack 23) Used in section 11.

Put the initial constraints onto the constraint stack 15*) Used in section 11.

Put the moves for cbest on the move stack 14) Used in section 12.

Record a solution 25) Used in section 11.

Reinstate all moves from this level 22) Used in section 11.

Remove all other moves in the cell list containing p from their other cell lists 17) Used in section 16.

Report the answers 26) Used in section 1.

Type definitions 2) Used in section 1.

Unmake move *pp 19) Used in section 11.

Unremove all other moves in the cell list containing p from their other cell lists 20) Used in section 19.

o~~~ o~~~

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

ANTISLIDE-NOCORNER

Section Page

Introduction 1 1
Data structUTres . .. 2 2
Backtracking 10 10

I .o 27 16

	Introduction
	Data structures
	Backtracking
	Index
	Names of the sections
	Backtrack thru all possibilities
	Disallow move *pp
	Find a constraint to branch on, and put its moves on the move stack
	Global variables
	If constraint *cc has smaller count than best_count, set cbest=*cc
	If constraint pp=*cc is not satisfied, put it on the constraint stack
	Initialize all moves that have constant first coordinate
	Initialize all moves that have constant second coordinate
	Initialize all moves that have constant third coordinate
	Initialize the data structures
	Make all cell lists empty
	Make move *pp
	Print a progress report
	Print the move that starts with first_node
	Put all remaining moves on the move stack
	Put the initial constraints onto the constraint stack
	Put the moves for cbest on the move stack
	Record a solution
	Reinstate all moves from this level
	Remove all other moves in the cell list containing p from their other cell lists
	Report the answers
	Type definitions
	Unmake move *pp
	Unremove all other moves in the cell list containing p from their other cell lists

