
§1 ADVENT INTRODUCTION 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Introduction. The ur-game for computers — Adventure — was originally written by Will Crowther
in 1975 or 1976 and significantly extended by Don Woods in 1977. I have taken Woods’s original FORTRAN

program for Adventure Version 1.0 and recast it in the CWEB idiom.
I remember being fascinated by this game when John McCarthy showed it to me in 1977. I started with

no clues about the purpose of the game or what I should do; just the computer’s comment that I was at
the end of a forest road facing a small brick building. Little by little, the game revealed its secrets, just as
its designers had cleverly plotted. What a thrill it was when I first got past the green snake! Clearly the
game was potentially addictive, so I forced myself to stop playing — reasoning that it was great fun, sure,
but traditional computer science research is great fun too, possibly even more so.

Now here I am, 21 years later, returning to the great Adventure after having indeed had many exciting
adventures in Computer Science. I believe people who have played this game will be able to extend their
fun by reading its once-secret program. Of course I urge everybody to play the game first, at least ten times,
before reading on. But you cannot fully appreciate the astonishing brilliance of its design until you have
seen all of the surprises that have been built in.

I believe this program is entirely faithful to the behavior of Adventure Version 1.0, except that I have
slightly edited the computer messages (mostly so that they use both lowercase and uppercase letters). I have
also omitted Woods’s elaborate machinery for closing the cave during the hours of prime-time computing; I
believe John McCarthy insisted on this, when he saw the productivity of his AI Lab falling off dramatically—
although it is rumored that he had a special version of the program that allowed him to play whenever he
wanted. And I have not adopted the encryption scheme by which Woods made it difficult for users to find
any important clues in the binary program file or core image; such modifications would best be done by
making a special version of CTANGLE. All of the spelunking constraints and interactive behavior have been
retained, although the structure of this CWEB program is naturally quite different from the FORTRAN version
that I began with.

Many of the phrases in the following documentation have been lifted directly from comments in the
FORTRAN code. Please regard me as merely a translator of the program, not as an author. I thank Don
Woods for helping me check the validity of this translation.

By the way, if you don’t like goto statements, don’t read this. (And don’t read any other programs that
simulate multistate systems.)

— Don Knuth, September 1998

/* Copyright (C) 1998 by Don Woods and Don Knuth; all rights reserved */

https://cs.stanford.edu/~knuth/programs.html

2 INTRODUCTION ADVENT §2

2. To run the program with, say, a UNIX shell, just type ‘advent’ and follow instructions. (Many UNIX

systems come with an almost identical program called ‘adventure’ already built in; you might want to try
it too, for comparison.)

#include <stdio.h> /∗ basic input/output routines: fgets , printf ∗/
#include <ctype.h> /∗ isspace , tolower , and toupper routines ∗/
#include <string.h> /∗ strncmp and strcpy to compare and copy strings ∗/
#include <time.h> /∗ current time , used as random number seed ∗/
#include <stdlib.h> /∗ exit ∗/
〈Macros for subroutine prototypes 3 〉
typedef enum {

false , true
} boolean;

〈Type definitions 5 〉
〈Global variables 7 〉
〈Subroutines 6 〉
main ()
{

register int j, k;
register char ∗p;

〈Additional local registers 22 〉;
〈 Initialize all tables 200 〉;
〈Simulate an adventure, going to quit when finished 75 〉;
〈Deal with death and resurrection 188 〉;

quit : 〈Print the score and say adieu 198 〉;
exit (0);
}

3. The subroutines of this program are declared first with a prototype, as in ANSI C, then with an old-style
C function definition. The following preprocessor commands make this work correctly with both new-style
and old-style compilers.

〈Macros for subroutine prototypes 3 〉 ≡
#ifdef __STDC__

#define ARGS(list) list
#else
#define ARGS(list) ()
#endif

This code is used in section 2.

§4 ADVENT THE VOCABULARY 3

4. The vocabulary. Throughout the remainder of this documentation, “you” are the user and “we” are
the game author and the computer. We don’t tell you what words to use, except indirectly; but we try to
understand enough words of English so that you can play without undue frustration. The first part of the
program specifies what we know about your language — about 300 words.

5. When you type a word, we first convert uppercase letters to lowercase; then we chop off all but the first
five characters, if the word was longer than that, and we look for your word in a small hash table. Each hash
table entry contains a string of length 5 or less, and two additional bytes for the word’s type and meaning.
Four types of words are distinguished: motion type , object type , action type , and message type .

〈Type definitions 5 〉 ≡
typedef enum {

no type ,motion type , object type , action type ,message type
} wordtype;
typedef struct {

char text [6]; /∗ string of length at most 5 ∗/
char word type ; /∗ a wordtype ∗/
char meaning ;
} hash entry;

See also sections 9, 11, 13, 18, and 19.

This code is used in section 2.

6. Here is the subroutine that puts words into our vocabulary, when the program is getting ready to run.

#define hash prime 1009 /∗ the size of the hash table ∗/
〈Subroutines 6 〉 ≡

void new word ARGS((char ∗, int));

void new word (w,m)
char ∗w; /∗ a string of length 5 or less ∗/
int m; /∗ its meaning ∗/

{
register int h, k;
register char ∗p;

for (h = 0, p = w; ∗p; p++) h = ∗p + h + h;
h %= hash prime ;
while (hash table [h].word type) {
h++; if (h ≡ hash prime) h = 0;

}
strcpy (hash table [h].text , w);
hash table [h].word type = current type ;
hash table [h].meaning = m;
}

See also sections 8, 64, 65, 66, 71, 72, 154, 160, 194, and 197.

This code is used in section 2.

7. 〈Global variables 7 〉 ≡
hash entry hash table [hash prime]; /∗ the table of words we know ∗/
wordtype current type ; /∗ the kind of word we are dealing with ∗/

See also sections 15, 17, 20, 21, 63, 73, 74, 77, 81, 84, 87, 89, 96, 103, 137, 142, 155, 159, 165, 168, 171, 177, 185, 190, 193, 196,
and 199.

This code is used in section 2.

4 THE VOCABULARY ADVENT §8

8. While we’re at it, let’s write the program that will look up a word. It returns the location of the word
in the hash table, or −1 if you’ve given a word like ‘tickle’ or ‘terse’ that is unknown.

#define streq (a, b) (strncmp(a, b, 5) ≡ 0) /∗ strings agree up to five letters ∗/
〈Subroutines 6 〉 +≡

int lookup ARGS((char ∗));
int lookup(w)

char ∗w; /∗ a string that you typed ∗/
{

register int h;
register char ∗p;
register char t;

t = w[5];
w[5] = ’\0’; /∗ truncate the word ∗/
for (h = 0, p = w; ∗p; p++) h = ∗p + h + h;
h %= hash prime ; /∗ compute starting address ∗/
w[5] = t; /∗ restore original word ∗/
if (h < 0) return −1; /∗ a negative character might screw us up ∗/
while (hash table [h].word type) {

if (streq (w, hash table [h].text)) return h;
h++; if (h ≡ hash prime) h = 0;

}
return −1;
}

9. The motion words specify either a direction or a simple action or a place. Motion words take you from
one location to another, when the motion is permitted. Here is a list of their possible meanings.

〈Type definitions 5 〉 +≡
typedef enum {
N, S, E, W, NE, SE, NW, SW, U, D, L, R, IN, OUT, FORWARD, BACK,
OVER, ACROSS, UPSTREAM, DOWNSTREAM,
ENTER, CRAWL, JUMP, CLIMB, LOOK, CROSS,
ROAD, WOODS, VALLEY, HOUSE, GULLY, STREAM, DEPRESSION, ENTRANCE, CAVE,
ROCK, SLAB, BED, PASSAGE, CAVERN, CANYON, AWKWARD, SECRET, BEDQUILT, RESERVOIR,
GIANT, ORIENTAL, SHELL, BARREN, BROKEN, DEBRIS, VIEW, FORK,
PIT, SLIT, CRACK, DOME, HOLE, WALL, HALL, ROOM, FLOOR,
STAIRS, STEPS, COBBLES, SURFACE, DARK, LOW, OUTDOORS,
Y2, XYZZY, PLUGH, PLOVER, OFFICE, NOWHERE
} motion;

§10 ADVENT THE VOCABULARY 5

10. And here is how they enter our vocabulary.
If I were writing this program, I would allow the word woods, but Don apparently didn’t want to.

〈Build the vocabulary 10 〉 ≡
current type = motion type ;
new word ("north", N); new word ("n", N);
new word ("south", S); new word ("s", S);
new word ("east", E); new word ("e", E);
new word ("west", W); new word ("w", W);
new word ("ne", NE);
new word ("se", SE);
new word ("nw", NW);
new word ("sw", SW);
new word ("upwar", U); new word ("up", U); new word ("u", U); new word ("above", U);
new word ("ascen", U);
new word ("downw", D); new word ("down", D); new word ("d", D); new word ("desce", D);
new word ("left", L);
new word ("right", R);
new word ("inwar", IN); new word ("insid", IN); new word ("in", IN);
new word ("out", OUT); new word ("outsi", OUT);
new word ("exit", OUT);
new word ("leave", OUT);
new word ("forwa", FORWARD); new word ("conti", FORWARD); new word ("onwar", FORWARD);
new word ("back", BACK); new word ("retur", BACK); new word ("retre", BACK);
new word ("over", OVER);
new word ("acros", ACROSS);
new word ("upstr", UPSTREAM);
new word ("downs", DOWNSTREAM);
new word ("enter", ENTER);
new word ("crawl", CRAWL);
new word ("jump", JUMP);
new word ("climb", CLIMB);
new word ("look", LOOK); new word ("exami", LOOK); new word ("touch", LOOK);
new word ("descr", LOOK);
new word ("cross", CROSS);
new word ("road", ROAD);
new word ("hill", ROAD);
new word ("fores", WOODS);
new word ("valle", VALLEY);
new word ("build", HOUSE); new word ("house", HOUSE);
new word ("gully", GULLY);
new word ("strea", STREAM);
new word ("depre", DEPRESSION);
new word ("entra", ENTRANCE);
new word ("cave", CAVE);
new word ("rock", ROCK);
new word ("slab", SLAB); new word ("slabr", SLAB);
new word ("bed", BED);
new word ("passa", PASSAGE); new word ("tunne", PASSAGE);
new word ("caver", CAVERN);
new word ("canyo", CANYON);
new word ("awkwa", AWKWARD);
new word ("secre", SECRET);

6 THE VOCABULARY ADVENT §10

new word ("bedqu", BEDQUILT);
new word ("reser", RESERVOIR);
new word ("giant", GIANT);
new word ("orien", ORIENTAL);
new word ("shell", SHELL);
new word ("barre", BARREN);
new word ("broke", BROKEN);
new word ("debri", DEBRIS);
new word ("view", VIEW);
new word ("fork", FORK);
new word ("pit", PIT);
new word ("slit", SLIT);
new word ("crack", CRACK);
new word ("dome", DOME);
new word ("hole", HOLE);
new word ("wall", WALL);
new word ("hall", HALL);
new word ("room", ROOM);
new word ("floor", FLOOR);
new word ("stair", STAIRS);
new word ("steps", STEPS);
new word ("cobbl", COBBLES);
new word ("surfa", SURFACE);
new word ("dark", DARK);
new word ("low", LOW);
new word ("outdo", OUTDOORS);
new word ("y2", Y2);
new word ("xyzzy", XYZZY);
new word ("plugh", PLUGH);
new word ("plove", PLOVER);
new word ("main", OFFICE); new word ("offic", OFFICE);
new word ("null", NOWHERE); new word ("nowhe", NOWHERE);

See also sections 12, 14, and 16.

This code is used in section 200.

§11 ADVENT THE VOCABULARY 7

11. The object words refer to things like a lamp, a bird, batteries, etc.; objects have properties that
will be described later. Here is a list of the basic objects. Objects GOLD and higher are the “treasures.”
Extremely large objects, which appear in more than one location, are listed more than once using ‘_’.

#define min treasure GOLD

#define is treasure (t) (t ≥ min treasure)
#define max obj CHAIN

〈Type definitions 5 〉 +≡
typedef enum {
NOTHING, KEYS, LAMP, GRATE, GRATE_, CAGE, ROD, ROD2, TREADS, TREADS_,
BIRD, DOOR, PILLOW, SNAKE, CRYSTAL, CRYSTAL_, TABLET, CLAM, OYSTER,
MAG, DWARF, KNIFE, FOOD, BOTTLE, WATER, OIL,
MIRROR, MIRROR_, PLANT, PLANT2, PLANT2_, STALACTITE, SHADOW, SHADOW_,
AXE, ART, PIRATE, DRAGON, DRAGON_, BRIDGE, BRIDGE_, TROLL, TROLL_, TROLL2, TROLL2_,
BEAR, MESSAGE, GEYSER, PONY, BATTERIES, MOSS,
GOLD, DIAMONDS, SILVER, JEWELS, COINS, CHEST, EGGS, TRIDENT, VASE,
EMERALD, PYRAMID, PEARL, RUG, RUG_, SPICES, CHAIN
} object;

8 THE VOCABULARY ADVENT §12

12. Most of the objects correspond to words in our vocabulary.

〈Build the vocabulary 10 〉 +≡
current type = object type ;
new word ("key", KEYS); new word ("keys", KEYS);
new word ("lamp", LAMP); new word ("lante", LAMP); new word ("headl", LAMP);
new word ("grate", GRATE);
new word ("cage", CAGE);
new word ("rod", ROD);
new word ("bird", BIRD);
new word ("door", DOOR);
new word ("pillo", PILLOW); new word ("velve", PILLOW);
new word ("snake", SNAKE);
new word ("fissu", CRYSTAL);
new word ("table", TABLET);
new word ("clam", CLAM);
new word ("oyste", OYSTER);
new word ("magaz", MAG); new word ("issue", MAG); new word ("spelu", MAG);
new word ("\"spel", MAG);
new word ("dwarf", DWARF); new word ("dwarv", DWARF);
new word ("knife", KNIFE); new word ("knive", KNIFE);
new word ("food", FOOD); new word ("ratio", FOOD);
new word ("bottl", BOTTLE); new word ("jar", BOTTLE);
new word ("water", WATER); new word ("h2o", WATER);
new word ("oil", OIL);
new word ("mirro", MIRROR);
new word ("plant", PLANT); new word ("beans", PLANT);
new word ("stala", STALACTITE);
new word ("shado", SHADOW); new word ("figur", SHADOW);
new word ("axe", AXE);
new word ("drawi", ART);
new word ("pirat", PIRATE);
new word ("drago", DRAGON);
new word ("chasm", BRIDGE);
new word ("troll", TROLL);
new word ("bear", BEAR);
new word ("messa", MESSAGE);
new word ("volca", GEYSER); new word ("geyse", GEYSER);
new word ("vendi", PONY); new word ("machi", PONY);
new word ("batte", BATTERIES);
new word ("moss", MOSS); new word ("carpe", MOSS);
new word ("gold", GOLD); new word ("nugge", GOLD);
new word ("diamo", DIAMONDS);
new word ("silve", SILVER); new word ("bars", SILVER);
new word ("jewel", JEWELS);
new word ("coins", COINS);
new word ("chest", CHEST); new word ("box", CHEST); new word ("treas", CHEST);
new word ("eggs", EGGS); new word ("egg", EGGS); new word ("nest", EGGS);
new word ("tride", TRIDENT);
new word ("ming", VASE); new word ("vase", VASE); new word ("shard", VASE);
new word ("potte", VASE);
new word ("emera", EMERALD);
new word ("plati", PYRAMID); new word ("pyram", PYRAMID);

§12 ADVENT THE VOCABULARY 9

new word ("pearl", PEARL);
new word ("persi", RUG); new word ("rug", RUG);
new word ("spice", SPICES);
new word ("chain", CHAIN);

13. The action words tell us to do something that’s usually nontrivial.

〈Type definitions 5 〉 +≡
typedef enum {
ABSTAIN, TAKE, DROP, OPEN, CLOSE, ON, OFF, WAVE, CALM, GO, RELAX,
POUR, EAT, DRINK, RUB, TOSS, WAKE, FEED, FILL, BREAK, BLAST, KILL,
SAY, READ, FEEFIE, BRIEF, FIND, INVENTORY, SCORE, QUIT
} action;

10 THE VOCABULARY ADVENT §14

14. Many of the action words have several synonyms. If an action does not meet special conditions, we
will issue a default message.

#define ok default msg [RELAX]

〈Build the vocabulary 10 〉 +≡
current type = action type ;
new word ("take", TAKE); new word ("carry", TAKE); new word ("keep", TAKE);
new word ("catch", TAKE); new word ("captu", TAKE); new word ("steal", TAKE);
new word ("get", TAKE); new word ("tote", TAKE);
default msg [TAKE] = "You are already carrying it!";
new word ("drop", DROP); new word ("relea", DROP); new word ("free", DROP);
new word ("disca", DROP); new word ("dump", DROP);
default msg [DROP] = "You aren’t carrying it!";
new word ("open", OPEN); new word ("unloc", OPEN);
default msg [OPEN] = "I don’t know how to lock or unlock such a thing.";
new word ("close", CLOSE); new word ("lock", CLOSE);
default msg [CLOSE] = default msg [OPEN];
new word ("light", ON); new word ("on", ON);
default msg [ON] = "You have no source of light.";
new word ("extin", OFF); new word ("off", OFF);
default msg [OFF] = default msg [ON];
new word ("wave", WAVE); new word ("shake", WAVE); new word ("swing", WAVE);
default msg [WAVE] = "Nothing happens.";
new word ("calm", CALM); new word ("placa", CALM); new word ("tame", CALM);
default msg [CALM] = "I’m game. Would you care to explain how?";
new word ("walk", GO); new word ("run", GO); new word ("trave", GO); new word ("go", GO);
new word ("proce", GO); new word ("explo", GO); new word ("goto", GO); new word ("follo", GO);
new word ("turn", GO);
default msg [GO] = "Where?";
new word ("nothi", RELAX);
default msg [RELAX] = "OK.";
new word ("pour", POUR);
default msg [POUR] = default msg [DROP];
new word ("eat", EAT); new word ("devou", EAT);
default msg [EAT] = "Don’t be ridiculous!";
new word ("drink", DRINK);
default msg [DRINK] =

"You have taken a drink from the stream. The water tastes strongly of\n\

minerals, but is not unpleasant. It is extremely cold.";
new word ("rub", RUB);
default msg [RUB] = "Rubbing the electric lamp is not particularly rewarding. Anyway,\n\

nothing exciting happens.";
new word ("throw", TOSS); new word ("toss", TOSS);
default msg [TOSS] = default msg [DROP];
new word ("wake", WAKE); new word ("distu", WAKE);
default msg [WAKE] = default msg [EAT];
new word ("feed", FEED);
default msg [FEED] = "There is nothing here to eat.";
new word ("fill", FILL);
default msg [FILL] = "You can’t fill that.";
new word ("break", BREAK); new word ("smash", BREAK); new word ("shatt", BREAK);
default msg [BREAK] = "It is beyond your power to do that.";

§14 ADVENT THE VOCABULARY 11

new word ("blast", BLAST); new word ("deton", BLAST); new word ("ignit", BLAST);
new word ("blowu", BLAST);
default msg [BLAST] = "Blasting requires dynamite.";
new word ("attac", KILL); new word ("kill", KILL); new word ("fight", KILL);
new word ("hit", KILL); new word ("strik", KILL); new word ("slay", KILL);
default msg [KILL] = default msg [EAT];
new word ("say", SAY); new word ("chant", SAY); new word ("sing", SAY); new word ("utter", SAY);
new word ("mumbl", SAY);
new word ("read", READ); new word ("perus", READ);
default msg [READ] = "I’m afraid I don’t understand.";
new word ("fee", FEEFIE); new word ("fie", FEEFIE); new word ("foe", FEEFIE);
new word ("foo", FEEFIE); new word ("fum", FEEFIE);
default msg [FEEFIE] = "I don’t know how.";
new word ("brief", BRIEF);
default msg [BRIEF] = "On what?";
new word ("find", FIND); new word ("where", FIND);
default msg [FIND] = "I can only tell you what you see as you move about and manipulate\n\

things. I cannot tell you where remote things are.";
new word ("inven", INVENTORY);
default msg [INVENTORY] = default msg [FIND];
new word ("score", SCORE);
default msg [SCORE] = "Eh?";
new word ("quit", QUIT);
default msg [QUIT] = default msg [SCORE];

15. 〈Global variables 7 〉 +≡
char ∗default msg [30]; /∗ messages for untoward actions, if nonzero ∗/

12 THE VOCABULARY ADVENT §16

16. Finally, our vocabulary is rounded out by words like help, which trigger the printing of fixed messages.

#define new mess (x) message [k++] = x
#define mess wd (w) new word (w, k)

〈Build the vocabulary 10 〉 +≡
current type = message type ;
k = 0;
mess wd ("abra"); mess wd ("abrac");
mess wd ("opens"); mess wd ("sesam"); mess wd ("shaza");
mess wd ("hocus"); mess wd ("pocus");
new mess ("Good try, but that is an old worn−out magic word.");
mess wd ("help"); mess wd ("?");
new mess ("I know of places, actions, and things. Most of my vocabulary\n\

describes places and is used to move you there. To move, try words\n\

like forest, building, downstream, enter, east, west, north, south,\n\

up, or down. I know about a few special objects, like a black rod\n\

hidden in the cave. These objects can be manipulated using some of\n\

the action words that I know. Usually you will need to give both the\n\

object and action words (in either order), but sometimes I can infer\n\

the object from the verb alone. Some objects also imply verbs; in\n\

particular, \"inventory\" implies \"take inventory\", which causes me to\n\

give you a list of what you’re carrying. The objects have side\n\

effects; for instance, the rod scares the bird. Usually people having\n\

trouble moving just need to try a few more words. Usually people\n\

trying unsuccessfully to manipulate an object are attempting something\n\

beyond their (or my!) capabilities and should try a completely\n\

different tack. To speed the game you can sometimes move long\n\

distances with a single word. For example, \"building\" usually gets\n\

you to the building from anywhere above ground except when lost in the\n\

forest. Also, note that cave passages turn a lot, and that leaving a\n\

room to the north does not guarantee entering the next from the south.\nGood luck!");
mess wd ("tree"); mess wd ("trees");
new mess ("The trees of the forest are large hardwood oak and maple, with an\n\

occasional grove of pine or spruce. There is quite a bit of under−\n\

growth, largely birch and ash saplings plus nondescript bushes of\n\

various sorts. This time of year visibility is quite restricted by\n\

all the leaves, but travel is quite easy if you detour around the\n\

spruce and berry bushes.");
mess wd ("dig"); mess wd ("excav");
new mess ("Digging without a shovel is quite impractical. Even with a shovel\n\

progress is unlikely.");
mess wd ("lost");
new mess ("I’m as confused as you are.");
new mess ("There is a loud explosion and you are suddenly splashed across the\n\

walls of the room.");
new mess ("There is a loud explosion and a twenty−foot hole appears in the far\n\

wall, burying the snakes in the rubble. A river of molten lava pours\n\

in through the hole, destroying everything in its path, including you!");
mess wd ("mist");
new mess ("Mist is a white vapor, usually water, seen from time to time in\n\

caverns. It can be found anywhere but is frequently a sign of a deep\n\

pit leading down to water.");
mess wd ("fuck");

§16 ADVENT THE VOCABULARY 13

new mess ("Watch it!");
new mess ("There is a loud explosion, and a twenty−foot hole appears in the far\n\

wall, burying the dwarves in the rubble. You march through the hole\n\

and find yourself in the main office, where a cheering band of\n\

friendly elves carry the conquering adventurer off into the sunset.");
mess wd ("stop");
new mess ("I don’t know the word \"stop\". Use \"quit\" if you want to give up.");
mess wd ("info"); mess wd ("infor");
new mess ("If you want to end your adventure early, say \"quit\". To get full\n\

credit for a treasure, you must have left it safely in the building,\n\

though you get partial credit just for locating it. You lose points\n\

for getting killed, or for quitting, though the former costs you more.\n\

There are also points based on how much (if any) of the cave you’ve\n\

managed to explore; in particular, there is a large bonus just for\n\

getting in (to distinguish the beginners from the rest of the pack),\n\

and there are other ways to determine whether you’ve been through some\n\

of the more harrowing sections. If you think you’ve found all the\n\

treasures, just keep exploring for a while. If nothing interesting\n\

happens, you haven’t found them all yet. If something interesting\n\

DOES happen, it means you’re getting a bonus and have an opportunity\n\

to garner many more points in the master’s section.\n\

I may occasionally offer hints if you seem to be having trouble.\n\

If I do, I’ll warn you in advance how much it will affect your score\n\

to accept the hints. Finally, to save paper, you may specify \"brief\",\n\

which tells me never to repeat the full description of a place\n\

unless you explicitly ask me to.");
mess wd ("swim");
new mess ("I don’t know how.");

17. 〈Global variables 7 〉 +≡
char ∗message [13]; /∗ messages tied to certain vocabulary words ∗/

14 CAVE DATA ADVENT §18

18. Cave data. You might be in any of more than 100 places as you wander about in Colossal Cave.
Let’s enumerate them now, so that we can build the data structures that define the travel restrictions.

A special negative value called inhand is the location code for objects that you are carrying. But you
yourself are always situated in a place that has a nonnegative location code.

Nonnegative places ≤ outside are outside the cave, while places ≥ inside are inside. The upper part of
the cave, places < emist , is the easiest part to explore. (We will see later that dwarves do not venture this
close to the surface; they stay ≥ emist .)

Places between inside and dead2 , inclusive, form the main cave; the next places, up to and including barr ,
form the hidden cave on the other side of the troll bridge; then neend and swend are a private cave.

The remaining places, ≥ crack , are dummy locations, not really part of the maze. As soon as you arrive
at a dummy location, the program immediately sends you somewhere else. In fact, the last three dummy
locations aren’t really even locations; they invoke special code. This device is a convenient way to provide
a variety of features without making the program logic any more cluttered than it already is.

#define min in cave inside
#define min lower loc emist
#define min forced loc crack
#define max loc didit
#define max spec troll

〈Type definitions 5 〉 +≡
typedef enum { inhand = −1, limbo ,
road , hill , house , valley , forest ,woods , slit , outside ,
inside , cobbles , debris , awk , bird , spit ,
emist ,nugget , efiss ,wfiss ,wmist ,
like1 , like2 , like3 , like4 , like5 , like6 , like7 , like8 , like9 , like10 , like11 , like12 , like13 , like14 ,
brink , elong ,wlong ,
diff0 , diff1 , diff2 , diff3 , diff4 , diff5 , diff6 , diff7 , diff8 , diff9 , diff10 ,
pony , cross , hmk ,west , south ,ns , y2 , jumble ,windoe ,
dirty , clean ,wet , dusty , complex ,
shell , arch , ragged , sac , ante ,witt ,
bedquilt , cheese , soft ,
e2pit ,w2pit , epit ,wpit ,
narrow , giant , block , immense , falls , steep ,
abovep , sjunc , tite , low , crawl ,window ,
oriental ,misty , alcove , proom , droom ,
slab , abover ,mirror , res ,
scan1 , scan2 , scan3 , secret ,
wide , tight , tall , boulders ,
scorr , swside ,
dead0 , dead1 , dead2 , dead3 , dead4 , dead5 , dead6 , dead7 , dead8 , dead9 , dead10 , dead11 ,
neside , corr , fork ,warm , view , chamber , lime , fbarr , barr ,
neend , swend ,
crack ,neck , lose , cant , climb , check , snaked , thru , duck , sewer , upnout , didit ,
ppass , pdrop , troll } location ;

§19 ADVENT CAVE DATA 15

19. Speaking of program logic, the complex cave dynamics are essentially kept in a table. The table tells
us what to do when you ask for a particular motion in a particular location. Each entry of the table is called
an instruction; and each instruction has three parts: a motion, a condition, and a destination.

The motion part of an instruction is one of the motion verbs enumerated earlier.
The condition part c is a small integer, interpreted as follows:

• if c = 0, the condition is always true;
• if 0 < c < 100, the condition is true with probability c/100;
• if c = 100, the condition is always true, except for dwarves;
• if 100 < c <= 200, you must have object c mod 100;
• if 200 < c <= 300, object c mod 100 must be in the current place;
• if 300 < c <= 400, prop [c mod 100] must not be 0;
• if 400 < c <= 500, prop [c mod 100] must not be 1;
• if 500 < c <= 600, prop [c mod 100] must not be 2; etc.

(We will discuss properties of objects and the prop array later.)
The destination d is either a location or a number greater than max loc . In the latter case, if d ≤ max spec

we perform a special routine; otherwise we print remarks [d−max spec] and stay in the current place.
If the motion matches what you said but the condition is not satisfied, we move on to the next instruction

that has a different destination and/or condition from this one. The next instruction might itself be
conditional in the same way; but the motion is no longer checked after it has first been matched. (Numerous
examples appear below; complete details of the table-driven logic can be found in section 146.)

〈Type definitions 5 〉 +≡
typedef struct {

motion mot ; /∗ a motion you might have requested ∗/
int cond ; /∗ if you did, this condition must also hold ∗/
location dest ; /∗ and if so, this is where you’ll go next ∗/
} instruction;

20. Suppose you’re at location l. Then start [l] is the first relevant instruction, and start [l + 1] − 1 is the
last. Also long desc [l] is a string that fully describes l; short desc [l] is an optional abbreviated description;
and visits [l] tells how many times you have been here. Special properties of this location, such as whether
a lantern is necessary or a hint might be advisable, are encoded in the bits of flags [l].

#define lighted 1 /∗ bit for a location that isn’t dark ∗/
#define oil 2 /∗ bit for presence of oil ∗/
#define liquid 4 /∗ bit for presence of a liquid (oil or water) ∗/
#define cave hint 8 /∗ bit for hint about trying to get in the cave ∗/
#define bird hint 16 /∗ bit for hint about catching the bird ∗/
#define snake hint 32 /∗ bit for hint about dealing with the snake ∗/
#define twist hint 64 /∗ bit for hint about being lost in a maze ∗/
#define dark hint 128 /∗ bit for hint about the dark room ∗/
#define witt hint 256 /∗ bit for hint about Witt’s End ∗/
#define travel size 740 /∗ at most this many instructions ∗/
#define rem size 15 /∗ at most this many remarks ∗/
〈Global variables 7 〉 +≡

instruction travels [travel size]; /∗ the table of instructions ∗/
instruction ∗start [max loc + 2]; /∗ references to starting instruction ∗/
char ∗long desc [max loc + 1]; /∗ long-winded descriptions of locations ∗/
char ∗short desc [max loc + 1]; /∗ short-winded descriptions, or 0 ∗/
int flags [max loc + 1]; /∗ bitmaps for special properties ∗/
char ∗remarks [rem size]; /∗ comments made when staying put ∗/
int rem count ; /∗ we’ve made this many comments ∗/
int visits [max loc + 1]; /∗ how often have you been here? ∗/

16 CAVE CONNECTIONS ADVENT §21

21. Cave connections. Now we are ready to build the fundamental table of location and transition
data, by filling in the arrays just declared. We will fill them in strict order of their location codes.

It is convenient to define several macros and constants.

#define make loc(x, l, s, f)
{ long desc [x] = l; short desc [x] = s; flags [x] = f ; start [x] = q; }

#define make inst (m, c, d)
{ q~mot = m; q~cond = c; q~dest = d; q++; }

#define ditto(m)
{ q~mot = m; q~cond = (q − 1)~cond ; q~dest = (q − 1)~dest ; q++; }

#define holds (o) (100 + (o)) /∗ do instruction only if carrying object o ∗/
#define sees (o) (200 + (o)) /∗ do instruction only if object o is present ∗/
#define not (o, k) (300 + (o) + 100 ∗ (k)) /∗ do instruction only if prop [o] 6= k ∗/
#define remark (m) remarks [++rem count] = m
#define sayit (max spec + rem count)

〈Global variables 7 〉 +≡
char all alike [] = "You are in a maze of twisty little passages, all alike.";
char dead end [] = "Dead end.";
int slit rmk , grate rmk , bridge rmk , loop rmk ; /∗ messages used more than once ∗/

22. 〈Additional local registers 22 〉 ≡
register instruction ∗q, ∗qq ;

See also sections 68 and 144.

This code is used in section 2.

23. The road is where you start; its long desc is now famous, having been quoted by Steven Levy in his
book Hackers.

The instructions here say that if you want to go west, or up, or on the road, we take you to hill ; if you
want to go east, or in, or to the house, or if you say ‘enter’, we take you to house ; etc. Of course you won’t
know about all the motions available at this point until you have played the game for awhile.

〈Build the travel table 23 〉 ≡
q = travels ;
make loc(road ,
"You are standing at the end of a road before a small brick building.\n\

Around you is a forest. A small stream flows out of the building and\n\

down a gully.",
"You’re at end of road again.", lighted + liquid);
make inst (W, 0, hill); ditto(U); ditto(ROAD);
make inst (E, 0, house); ditto(IN); ditto(HOUSE); ditto(ENTER);
make inst (S, 0, valley); ditto(D); ditto(GULLY); ditto(STREAM); ditto(DOWNSTREAM);
make inst (N, 0, forest); ditto(WOODS);
make inst (DEPRESSION, 0, outside);

See also sections 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,

54, 55, 56, 57, 58, 59, 60, 61, and 62.

This code is used in section 200.

§24 ADVENT CAVE CONNECTIONS 17

24. There’s nothing up the hill, but a good explorer has to try anyway.

〈Build the travel table 23 〉 +≡
make loc(hill ,
"You have walked up a hill, still in the forest. The road slopes back\n\

down the other side of the hill. There is a building in the distance.",
"You’re at hill in road.", lighted);
make inst (ROAD, 0, road); ditto(HOUSE); ditto(FORWARD); ditto(E); ditto(D);
make inst (WOODS, 0, forest); ditto(N); ditto(S);

25. The house initially contains several objects: keys, food, a bottle, and a lantern. We’ll put them in
there later.

Two magic words are understood in this house, to teleport spelunkers who have been there and done that.
(Crowther is said to have pronounced the first one “zizzy”; the pronunciation of the other one is unknown.)

〈Build the travel table 23 〉 +≡
make loc(house ,
"You are inside a building, a well house for a large spring.",
"You’re inside building.", lighted + liquid);
make inst (ENTER, 0, road); ditto(OUT); ditto(OUTDOORS); ditto(W);
make inst (XYZZY, 0, debris);
make inst (PLUGH, 0, y2);
make inst (DOWNSTREAM, 0, sewer); ditto(STREAM);

26. A foolish consistency is the hobgoblin of little minds. (Emerson)

〈Build the travel table 23 〉 +≡
make loc(valley ,
"You are in a valley in the forest beside a stream tumbling along a\nrocky bed.",
"You’re in valley.", lighted + liquid);
make inst (UPSTREAM, 0, road); ditto(HOUSE); ditto(N);
make inst (WOODS, 0, forest); ditto(E); ditto(W); ditto(U);
make inst (DOWNSTREAM, 0, slit); ditto(S); ditto(D);
make inst (DEPRESSION, 0, outside);

27. The instructions here keep you in the forest with probability 50%, otherwise they take you to the
woods . This gives the illusion that we maintain more state information about you than we really do.

〈Build the travel table 23 〉 +≡
make loc(forest ,
"You are in open forest, with a deep valley to one side.",
"You’re in forest.", lighted);
make inst (VALLEY, 0, valley); ditto(E); ditto(D);
make inst (WOODS, 50, forest); ditto(FORWARD); ditto(N);
make inst (WOODS, 0,woods);
make inst (W, 0, forest); ditto(S);

make loc(woods ,
"You are in open forest near both a valley and a road.",
short desc [forest], lighted);
make inst (ROAD, 0, road); ditto(N);
make inst (VALLEY, 0, valley); ditto(E); ditto(W); ditto(D);
make inst (WOODS, 0, forest); ditto(S);

18 CAVE CONNECTIONS ADVENT §28

28. You’re getting closer. (But the program has forgotten that DEPRESSION leads outside ; it knew this
when you were at the road or the valley .)

〈Build the travel table 23 〉 +≡
make loc(slit ,
"At your feet all the water of the stream splashes into a 2−inch slit\n\

in the rock. Downstream the streambed is bare rock.",
"You’re at slit in streambed.", lighted + liquid);
make inst (HOUSE, 0, road);
make inst (UPSTREAM, 0, valley); ditto(N);
make inst (WOODS, 0, forest); ditto(E); ditto(W);
make inst (DOWNSTREAM, 0, outside); ditto(ROCK); ditto(BED); ditto(S);
remark ("You don’t fit through a two−inch slit!");
make inst (SLIT, 0, sayit); ditto(STREAM); ditto(D);
slit rmk = sayit ;

29. We’ll see later that the GRATE will change from state 0 to state 1 if you unlock it. So let’s hope you
have the KEYS.

〈Build the travel table 23 〉 +≡
make loc(outside ,
"You are in a 20−foot depression floored with bare dirt. Set into the\n\

dirt is a strong steel grate mounted in concrete. A dry streambed\n\

leads into the depression.",
"You’re outside grate.", lighted + cave hint);
make inst (WOODS, 0, forest); ditto(E); ditto(W); ditto(S);
make inst (HOUSE, 0, road);
make inst (UPSTREAM, 0, slit); ditto(GULLY); ditto(N);
make inst (ENTER,not (GRATE, 0), inside); ditto(ENTER); ditto(IN); ditto(D);
remark ("You can’t go through a locked steel grate!");
grate rmk = sayit ;
make inst (ENTER, 0, sayit);

30. If you’ve come this far, you’re probably hooked, although your adventure has barely begun.

〈Build the travel table 23 〉 +≡
make loc(inside ,
"You are in a small chamber beneath a 3x3 steel grate to the surface.\n\

A low crawl over cobbles leads inwards to the west.",
"You’re below the grate.", lighted);
make inst (OUT,not (GRATE, 0), outside); ditto(OUT); ditto(U);
make inst (OUT, 0, grate rmk);
make inst (CRAWL, 0, cobbles); ditto(COBBLES); ditto(IN); ditto(W);
make inst (PIT, 0, spit);
make inst (DEBRIS, 0, debris);

§31 ADVENT CAVE CONNECTIONS 19

31. Go West, young man. (If you’ve got a lamp.)

〈Build the travel table 23 〉 +≡
make loc(cobbles ,
"You are crawling over cobbles in a low passage. There is a dim light\n\

at the east end of the passage.",
"You’re in cobble crawl.", lighted);
make inst (OUT, 0, inside); ditto(SURFACE); ditto(NOWHERE); ditto(E);
make inst (IN, 0, debris); ditto(DARK); ditto(W); ditto(DEBRIS);
make inst (PIT, 0, spit);

make loc(debris ,
"You are in a debris room filled with stuff washed in from the surface.\n\

A low wide passage with cobbles becomes plugged with mud and debris\n\

here, but an awkward canyon leads upward and west. A note on the wall\n\

says \"MAGIC WORD XYZZY\".",
"You’re in debris room.", 0);
make inst (DEPRESSION,not (GRATE, 0), outside);
make inst (ENTRANCE, 0, inside);
make inst (CRAWL, 0, cobbles); ditto(COBBLES); ditto(PASSAGE); ditto(LOW); ditto(E);
make inst (CANYON, 0, awk); ditto(IN); ditto(U); ditto(W);
make inst (XYZZY, 0, house);
make inst (PIT, 0, spit);

make loc(awk ,
"You are in an awkward sloping east/west canyon.", 0, 0);
make inst (DEPRESSION,not (GRATE, 0), outside);
make inst (ENTRANCE, 0, inside);
make inst (D, 0, debris); ditto(E); ditto(DEBRIS);
make inst (IN, 0, bird); ditto(U); ditto(W);
make inst (PIT, 0, spit);

make loc(bird ,
"You are in a splendid chamber thirty feet high. The walls are frozen\n\

rivers of orange stone. An awkward canyon and a good passage exit\n\

from east and west sides of the chamber.",
"You’re in bird chamber.", bird hint);
make inst (DEPRESSION,not (GRATE, 0), outside);
make inst (ENTRANCE, 0, inside);
make inst (DEBRIS, 0, debris);
make inst (CANYON, 0, awk); ditto(E);
make inst (PASSAGE, 0, spit); ditto(PIT); ditto(W);

make loc(spit ,
"At your feet is a small pit breathing traces of white mist. An east\n\

passage ends here except for a small crack leading on.",
"You’re at top of small pit.", 0);
make inst (DEPRESSION,not (GRATE, 0), outside);
make inst (ENTRANCE, 0, inside);
make inst (DEBRIS, 0, debris);
make inst (PASSAGE, 0, bird); ditto(E);
make inst (D, holds (GOLD),neck); ditto(PIT); ditto(STEPS);
make inst (D, 0, emist); /∗ good thing you weren’t loaded down with GOLD ∗/
make inst (CRACK, 0, crack); ditto(W);

20 CAVE CONNECTIONS ADVENT §32

32. Welcome to the main caverns and a deeper level of adventures.

〈Build the travel table 23 〉 +≡
make loc(emist ,
"You are at one end of a vast hall stretching forward out of sight to\n\

the west. There are openings to either side. Nearby, a wide stone\n\

staircase leads downward. The hall is filled with wisps of white mist\n\

swaying to and fro almost as if alive. A cold wind blows up the\n\

staircase. There is a passage at the top of a dome behind you.",
"You’re in Hall of Mists.", 0);
make inst (L, 0,nugget); ditto(S);
make inst (FORWARD, 0, efiss); ditto(HALL); ditto(W);
make inst (STAIRS, 0, hmk); ditto(D); ditto(N);
make inst (U, holds (GOLD), cant); ditto(PIT); ditto(STEPS);
ditto(DOME); ditto(PASSAGE); ditto(E);
make inst (U, 0, spit);
make inst (Y2, 0, jumble);

33. To the left or south of the misty threshold, you might spot the first treasure.

〈Build the travel table 23 〉 +≡
make loc(nugget ,
"This is a low room with a crude note on the wall. The note says,\n\

\"You won’t get it up the steps\".",
"You’re in nugget of gold room.", 0);
make inst (HALL, 0, emist); ditto(OUT); ditto(N);

34. Unless you take a circuitous route to the other side of the Hall of Mists, via the Hall of the Mountain
King, you should make the CRYSTAL bridge appear (by getting it into state 1).

〈Build the travel table 23 〉 +≡
make loc(efiss ,
"You are on the east bank of a fissure slicing clear across the hall.\n\

The mist is quite thick here, and the fissure is too wide to jump.",
"You’re on east bank of fissure.", 0);
make inst (HALL, 0, emist); ditto(E);
remark ("I respectfully suggest you go across the bridge instead of jumping.");
bridge rmk = sayit ;
make inst (JUMP,not (CRYSTAL, 0), sayit);
make inst (FORWARD,not (CRYSTAL, 1), lose);
remark ("There is no way across the fissure.");
make inst (OVER,not (CRYSTAL, 1), sayit); ditto(ACROSS); ditto(W); ditto(CROSS);
make inst (OVER, 0,wfiss);

make loc(wfiss ,
"You are on the west side of the fissure in the Hall of Mists.", 0, 0);
make inst (JUMP,not (CRYSTAL, 0), bridge rmk);
make inst (FORWARD,not (CRYSTAL, 1), lose);
make inst (OVER,not (CRYSTAL, 1), sayit); ditto(ACROSS); ditto(E); ditto(CROSS);
make inst (OVER, 0, efiss);
make inst (N, 0, thru);
make inst (W, 0,wmist);

§35 ADVENT CAVE CONNECTIONS 21

35. What you see here isn’t exactly what you get; N takes you east and S sucks you in to an amazing maze.

〈Build the travel table 23 〉 +≡
make loc(wmist ,
"You are at the west end of the Hall of Mists. A low wide crawl\n\

continues west and another goes north. To the south is a little\n\

passage 6 feet off the floor.",
"You’re at west end of Hall of Mists.", 0);
make inst (S, 0, like1); ditto(U); ditto(PASSAGE); ditto(CLIMB);
make inst (E, 0,wfiss);
make inst (N, 0, duck);
make inst (W, 0, elong); ditto(CRAWL);

22 CAVE CONNECTIONS ADVENT §36

36. The twisty little passages of this maze are said to be all alike, but they respond differently to different
motions. For example, you can go north, east, south, or west from like1 , but you can’t go north from like2 .
In that way you can psych out the whole maze of 14 similar locations. (And eventually you will want to
know every place where treasure might be hidden.) The only exits are to wmist and brink .

〈Build the travel table 23 〉 +≡
make loc(like1 , all alike , 0, twist hint);
make inst (U, 0,wmist);
make inst (N, 0, like1);
make inst (E, 0, like2);
make inst (S, 0, like4);
make inst (W, 0, like11);

make loc(like2 , all alike , 0, twist hint);
make inst (W, 0, like1);
make inst (S, 0, like3);
make inst (E, 0, like4);

make loc(like3 , all alike , 0, twist hint);
make inst (E, 0, like2);
make inst (D, 0, dead5);
make inst (S, 0, like6);
make inst (N, 0, dead9);

make loc(like4 , all alike , 0, twist hint);
make inst (W, 0, like1);
make inst (N, 0, like2);
make inst (E, 0, dead3);
make inst (S, 0, dead4);
make inst (U, 0, like14); ditto(D);

make loc(like5 , all alike , 0, twist hint);
make inst (E, 0, like6);
make inst (W, 0, like7);

make loc(like6 , all alike , 0, twist hint);
make inst (E, 0, like3);
make inst (W, 0, like5);
make inst (D, 0, like7);
make inst (S, 0, like8);

make loc(like7 , all alike , 0, twist hint);
make inst (W, 0, like5);
make inst (U, 0, like6);
make inst (E, 0, like8);
make inst (S, 0, like9);

make loc(like8 , all alike , 0, twist hint);
make inst (W, 0, like6);
make inst (E, 0, like7);
make inst (S, 0, like8);
make inst (U, 0, like9);
make inst (N, 0, like10);
make inst (D, 0, dead11);

make loc(like9 , all alike , 0, twist hint);
make inst (W, 0, like7);
make inst (N, 0, like8);
make inst (S, 0, dead6);

§36 ADVENT CAVE CONNECTIONS 23

make loc(like10 , all alike , 0, twist hint);
make inst (W, 0, like8);
make inst (N, 0, like10);
make inst (D, 0, dead7);
make inst (E, 0, brink);

make loc(like11 , all alike , 0, twist hint);
make inst (N, 0, like1);
make inst (W, 0, like11); ditto(S);
make inst (E, 0, dead1);

make loc(like12 , all alike , 0, twist hint);
make inst (S, 0, brink);
make inst (E, 0, like13);
make inst (W, 0, dead10);

make loc(like13 , all alike , 0, twist hint);
make inst (N, 0, brink);
make inst (W, 0, like12);
make inst (NW, 0, dead2); /∗ NW: a dirty trick! ∗/
make loc(like14 , all alike , 0, twist hint);
make inst (U, 0, like4); ditto(D);

37. 〈Build the travel table 23 〉 +≡
make loc(brink ,
"You are on the brink of a thirty−foot pit with a massive orange column\n\

down one wall. You could climb down here but you could not get back\n\

up. The maze continues at this level.",
"You’re at brink of pit.", 0);
make inst (D, 0, bird); ditto(CLIMB);
make inst (W, 0, like10);
make inst (S, 0, dead8);
make inst (N, 0, like12);
make inst (E, 0, like13);

38. Crawling west from wmist instead of south, you encounter this.

〈Build the travel table 23 〉 +≡
make loc(elong ,
"You are at the east end of a very long hall apparently without side\n\

chambers. To the east a low wide crawl slants up. To the north a\n\

round two−foot hole slants down.",
"You’re at east end of long hall.", 0);
make inst (E, 0,wmist); ditto(U); ditto(CRAWL);
make inst (W, 0,wlong);
make inst (N, 0, cross); ditto(D); ditto(HOLE);

make loc(wlong ,
"You are at the west end of a very long featureless hall. The hall\n\

joins up with a narrow north/south passage.",
"You’re at west end of long hall.", 0);
make inst (E, 0, elong);
make inst (N, 0, cross);
make inst (S, 100, diff0);

24 CAVE CONNECTIONS ADVENT §39

39. Recall that the ‘100’ on the last instruction above means, “Dwarves not permitted.” It keeps them out
of the following maze, which is based on an 11× 11 latin square. (Each of the eleven locations leads to each
of the others under the ten motions N, S, E, W, NE, SE, NW, SW, U, D — except that diff0 goes down to the
entrance location wlong instead of to diff10 , and diff10 goes south to the dead-end location pony instead
of to diff0 . Furthermore, each location is accessible from all ten possible directions.)

Incidentally, if you ever get into a “little twisting maze of passages,” you’re really lost.

#define twist (l, n, s, e, w,ne , se ,nw , sw , u, d,m)
make loc(l,m, 0, 0);
make inst (N, 0, n); make inst (S, 0, s); make inst (E, 0, e); make inst (W, 0, w);
make inst (NE, 0,ne); make inst (SE, 0, se); make inst (NW, 0,nw); make inst (SW, 0, sw);
make inst (U, 0, u); make inst (D, 0, d);

〈Build the travel table 23 〉 +≡
twist (diff0 , diff9 , diff1 , diff7 , diff8 , diff3 , diff4 , diff6 , diff2 , diff5 ,wlong ,
"You are in a maze of twisty little passages, all different.");
twist (diff1 , diff8 , diff9 , diff10 , diff0 , diff5 , diff2 , diff3 , diff4 , diff6 , diff7 ,
"You are in a maze of twisting little passages, all different.");
twist (diff2 , diff3 , diff4 , diff8 , diff5 , diff7 , diff10 , diff0 , diff6 , diff1 , diff9 ,
"You are in a little maze of twisty passages, all different.");
twist (diff3 , diff7 , diff10 , diff6 , diff2 , diff4 , diff9 , diff8 , diff5 , diff0 , diff1 ,
"You are in a twisting maze of little passages, all different.");
twist (diff4 , diff1 , diff7 , diff5 , diff9 , diff0 , diff3 , diff2 , diff10 , diff8 , diff6 ,
"You are in a twisting little maze of passages, all different.");
twist (diff5 , diff0 , diff3 , diff4 , diff6 , diff8 , diff1 , diff9 , diff7 , diff10 , diff2 ,
"You are in a twisty little maze of passages, all different.");
twist (diff6 , diff10 , diff5 , diff0 , diff1 , diff9 , diff8 , diff7 , diff3 , diff2 , diff4 ,
"You are in a twisty maze of little passages, all different.");
twist (diff7 , diff6 , diff2 , diff9 , diff10 , diff1 , diff0 , diff5 , diff8 , diff4 , diff3 ,
"You are in a little twisty maze of passages, all different.");
twist (diff8 , diff5 , diff6 , diff1 , diff4 , diff2 , diff7 , diff10 , diff9 , diff3 , diff0 ,
"You are in a maze of little twisting passages, all different.");
twist (diff9 , diff4 , diff8 , diff2 , diff3 , diff10 , diff6 , diff1 , diff0 , diff7 , diff5 ,
"You are in a maze of little twisty passages, all different.");
twist (diff10 , diff2 , pony , diff3 , diff7 , diff6 , diff5 , diff4 , diff1 , diff9 , diff8 ,
"You are in a little maze of twisting passages, all different.");

make loc(pony , dead end , 0, 0);
make inst (N, 0, diff10); ditto(OUT);

§40 ADVENT CAVE CONNECTIONS 25

40. Going north from the long hall, we come to the vicinity of another large room, with royal treasures
nearby. (You probably first reached this part of the cavern from the east, via the Hall of Mists.) Unfor-
tunately, a vicious snake is here too; the conditional instructions for getting past the snake are worthy of
study.

〈Build the travel table 23 〉 +≡
make loc(cross ,
"You are at a crossover of a high N/S passage and a low E/W one.", 0, 0);
make inst (W, 0, elong);
make inst (N, 0, dead0);
make inst (E, 0,west);
make inst (S, 0,wlong);

make loc(hmk ,
"You are in the Hall of the Mountain King, with passages off in all\ndirections.",
"You’re in Hall of Mt King.", snake hint);
make inst (STAIRS, 0, emist); ditto(U); ditto(E);
make inst (N,not (SNAKE, 0),ns); ditto(L);
make inst (S,not (SNAKE, 0), south); ditto(R);
make inst (W,not (SNAKE, 0),west); ditto(FORWARD);
make inst (N, 0, snaked);
make inst (SW, 35, secret);
make inst (SW, sees (SNAKE), snaked);
make inst (SECRET, 0, secret);

make loc(west ,
"You are in the west side chamber of the Hall of the Mountain King.\n\

A passage continues west and up here.",
"You’re in west side chamber.", 0);
make inst (HALL, 0, hmk); ditto(OUT); ditto(E);
make inst (W, 0, cross); ditto(U);

make loc(south ,
"You are in the south side chamber.", 0, 0);
make inst (HALL, 0, hmk); ditto(OUT); ditto(N);

26 CAVE CONNECTIONS ADVENT §41

41. North of the mountain king’s domain is a curious shuttle station called Y2, with magic connections to
two other places.

(Crowther led a team in 1974 that explored region “Y” of Colossal Cave; “Y2” was the second location
to be named in this region.)

〈Build the travel table 23 〉 +≡
make loc(ns ,
"You are in a low N/S passage at a hole in the floor. The hole goes\n\

down to an E/W passage.",
"You’re in N/S passage.", 0);
make inst (HALL, 0, hmk); ditto(OUT); ditto(S);
make inst (N, 0, y2); ditto(Y2);
make inst (D, 0, dirty); ditto(HOLE);

make loc(y2 ,
"You are in a large room, with a passage to the south, a passage to the\n\

west, and a wall of broken rock to the east. There is a large \"Y2\" on\n\

a rock in the room’s center.",
"You’re at \"Y2\".", 0);
make inst (PLUGH, 0, house);
make inst (S, 0,ns);
make inst (E, 0, jumble); ditto(WALL); ditto(BROKEN);
make inst (W, 0,windoe);
make inst (PLOVER, holds (EMERALD), pdrop);
make inst (PLOVER, 0, proom);

make loc(jumble ,
"You are in a jumble of rock, with cracks everywhere.", 0, 0);
make inst (D, 0, y2); ditto(Y2);
make inst (U, 0, emist);

make loc(windoe ,
"You’re at a low window overlooking a huge pit, which extends up out of\n\

sight. A floor is indistinctly visible over 50 feet below. Traces of\n\

white mist cover the floor of the pit, becoming thicker to the right.\n\

Marks in the dust around the window would seem to indicate that\n\

someone has been here recently. Directly across the pit from you and\n\

25 feet away there is a similar window looking into a lighted room.\n\

A shadowy figure can be seen there peering back at you.",
"You’re at window on pit.", 0);
make inst (E, 0, y2); ditto(Y2);
make inst (JUMP, 0,neck);

§42 ADVENT CAVE CONNECTIONS 27

42. Next let’s consider the east/west passage below ns .

〈Build the travel table 23 〉 +≡
make loc(dirty ,
"You are in a dirty broken passage. To the east is a crawl. To the\n\

west is a large passage. Above you is a hole to another passage.",
"You’re in dirty passage.", 0);
make inst (E, 0, clean); ditto(CRAWL);
make inst (U, 0,ns); ditto(HOLE);
make inst (W, 0, dusty);
make inst (BEDQUILT, 0, bedquilt);

make loc(clean ,
"You are on the brink of a small clean climbable pit. A crawl leads\nwest.",
"You’re by a clean pit.", 0);
make inst (W, 0, dirty); ditto(CRAWL);
make inst (D, 0,wet); ditto(PIT); ditto(CLIMB);

make loc(wet ,
"You are in the bottom of a small pit with a little stream, which\n\

enters and exits through tiny slits.",
"You’re in pit by stream.", liquid);
make inst (CLIMB, 0, clean); ditto(U); ditto(OUT);
make inst (SLIT, 0, slit rmk); ditto(STREAM); ditto(D); ditto(UPSTREAM); ditto(DOWNSTREAM);

make loc(dusty ,
"You are in a large room full of dusty rocks. There is a big hole in\n\

the floor. There are cracks everywhere, and a passage leading east.",
"You’re in dusty rock room.", 0);
make inst (E, 0, dirty); ditto(PASSAGE);
make inst (D, 0, complex); ditto(HOLE); ditto(FLOOR);
make inst (BEDQUILT, 0, bedquilt);

make loc(complex,
"You are at a complex junction. A low hands−and−knees passage from the\n\

north joins a higher crawl from the east to make a walking passage\n\

going west. There is also a large room above. The air is damp here.",
"You’re at complex junction.", 0);
make inst (U, 0, dusty); ditto(CLIMB); ditto(ROOM);
make inst (W, 0, bedquilt); ditto(BEDQUILT);
make inst (N, 0, shell); ditto(SHELL);
make inst (E, 0, ante);

28 CAVE CONNECTIONS ADVENT §43

43. A more-or-less self-contained cavelet can be found north of the complex passage. Its connections are
more vertical than horizontal.

〈Build the travel table 23 〉 +≡
make loc(shell ,
"You’re in a large room carved out of sedimentary rock. The floor\n\

and walls are littered with bits of shells embedded in the stone.\n\

A shallow passage proceeds downward, and a somewhat steeper one\n\

leads up. A low hands−and−knees passage enters from the south.",
"You’re in Shell Room.", 0);
make inst (U, 0, arch); ditto(HALL);
make inst (D, 0, ragged);
remark ("You can’t fit this five−foot clam through that little passage!");
make inst (S, holds (CLAM), sayit);
remark ("You can’t fit this five−foot oyster through that little passage!");
make inst (S, holds (OYSTER), sayit);
make inst (S, 0, complex);

make loc(arch ,
"You are in an arched hall. A coral passage once continued up and east\n\

from here, but is now blocked by debris. The air smells of sea water.",
"You’re in arched hall.", 0);
make inst (D, 0, shell); ditto(SHELL); ditto(OUT);

make loc(ragged ,
"You are in a long sloping corridor with ragged sharp walls.", 0, 0);
make inst (U, 0, shell); ditto(SHELL);
make inst (D, 0, sac);

make loc(sac ,
"You are in a cul−de−sac about eight feet across.", 0, 0);
make inst (U, 0, ragged); ditto(OUT);
make inst (SHELL, 0, shell);

§44 ADVENT CAVE CONNECTIONS 29

44. A dangerous section lies east of the complex junction.

〈Build the travel table 23 〉 +≡
make loc(ante ,
"You are in an anteroom leading to a large passage to the east. Small\n\

passages go west and up. The remnants of recent digging are evident.\n\

A sign in midair here says \"CAVE UNDER CONSTRUCTION BEYOND THIS POINT.\n\

PROCEED AT OWN RISK. [WITT CONSTRUCTION COMPANY]\"",
"You’re in anteroom.", 0);
make inst (U, 0, complex);
make inst (W, 0, bedquilt);
make inst (E, 0,witt);

make loc(witt ,
"You are at Witt’s End. Passages lead off in \"all\" directions.",
"You’re at Witt’s End.",witt hint);
remark ("You have crawled around in some little holes and wound up back in the\n\

main passage.");
loop rmk = sayit ;
make inst (E, 95, sayit); ditto(N); ditto(S);
ditto(NE); ditto(SE); ditto(SW); ditto(NW); ditto(U); ditto(D);
make inst (E, 0, ante); /∗ one chance in 20 ∗/
remark ("You have crawled around in some little holes and found your way\n\

blocked by a recent cave−in. You are now back in the main passage.");
make inst (W, 0, sayit);

30 CAVE CONNECTIONS ADVENT §45

45. Will Crowther, who actively explored and mapped many caves in Kentucky before inventing Adventure,
named Bedquilt after the Bedquilt Entrance to Colossal Cave. (The real Colossal Cave was discovered near
Mammoth Cave in 1895, and its Bedquilt Entrance was found in 1896; see The Longest Cave by Brucker
and Watson (New York: Knopf, 1976) for further details.)

Random exploration is the name of the game here.

〈Build the travel table 23 〉 +≡
make loc(bedquilt ,
"You are in Bedquilt, a long east/west passage with holes everywhere.\n\

To explore at random select north, south, up, or down.",
"You’re in Bedquilt.", 0);
make inst (E, 0, complex);
make inst (W, 0, cheese);
make inst (S, 80, loop rmk);
make inst (SLAB, 0, slab);
make inst (U, 80, loop rmk);
make inst (U, 50, abovep);
make inst (U, 0, dusty);
make inst (N, 60, loop rmk);
make inst (N, 75, low);
make inst (N, 0, sjunc);
make inst (D, 80, loop rmk);
make inst (D, 0, ante);

make loc(cheese ,
"You are in a room whose walls resemble Swiss cheese. Obvious passages\n\

go west, east, NE, and NW. Part of the room is occupied by a large\nbedrock block.",
"You’re in Swiss cheese room.", 0);
make inst (NE, 0, bedquilt);
make inst (W, 0, e2pit);
make inst (S, 80, loop rmk);
make inst (CANYON, 0, tall);
make inst (E, 0, soft);
make inst (NW, 50, loop rmk);
make inst (ORIENTAL, 0, oriental);

make loc(soft ,
"You are in the Soft Room. The walls are covered with heavy curtains,\n\

the floor with a thick pile carpet. Moss covers the ceiling.",
"You’re in Soft Room.", 0);
make inst (W, 0, cheese); ditto(OUT);

§46 ADVENT CAVE CONNECTIONS 31

46. West of the quilt and the cheese is a room with two pits.
Why would you want to descend into the pits? Keep playing and you’ll find out.

〈Build the travel table 23 〉 +≡
make loc(e2pit ,
"You are at the east end of the Twopit Room. The floor here is\n\

littered with thin rock slabs, which make it easy to descend the pits.\n\

There is a path here bypassing the pits to connect passages from east\n\

and west. There are holes all over, but the only big one is on the\n\

wall directly over the west pit where you can’t get to it.",
"You’re at east end of Twopit Room.", 0);
make inst (E, 0, cheese);
make inst (W, 0,w2pit); ditto(ACROSS);
make inst (D, 0, epit); ditto(PIT);

make loc(w2pit ,
"You are at the west end of the Twopit Room. There is a large hole in\n\

the wall above the pit at this end of the room.",
"You’re at west end of Twopit Room.", 0);
make inst (E, 0, e2pit); ditto(ACROSS);
make inst (W, 0, slab); ditto(SLAB);
make inst (D, 0,wpit); ditto(PIT);
remark ("It is too far up for you to reach.");
make inst (HOLE, 0, sayit);

make loc(epit ,
"You are at the bottom of the eastern pit in the Twopit Room. There is\n\

a small pool of oil in one corner of the pit.",
"You’re in east pit.", liquid + oil);
make inst (U, 0, e2pit); ditto(OUT);

make loc(wpit ,
"You are at the bottom of the western pit in the Twopit Room. There is\n\

a large hole in the wall about 25 feet above you.",
"You’re in west pit.", 0);
make inst (U, 0,w2pit); ditto(OUT);
make inst (CLIMB,not (PLANT, 4), check);
make inst (CLIMB, 0, climb);

32 CAVE CONNECTIONS ADVENT §47

47. Oho, you climbed the plant in the west pit! Now you’re in another scenic area with rare treasures—if
you can get through the door.

〈Build the travel table 23 〉 +≡
make loc(narrow ,
"You are in a long, narrow corridor stretching out of sight to the\n\

west. At the eastern end is a hole through which you can see a\n\

profusion of leaves.",
"You’re in narrow corridor.", 0);
make inst (D, 0,wpit); ditto(CLIMB); ditto(E);
make inst (JUMP, 0,neck);
make inst (W, 0, giant); ditto(GIANT);

make loc(giant ,
"You are in the Giant Room. The ceiling here is too high up for your\n\

lamp to show it. Cavernous passages lead east, north, and south. On\n\

the west wall is scrawled the inscription, \"FEE FIE FOE FOO\" [sic].",
"You’re in Giant Room.", 0);
make inst (S, 0,narrow);
make inst (E, 0, block);
make inst (N, 0, immense);

make loc(block ,
"The passage here is blocked by a recent cave−in.", 0, 0);
make inst (S, 0, giant); ditto(GIANT); ditto(OUT);

make loc(immense ,
"You are at one end of an immense north/south passage.", 0, 0);
make inst (S, 0, giant); ditto(GIANT); ditto(PASSAGE);
make inst (N,not (DOOR, 0), falls); ditto(ENTER); ditto(CAVERN);
remark ("The door is extremely rusty and refuses to open.");
make inst (N, 0, sayit);

make loc(falls ,
"You are in a magnificent cavern with a rushing stream, which cascades\n\

over a sparkling waterfall into a roaring whirlpool that disappears\n\

through a hole in the floor. Passages exit to the south and west.",
"You’re in cavern with waterfall.", liquid);
make inst (S, 0, immense); ditto(OUT);
make inst (GIANT, 0, giant);
make inst (W, 0, steep);

make loc(steep ,
"You are at the top of a steep incline above a large room. You could\n\

climb down here, but you would not be able to climb up. There is a\n\

passage leading back to the north.",
"You’re at steep incline above large room.", 0);
make inst (N, 0, falls); ditto(CAVERN); ditto(PASSAGE);
make inst (D, 0, low); ditto(CLIMB);

§48 ADVENT CAVE CONNECTIONS 33

48. Meanwhile let’s backtrack to another part of the cave possibly reachable from Bedquilt.

〈Build the travel table 23 〉 +≡
make loc(abovep ,
"You are in a secret N/S canyon above a sizable passage.", 0, 0);
make inst (N, 0, sjunc);
make inst (D, 0, bedquilt); ditto(PASSAGE);
make inst (S, 0, tite);

make loc(sjunc ,
"You are in a secret canyon at a junction of three canyons, bearing\n\

north, south, and SE. The north one is as tall as the other two\ncombined.",
"You’re at junction of three secret canyons.", 0);
make inst (SE, 0, bedquilt);
make inst (S, 0, abovep);
make inst (N, 0,window);

make loc(tite ,
"A large stalactite extends from the roof and almost reaches the floor\n\

below. You could climb down it, and jump from it to the floor, but\n\

having done so you would be unable to reach it to climb back up.",
"You’re on top of stalactite.", 0);
make inst (N, 0, abovep);
make inst (D, 40, like6); ditto(JUMP); ditto(CLIMB);
make inst (D, 50, like9);
make inst (D, 0, like4); /∗ oh dear, you’re in a random part of the maze ∗/
make loc(low ,
"You are in a large low room. Crawls lead north, SE, and SW.", 0, 0);
make inst (BEDQUILT, 0, bedquilt);
make inst (SW, 0, scorr);
make inst (N, 0, crawl);
make inst (SE, 0, oriental); ditto(ORIENTAL);

make loc(crawl ,
"Dead end crawl.", 0, 0);
make inst (S, 0, low); ditto(CRAWL); ditto(OUT);

49. The described view from the west window, window , is identical to the view from the east window,
windoe , except for one word. What on earth do you see from those windows? (Don Woods has confided
that the shadowy figure is actually your own reflection, because mirror lies between the two window rooms.
An intentional false clue.)

〈Build the travel table 23 〉 +≡
make loc(window ,
"You’re at a low window overlooking a huge pit, which extends up out of\n\

sight. A floor is indistinctly visible over 50 feet below. Traces of\n\

white mist cover the floor of the pit, becoming thicker to the left.\n\

Marks in the dust around the window would seem to indicate that\n\

someone has been here recently. Directly across the pit from you and\n\

25 feet away there is a similar window looking into a lighted room.\n\

A shadowy figure can be seen there peering back at you.",
short desc [windoe], 0);
make inst (W, 0, sjunc);
make inst (JUMP, 0,neck);

34 CAVE CONNECTIONS ADVENT §50

50. More treasures await you via the low corridor.

〈Build the travel table 23 〉 +≡
make loc(oriental ,
"This is the Oriental Room. Ancient oriental cave drawings cover the\n\

walls. A gently sloping passage leads upward to the north, another\n\

passage leads SE, and a hands−and−knees crawl leads west.",
"You’re in Oriental Room.", 0);
make inst (SE, 0, cheese);
make inst (W, 0, low); ditto(CRAWL);
make inst (U, 0,misty); ditto(N); ditto(CAVERN);

make loc(misty ,
"You are following a wide path around the outer edge of a large cavern.\n\

Far below, through a heavy white mist, strange splashing noises can be\n\

heard. The mist rises up through a fissure in the ceiling. The path\n\

exits to the south and west.",
"You’re in misty cavern.", 0);
make inst (S, 0, oriental); ditto(ORIENTAL);
make inst (W, 0, alcove);

51. One of the darkest secrets is hidden here. You will discover that you must take the emerald from the
Plover Room to the alcove. But you don’t learn the name of the Plover Room until the second time you’ve
been there, since your first visit will be lampless until you know the secret.

〈Build the travel table 23 〉 +≡
make loc(alcove ,
"You are in an alcove. A small NW path seems to widen after a short\n\

distance. An extremely tight tunnel leads east. It looks like a very\n\

tight squeeze. An eerie light can be seen at the other end.",
"You’re in alcove.", dark hint);
make inst (NW, 0,misty); ditto(CAVERN);
make inst (E, 0, ppass); ditto(PASSAGE);
make inst (E, 0, proom); /∗ never performed, but seen by ‘go back’ ∗/
make loc(proom ,
"You’re in a small chamber lit by an eerie green light. An extremely\n\

narrow tunnel exits to the west. A dark corridor leads NE.",
"You’re in Plover Room.", lighted + dark hint);
make inst (W, 0, ppass); ditto(PASSAGE); ditto(OUT);
make inst (W, 0, alcove); /∗ never performed, but seen by ‘go back’ ∗/
make inst (PLOVER, holds (EMERALD), pdrop);
make inst (PLOVER, 0, y2);
make inst (NE, 0, droom); ditto(DARK);

make loc(droom ,
"You’re in the Dark−Room. A corridor leading south is the only exit.",
"You’re in Dark−Room.", dark hint);
make inst (S, 0, proom); ditto(PLOVER); ditto(OUT);

§52 ADVENT CAVE CONNECTIONS 35

52. We forgot to mention the circuitous passage leading west from the Twopit Room. It winds around
and takes you to a somewhat more mundane area, yet not without interest.

〈Build the travel table 23 〉 +≡
make loc(slab ,
"You are in a large low circular chamber whose floor is an immense slab\n\

fallen from the ceiling (Slab Room). There once were large passages\n\

to the east and west, but they are now filled with boulders. Low\n\

small passages go north and south, and the south one quickly bends\n\

east around the boulders.",
/∗ Woods originally said ‘west’ ∗/

"You’re in Slab Room.", 0);
make inst (S, 0,w2pit);
make inst (U, 0, abover); ditto(CLIMB);
make inst (N, 0, bedquilt);

make loc(abover ,
"You are in a secret N/S canyon above a large room.", 0, 0);
make inst (D, 0, slab); ditto(SLAB);
make inst (S,not (DRAGON, 0), scan2);
make inst (S, 0, scan1);
make inst (N, 0,mirror);
make inst (RESERVOIR, 0, res);

make loc(mirror ,
"You are in a north/south canyon about 25 feet across. The floor is\n\

covered by white mist seeping in from the north. The walls extend\n\

upward for well over 100 feet. Suspended from some unseen point far\n\

above you, an enormous two−sided mirror is hanging parallel to and\n\

midway between the canyon walls. (The mirror is obviously provided\n\

for the use of the dwarves, who as you know are extremely vain.)\n\

A small window can be seen in either wall, some fifty feet up.",
"You’re in mirror canyon.", 0);
make inst (S, 0, abover);
make inst (N, 0, res); ditto(RESERVOIR);

make loc(res ,
"You are at the edge of a large underground reservoir. An opaque cloud\n\

of white mist fills the room and rises rapidly upward. The lake is\n\

fed by a stream, which tumbles out of a hole in the wall about 10 feet\n\

overhead and splashes noisily into the water somewhere within the\n\

mist. The only passage goes back toward the south.",
"You’re at reservoir.", liquid);
make inst (S, 0,mirror); ditto(OUT);

36 CAVE CONNECTIONS ADVENT §53

53. Four more secret canyons lead back to the Hall of the Mountain King. Three of them are actually
the same, but the dragon blocks the connection between the northern passage (to abover) and the eastern
passage (to secret). Once you’ve vanquished the dragon, scan2 takes the place of scan1 and scan3 .

〈Build the travel table 23 〉 +≡
make loc(scan1 ,
"You are in a secret canyon that exits to the north and east.", 0, 0);
make inst (N, 0, abover); ditto(OUT);
remark ("The dragon looks rather nasty. You’d best not try to get by.");
make inst (E, 0, sayit); ditto(FORWARD);

make loc(scan2 , long desc [scan1], 0, 0);
make inst (N, 0, abover);
make inst (E, 0, secret);

make loc(scan3 , long desc [scan1], 0, 0);
make inst (E, 0, secret); ditto(OUT);
make inst (N, 0, sayit); ditto(FORWARD);

make loc(secret ,
"You are in a secret canyon, which here runs E/W. It crosses over a\n\

very tight canyon 15 feet below. If you go down you may not be able\n\

to get back up.",
"You’re in secret E/W canyon above tight canyon.", 0);
make inst (E, 0, hmk);
make inst (W,not (DRAGON, 0), scan2);
make inst (W, 0, scan3);
make inst (D, 0,wide);

54. Below secret there’s another way to reach the cheese.

〈Build the travel table 23 〉 +≡
make loc(wide ,
"You are at a wide place in a very tight N/S canyon.", 0, 0);
make inst (S, 0, tight);
make inst (N, 0, tall);

make loc(tight ,
"The canyon here becomes too tight to go further south.", 0, 0);
make inst (N, 0,wide);

make loc(tall ,
"You are in a tall E/W canyon. A low tight crawl goes 3 feet north and\n\

seems to open up.",
"You’re in tall E/W canyon.", 0);
make inst (E, 0,wide);
make inst (W, 0, boulders);
make inst (N, 0, cheese); ditto(CRAWL);

make loc(boulders ,
"The canyon runs into a mass of boulders −−− dead end.", 0, 0);
make inst (S, 0, tall);

§55 ADVENT CAVE CONNECTIONS 37

55. If you aren’t having fun yet, wait till you meet the troll. The only way to get here is to crawl southwest
from the low room. And then you have a new problem to solve; we’ll see later that the TROLL and the BRIDGE
are here.

(Don Woods got the idea for the mist-covered bridge after an early morning visit to Mount Diablo; see
Steven Levy, Hackers (New York: Delta, 1994), Chapter 7.)

〈Build the travel table 23 〉 +≡
make loc(scorr ,
"You are in a long winding corridor sloping out of sight in both\ndirections.",
"You’re in sloping corridor.", 0);
make inst (D, 0, low);
make inst (U, 0, swside);

make loc(swside ,
"You are on one side of a large, deep chasm. A heavy white mist rising\n\

up from below obscures all view of the far side. A SW path leads away\n\

from the chasm into a winding corridor.",
"You’re on SW side of chasm.", 0);
make inst (SW, 0, scorr);
remark ("The troll refuses to let you cross.");
make inst (OVER, sees (TROLL), sayit); ditto(ACROSS); ditto(CROSS); ditto(NE);
remark ("There is no longer any way across the chasm.");
make inst (OVER,not (BRIDGE, 0), sayit);
make inst (OVER, 0, troll);
make inst (JUMP,not (BRIDGE, 0), lose);
make inst (JUMP, 0, bridge rmk);

38 CAVE CONNECTIONS ADVENT §56

56. The only things not yet explored on this side of the troll bridge are a dozen dead ends. They appear
at this place in the ordering of all locations because of the pirate logic explained later: The pirate will never
go to locations ≥ dead3 .

#define max pirate loc dead2

〈Build the travel table 23 〉 +≡
make loc(dead0 , dead end , 0, 0);
make inst (S, 0, cross); ditto(OUT);

make loc(dead1 , dead end , 0, twist hint);
make inst (W, 0, like11); ditto(OUT);

make loc(dead2 , dead end , 0, 0);
make inst (SE, 0, like13);

make loc(dead3 , dead end , 0, twist hint);
make inst (W, 0, like4); ditto(OUT);

make loc(dead4 , dead end , 0, twist hint);
make inst (E, 0, like4); ditto(OUT);

make loc(dead5 , dead end , 0, twist hint);
make inst (U, 0, like3); ditto(OUT);

make loc(dead6 , dead end , 0, twist hint);
make inst (W, 0, like9); ditto(OUT);

make loc(dead7 , dead end , 0, twist hint);
make inst (U, 0, like10); ditto(OUT);

make loc(dead8 , dead end , 0, 0);
make inst (E, 0, brink); ditto(OUT);

make loc(dead9 , dead end , 0, twist hint);
make inst (S, 0, like3); ditto(OUT);

make loc(dead10 , dead end , 0, twist hint);
make inst (E, 0, like12); ditto(OUT);

make loc(dead11 , dead end , 0, twist hint);
make inst (U, 0, like8); ditto(OUT);

§57 ADVENT CAVE CONNECTIONS 39

57. A whole nuther cave with nine sites and additional treasures is on tuther side of the troll bridge! This
cave was inspired in part by J. R. R. Tolkien’s stories.

〈Build the travel table 23 〉 +≡
make loc(neside ,
"You are on the far side of the chasm. A NE path leads away from the\n\

chasm on this side.",
"You’re on NE side of chasm.", 0);
make inst (NE, 0, corr);
make inst (OVER, sees (TROLL), sayit − 1); ditto(ACROSS); ditto(CROSS); ditto(SW);
make inst (OVER, 0, troll);
make inst (JUMP, 0, bridge rmk);
make inst (FORK, 0, fork);
make inst (VIEW, 0, view);
make inst (BARREN, 0, fbarr);

make loc(corr ,
"You’re in a long east/west corridor. A faint rumbling noise can be\n\

heard in the distance.",
"You’re in corridor.", 0);
make inst (W, 0,neside);
make inst (E, 0, fork); ditto(FORK);
make inst (VIEW, 0, view);
make inst (BARREN, 0, fbarr);

make loc(fork ,
"The path forks here. The left fork leads northeast. A dull rumbling\n\

seems to get louder in that direction. The right fork leads southeast\n\

down a gentle slope. The main corridor enters from the west.",
"You’re at fork in path.", 0);
make inst (W, 0, corr);
make inst (NE, 0,warm); ditto(L);
make inst (SE, 0, lime); ditto(R); ditto(D);
make inst (VIEW, 0, view);
make inst (BARREN, 0, fbarr);

make loc(warm ,
"The walls are quite warm here. From the north can be heard a steady\n\

roar, so loud that the entire cave seems to be trembling. Another\n\

passage leads south, and a low crawl goes east.",
"You’re at junction with warm walls.", 0);
make inst (S, 0, fork); ditto(FORK);
make inst (N, 0, view); ditto(VIEW);
make inst (E, 0, chamber); ditto(CRAWL);

make loc(view ,
"You are on the edge of a breath−taking view. Far below you is an\n\

active volcano, from which great gouts of molten lava come surging\n\

out, cascading back down into the depths. The glowing rock fills the\n\

farthest reaches of the cavern with a blood−red glare, giving every−\n\

thing an eerie, macabre appearance. The air is filled with flickering\n\

sparks of ash and a heavy smell of brimstone. The walls are hot to\n\

the touch, and the thundering of the volcano drowns out all other\n\

sounds. Embedded in the jagged roof far overhead are myriad twisted\n\

formations, composed of pure white alabaster, which scatter the murky\n\

light into sinister apparitions upon the walls. To one side is a deep\n\

40 CAVE CONNECTIONS ADVENT §57

gorge, filled with a bizarre chaos of tortured rock that seems to have\n\

been crafted by the Devil himself. An immense river of fire crashes\n\

out from the depths of the volcano, burns its way through the gorge,\n\

and plummets into a bottomless pit far off to your left. To the\n\

right, an immense geyser of blistering steam erupts continuously\n\

from a barren island in the center of a sulfurous lake, which bubbles\n\

ominously. The far right wall is aflame with an incandescence of its\n\

own, which lends an additional infernal splendor to the already\n\

hellish scene. A dark, foreboding passage exits to the south.",
"You’re at breath−taking view.", lighted);
make inst (S, 0,warm); ditto(PASSAGE); ditto(OUT);
make inst (FORK, 0, fork);
remark (default msg [EAT]);
make inst (D, 0, sayit); ditto(JUMP);

make loc(chamber ,
"You are in a small chamber filled with large boulders. The walls are\n\

very warm, causing the air in the room to be almost stifling from the\n\

heat. The only exit is a crawl heading west, through which a low\n\

rumbling noise is coming.",
"You’re in chamber of boulders.", 0);
make inst (W, 0,warm); ditto(OUT); ditto(CRAWL);
make inst (FORK, 0, fork);
make inst (VIEW, 0, view);

make loc(lime ,
"You are walking along a gently sloping north/south passage lined with\n\

oddly shaped limestone formations.",
"You’re in limestone passage.", 0);
make inst (N, 0, fork); ditto(U); ditto(FORK);
make inst (S, 0, fbarr); ditto(D); ditto(BARREN);
make inst (VIEW, 0, view);

make loc(fbarr ,
"You are standing at the entrance to a large, barren room. A sign\n\

posted above the entrance reads: \"CAUTION! BEAR IN ROOM!\"",
"You’re in front of barren room.", 0); /∗ don’t laugh too loud ∗/
make inst (W, 0, lime); ditto(U);
make inst (FORK, 0, fork);
make inst (E, 0, barr); ditto(IN); ditto(BARREN); ditto(ENTER);
make inst (VIEW, 0, view);

make loc(barr ,
"You are inside a barren room. The center of the room is completely\n\

empty except for some dust. Marks in the dust lead away toward the\n\

far end of the room. The only exit is the way you came in.",
"You’re in barren room.", 0);
make inst (W, 0, fbarr); ditto(OUT);
make inst (FORK, 0, fork);
make inst (VIEW, 0, view);

§58 ADVENT CAVE CONNECTIONS 41

58. The two storage locations are accessible only from each other, and they lead only to each other.

〈Build the travel table 23 〉 +≡
make loc(neend ,
"You are at the northeast end of an immense room, even larger than the\n\

Giant Room. It appears to be a repository for the \"Adventure\"\n\

program. Massive torches far overhead bathe the room with smoky\n\

yellow light. Scattered about you can be seen a pile of bottles (all\n\

of them empty), a nursery of young beanstalks murmuring quietly, a bed\n\

of oysters, a bundle of black rods with rusty stars on their ends, and\n\

a collection of brass lanterns. Off to one side a great many dwarves\n\

are sleeping on the floor, snoring loudly. A sign nearby reads: \"DO\n\

NOT DISTURB THE DWARVES!\" An immense mirror is hanging against one\n\

wall, and stretches to the other end of the room, where various other\n\

sundry objects can be glimpsed dimly in the distance.",
"You’re at NE end.", lighted);
make inst (SW, 0, swend);

make loc(swend ,
"You are at the southwest end of the repository. To one side is a pit\n\

full of fierce green snakes. On the other side is a row of small\n\

wicker cages, each of which contains a little sulking bird. In one\n\

corner is a bundle of black rods with rusty marks on their ends.\n\

A large number of velvet pillows are scattered about on the floor.\n\

A vast mirror stretches off to the northeast. At your feet is a\n\

large steel grate, next to which is a sign that reads, \"TREASURE\n\

VAULT. KEYS IN MAIN OFFICE.\"",
"You’re at SW end.", lighted);
make inst (NE, 0,neend);
make inst (D, 0, grate rmk);

59. When the current location is crack or higher, it’s a pseudo-location. In such cases we don’t ask you
for input; we assume that you have told us to force another instruction through. For example, if you try to
go through the crack by the small pit in the upper cave (location spit), the instruction there sends you to
crack , which immediately sends you back to spit .

#define forced move (loc) (loc ≥ min forced loc)
#define FORCE 0 /∗ actually any value will do here ∗/
〈Build the travel table 23 〉 +≡

make loc(crack ,
"The crack is far too small for you to follow.", 0, 0);
make inst (FORCE, 0, spit);

60. Here are some forced actions that are less pleasant.

〈Build the travel table 23 〉 +≡
make loc(neck ,
"You are at the bottom of the pit with a broken neck.", 0, 0);
make inst (FORCE, 0, limbo);

make loc(lose , "You didn’t make it.", 0, 0);
make inst (FORCE, 0, limbo);

42 CAVE CONNECTIONS ADVENT §61

61. The rest are more-or-less routine, except for check —which executes a conditional forced command.

〈Build the travel table 23 〉 +≡
make loc(cant ,
"The dome is unclimbable.", 0, 0);
make inst (FORCE, 0, emist);

make loc(climb ,
"You clamber up the plant and scurry through the hole at the top.", 0, 0);
make inst (FORCE, 0,narrow);

make loc(check , 0, 0, 0);
make inst (FORCE,not (PLANT, 2), upnout);
make inst (FORCE, 0, didit);

make loc(snaked ,
"You can’t get by the snake.", 0, 0);
make inst (FORCE, 0, hmk);

make loc(thru ,
"You have crawled through a very low wide passage parallel to and north\n\

of the Hall of Mists.", 0, 0);
make inst (FORCE, 0,wmist);

make loc(duck , long desc [thru], 0, 0);
make inst (FORCE, 0,wfiss);

make loc(sewer ,
"The stream flows out through a pair of 1−foot−diameter sewer pipes.\n\

It would be advisable to use the exit.", 0, 0);
make inst (FORCE, 0, house);

make loc(upnout ,
"There is nothing here to climb. Use \"up\" or \"out\" to leave the pit.", 0, 0);
make inst (FORCE, 0,wpit);

make loc(didit ,
"You have climbed up the plant and out of the pit.", 0, 0);
make inst (FORCE, 0,w2pit);

62. The table of instructions ends here; the remaining “locations” ppass , pdrop , and troll are special.

〈Build the travel table 23 〉 +≡
start [ppass] = q;
if (q > &travels [travel size] ∨ rem count > rem size) {

printf ("Oops, I’m broken!\n"); exit (−1);
}

§63 ADVENT DATA STRUCTURES FOR OBJECTS 43

63. Data structures for objects. A fixed universe of objects was enumerated in the vocabulary section.
Most of the objects can move or be moved from place to place; so we maintain linked lists of the objects at
each location. The first object at location l is first [l], then comes link [first [l]], then link [link [first [l]]], etc.,
ending with 0 (which is the “object” called NOTHING).

Some of the objects are placed in groups of one or more objects. In such cases base [t] is the smallest object
in the group containing object t. Objects that belong to groups are immovable; they always stay in the same
location. Other objects have base [t] = NOTHING and they are free to leave one list and join another. For
example, it turns out that the KEYS are movable, but the SNAKE is always in the Hall of the Mountain King;
we set base [KEYS] = NOTHING and base [SNAKE] = SNAKE. Several groups, such as the GRATE and GRATE_,
consist of two objects. This program supports operations on groups of more than two objects, but no such
objects actually occur.

Each movable or base object t has a current property prop [t], which is initially −1 for treasures, otherwise
initially 0. We change prop [t] to 0 when you first see treasure t; and property values often change further as
the game progresses. For example, the PLANT can grow. When you see an object, we usually print a message
that corresponds to its current property value. That message is the string note [prop [t] + offset [t]].

(Exception: When you first see the RUG or the CHAIN, its property value is set to 1, not 0. The reason
for this hack is that you get maximum score only if the property values of all treasures are zero when you
finish.)

Each object is in at most one list, place [t]. If you are carrying object t, the value of place [t] is inhand ,
which is negative. The special location limbo has value 0; we don’t maintain a list first [limbo] for objects
that have place [t] = limbo . Thus object t is in a list if and only if place [t] > 0. The global variable holding
counts how many objects you are carrying.

One more array completes our set of data structures: Objects that appear in inventory reports have a
name, name [t].

#define toting (t) (place [t] < 0)

〈Global variables 7 〉 +≡
object first [max loc + 1]; /∗ the first object present at a location ∗/
object link [max obj + 1]; /∗ the next object present in the same location ∗/
object base [max obj + 2]; /∗ the smallest object in each object’s group, if any ∗/
int prop [max obj + 1]; /∗ each object’s current property value ∗/
location place [max obj + 1]; /∗ each object’s current location ∗/
char ∗name [max obj + 1]; /∗ name of object for inventory listing ∗/
char ∗note [100]; /∗ descriptions of object properties ∗/
int offset [max obj + 1]; /∗ where notes for each object start ∗/
int holding ; /∗ how many objects have prop [t] < 0? ∗/
int note ptr = 0; /∗ how many notes have we stored? ∗/

44 DATA STRUCTURES FOR OBJECTS ADVENT §64

64. Here then is a simple subroutine to place an object at a given location, when the object isn’t presently
in a list.

〈Subroutines 6 〉 +≡
void drop ARGS((object, location));

void drop(t, l)
object t;

location l;

{
if (toting (t)) holding −−;
place [t] = l;
if (l < 0) holding ++;
else if (l > 0) {

link [t] = first [l];
first [l] = t;

}
}

65. Similarly, we need a subroutine to pick up an object.

#define move (t, l) { carry (t); drop(t, l); }
#define destroy (t) move (t, limbo)

〈Subroutines 6 〉 +≡
void carry ARGS((object));

void carry (t)
object t;

{ register location l = place [t];

if (l ≥ limbo) {
place [t] = inhand ;
holding ++;
if (l > limbo) {

register object r, s;

for (r = 0, s = first [l]; s 6= t; r = s, s = link [s]) ;
if (r ≡ 0) first [l] = link [s];
else link [r] = link [s]; /∗ remove t from list ∗/

}
}
}

§66 ADVENT DATA STRUCTURES FOR OBJECTS 45

66. The is at loc subroutine tests if a possibly multipart object is at a particular place, represented by the
global variable loc . It uses the fact that multipart objects have consecutive values, and base [max obj + 1] ≡
NOTHING.

〈Subroutines 6 〉 +≡
boolean is at loc ARGS((object));

boolean is at loc(t)
object t;

{
register object tt ;

if (base [t] ≡ NOTHING) return place [t] ≡ loc ;
for (tt = t; base [tt] ≡ t; tt ++)

if (place [tt] ≡ loc) return true ;
return false ;
}

67. A few macros make it easy to get each object started.

#define new obj (t, n, b, l)
{ /∗ object t named n with base b starts at l ∗/

name [t] = n;
base [t] = b;
offset [t] = note ptr ;
prop [t] = (is treasure (t) ? −1 : 0);
drop(t, l);
}

#define new note (n) note [note ptr ++] = n

68. 〈Additional local registers 22 〉 +≡
register object t;

46 OBJECT DATA ADVENT §69

69. Object data. Now it’s time to build the object structures just defined.
We put the objects into their initial locations backwards, that is, highest first; moreover, we place all

two-part objects before placing the others. Then low-numbered objects will appear first in the list, and
two-part objects will appear last.

Here are the two-part objects, which are mostly unnamed because you won’t be picking them up.

〈Build the object tables 69 〉 ≡
new obj (RUG_, 0, RUG, scan3);
new obj (RUG, "Persian rug", RUG, scan1);
new note ("There is a Persian rug spread out on the floor!");
new note ("The dragon is sprawled out on a Persian rug!!");
new obj (TROLL2_, 0, TROLL2, limbo);
new obj (TROLL2, 0, TROLL2, limbo);
new note ("The troll is nowhere to be seen.");
new obj (TROLL_, 0, TROLL,neside);
new obj (TROLL, 0, TROLL, swside);
new note ("A burly troll stands by the bridge and insists you throw him a\n\

treasure before you may cross.");
new note ("The troll steps out from beneath the bridge and blocks your way.");
new note (0);
new obj (BRIDGE_, 0, BRIDGE,neside);
new obj (BRIDGE, 0, BRIDGE, swside);
new note ("A rickety wooden bridge extends across the chasm, vanishing into the\n\

mist. A sign posted on the bridge reads, \"STOP! PAY TROLL!\"");
new note ("The wreckage of a bridge (and a dead bear) can be seen at the bottom\n\

of the chasm.");
new obj (DRAGON_, 0, DRAGON, scan3);
new obj (DRAGON, 0, DRAGON, scan1);
new note ("A huge green fierce dragon bars the way!");
new note ("Congratulations! You have just vanquished a dragon with your bare\n\

hands! (Unbelievable, isn’t it?)");
new note ("The body of a huge green dead dragon is lying off to one side.");
new obj (SHADOW_, 0, SHADOW,window);
new obj (SHADOW, 0, SHADOW,windoe);
new note ("The shadowy figure seems to be trying to attract your attention.");
new obj (PLANT2_, 0, PLANT2, e2pit);
new obj (PLANT2, 0, PLANT2,w2pit);
new note (0);
new note ("The top of a 12−foot−tall beanstalk is poking out of the west pit.");
new note ("There is a huge beanstalk growing out of the west pit up to the hole.");
new obj (CRYSTAL_, 0, CRYSTAL,wfiss);
new obj (CRYSTAL, 0, CRYSTAL, efiss);
new note (0);
new note ("A crystal bridge now spans the fissure.");
new note ("The crystal bridge has vanished!");
new obj (TREADS_, 0, TREADS, emist);
new obj (TREADS, 0, TREADS, spit);
new note ("Rough stone steps lead down the pit.");
new note ("Rough stone steps lead up the dome.");
new obj (GRATE_, 0, GRATE, inside);
new obj (GRATE, 0, GRATE, outside);
new note ("The grate is locked.");
new note ("The grate is open.");

§69 ADVENT OBJECT DATA 47

new obj (MIRROR_, 0, MIRROR, limbo); /∗ joins up with MIRROR later ∗/
See also section 70.

This code is used in section 200.

48 OBJECT DATA ADVENT §70

70. And here are the one-place objects, some of which are immovable (because they are in a group of size
one).

〈Build the object tables 69 〉 +≡
new obj (CHAIN, "Golden chain", CHAIN, barr);
new note ("There is a golden chain lying in a heap on the floor!");
new note ("The bear is locked to the wall with a golden chain!");
new note ("There is a golden chain locked to the wall!");
new obj (SPICES, "Rare spices", 0, chamber);
new note ("There are rare spices here!");
new obj (PEARL, "Glistening pearl", 0, limbo);
new note ("Off to one side lies a glistening pearl!");
new obj (PYRAMID, "Platinum pyramid", 0, droom);
new note ("There is a platinum pyramid here, 8 inches on a side!");
new obj (EMERALD, "Egg−sized emerald", 0, proom);
new note ("There is an emerald here the size of a plover’s egg!");
new obj (VASE, "Ming vase", 0, oriental);
new note ("There is a delicate, precious, Ming vase here!");
new note ("The vase is now resting, delicately, on a velvet pillow.");
new note ("The floor is littered with worthless shards of pottery.");
new note ("The Ming vase drops with a delicate crash.");
new obj (TRIDENT, "Jeweled trident", 0, falls);
new note ("There is a jewel−encrusted trident here!");
new obj (EGGS, "Golden eggs", 0, giant);
new note ("There is a large nest here, full of golden eggs!");
new note ("The nest of golden eggs has vanished!");
new note ("Done!");
new obj (CHEST, "Treasure chest", 0, limbo);
new note ("The pirate’s treasure chest is here!");
new obj (COINS, "Rare coins", 0,west);
new note ("There are many coins here!");
new obj (JEWELS, "Precious jewelry", 0, south);
new note ("There is precious jewelry here!");
new obj (SILVER, "Bars of silver", 0,ns);
new note ("There are bars of silver here!");
new obj (DIAMONDS, "Several diamonds", 0,wfiss);
new note ("There are diamonds here!");
new obj (GOLD, "Large gold nugget", 0,nugget);
new note ("There is a large sparkling nugget of gold here!");
new obj (MOSS, 0, MOSS, soft);
new note (0);
new obj (BATTERIES, "Batteries", 0, limbo);
new note ("There are fresh batteries here.");
new note ("Some worn−out batteries have been discarded nearby.");
new obj (PONY, 0, PONY, pony);
new note ("There is a massive vending machine here. The instructions on it read:\n\

\"Drop coins here to receive fresh batteries.\"");
new obj (GEYSER, 0, GEYSER, view);
new note (0);
new obj (MESSAGE, 0, MESSAGE, limbo);
new note ("There is a message scrawled in the dust in a flowery script, reading:\n\

\"This is not the maze where the pirate leaves his treasure chest.\"");
new obj (BEAR, 0, BEAR, barr);

§70 ADVENT OBJECT DATA 49

new note ("There is a ferocious cave bear eying you from the far end of the room!");
new note ("There is a gentle cave bear sitting placidly in one corner.");
new note ("There is a contented−looking bear wandering about nearby.");
new note (0);
new obj (PIRATE, 0, PIRATE, limbo);
new note (0);
new obj (ART, 0, ART, oriental);
new note (0);
new obj (AXE, "Dwarf’s axe", 0, limbo);
new note ("There is a little axe here.");
new note ("There is a little axe lying beside the bear.");
new obj (STALACTITE, 0, STALACTITE, tite);
new note (0);
new obj (PLANT, 0, PLANT,wpit);
new note ("There is a tiny little plant in the pit, murmuring \"Water, water, ...\"");
new note ("The plant spurts into furious growth for a few seconds.");
new note ("There is a 12−foot−tall beanstalk stretching up out of the pit,\n\

bellowing \"Water!! Water!!\"");
new note ("The plant grows explosively, almost filling the bottom of the pit.");
new note ("There is a gigantic beanstalk stretching all the way up to the hole.");
new note ("You’ve over−watered the plant! It’s shriveling up! It’s, it’s...");
new obj (MIRROR, 0, MIRROR,mirror);
new note (0);
new obj (OIL, "Oil in the bottle", 0, limbo);
new obj (WATER, "Water in the bottle", 0, limbo);
new obj (BOTTLE, "Small bottle", 0, house);
new note ("There is a bottle of water here.");
new note ("There is an empty bottle here.");
new note ("There is a bottle of oil here.");
new obj (FOOD, "Tasty food", 0, house);
new note ("There is food here.");
new obj (KNIFE, 0, 0, limbo);
new obj (DWARF, 0, DWARF, limbo);
new obj (MAG, "\"Spelunker Today\"", 0, ante);
new note ("There are a few recent issues of \"Spelunker Today\" magazine here.");
new obj (OYSTER, "Giant oyster >GROAN!<", 0, limbo);
new note ("There is an enormous oyster here with its shell tightly closed.");
new note ("Interesting. There seems to be something written on the underside of\n\

the oyster.");
new obj (CLAM, "Giant clam >GRUNT!<", 0, shell);
new note ("There is an enormous clam here with its shell tightly closed.");
new obj (TABLET, 0, TABLET, droom);
new note ("A massive stone tablet embedded in the wall reads:\n\

\"CONGRATULATIONS ON BRINGING LIGHT INTO THE DARK−ROOM!\"");
new obj (SNAKE, 0, SNAKE, hmk);
new note ("A huge green fierce snake bars the way!");
new note (0);
new obj (PILLOW, "Velvet pillow", 0, soft);
new note ("A small velvet pillow lies on the floor.");
new obj (DOOR, 0, DOOR, immense);
new note ("The way north is barred by a massive, rusty, iron door.");
new note ("The way north leads through a massive, rusty, iron door.");

50 OBJECT DATA ADVENT §70

new obj (BIRD, "Little bird in cage", 0, bird);
new note ("A cheerful little bird is sitting here singing.");
new note ("There is a little bird in the cage.");
new obj (ROD2, "Black rod", 0, limbo);
new note ("A three−foot black rod with a rusty mark on an end lies nearby.");
new obj (ROD, "Black rod", 0, debris);
new note ("A three−foot black rod with a rusty star on an end lies nearby.");
new obj (CAGE, "Wicker cage", 0, cobbles);
new note ("There is a small wicker cage discarded nearby.");
new obj (LAMP, "Brass lantern", 0, house);
new note ("There is a shiny brass lamp nearby.");
new note ("There is a lamp shining nearby.");
new obj (KEYS, "Set of keys", 0, house);
new note ("There are some keys on the ground here.");

§71 ADVENT LOW-LEVEL INPUT 51

71. Low-level input. Sometimes we need to ask you a question, for which the answer is either yes or
no. The subroutine yes (q, y, n) prints q, waits for you to answer, and then prints y or n depending on your
answer. It returns a nonzero value if your answer was affirmative.

〈Subroutines 6 〉 +≡
boolean yes ARGS((char ∗, char ∗, char ∗));
boolean yes (q, y, n)

char ∗q, ∗y, ∗n;
{

while (1) {
printf ("%s\n** ", q); fflush (stdout);
fgets (buffer , buf size , stdin);
if (tolower (∗buffer) ≡ ’y’) {

if (y) printf ("%s\n", y); return true ;
}
else if (tolower (∗buffer) ≡ ’n’) {

if (n) printf ("%s\n", n); return false ;
}
else printf (" Please answer Yes or No.\n");

}
}

52 LOW-LEVEL INPUT ADVENT §72

72. The only other kind of input is almost as simple. You are supposed to tell us what to do next in your
adventure, by typing one- or two-word commands. We put the first word in word1 and the (possibly null)
second word in word2 . Words are separated by white space; otherwise white space is ignored.

〈Subroutines 6 〉 +≡
void listen ARGS((void));

void listen () {
register char ∗p, ∗q;

while (1) {
printf ("* "); fflush (stdout);
fgets (buffer , buf size , stdin);
for (p = buffer ; isspace (∗p); p++) ;
if (∗p ≡ 0) {

printf (" Tell me to do something.\n"); continue;
}
for (q = word1 ; ∗p; p++, q++) {

if (isspace (∗p)) break;
∗q = tolower (∗p);

}
∗q = ’\0’; /∗ end of word1 ∗/
for (; isspace (∗p); p++) ;
if (∗p ≡ 0) {
∗word2 = ’\0’; return;

}
for (q = word2 ; ∗p; p++, q++) {

if (isspace (∗p)) break;
∗q = tolower (∗p);

}
∗q = ’\0’; /∗ end of word2 ∗/
for (; isspace (∗p); p++) ;
if (∗p ≡ 0) return;
printf (" Please stick to 1− and 2−word commands.\n");

}
}

73. A 20-character buffer would probably be big enough, but what the heck.

#define buf size 72

〈Global variables 7 〉 +≡
char buffer [buf size]; /∗ your input goes here ∗/
char word1 [buf size],word2 [buf size]; /∗ and then we snarf it to here ∗/

§74 ADVENT THE MAIN CONTROL LOOP 53

74. The main control loop. Now we’ve got enough low-level mechanisms in place to start thinking of
the program from the top down, and to specify the high-level control.

A global variable loc represents where you currently live in the simulated cave. Another variable newloc
represents where you will go next, unless something like a dwarf blocks you. We also keep track of oldloc
(the previous value of loc) and oldoldloc (the previous previous value), for use when you ask to ‘go back’.

#define here (t) (toting (t) ∨ place [t] ≡ loc) /∗ is object t present? ∗/
#define water here ((flags [loc] & (liquid + oil)) ≡ liquid)
#define oil here ((flags [loc] & (liquid + oil)) ≡ liquid + oil)
#define no liquid here ((flags [loc] & liquid) ≡ 0)

〈Global variables 7 〉 +≡
location oldoldloc , oldloc , loc ,newloc ; /∗ recent and future locations ∗/

75. Here is our overall strategy for administering the game. It is understood that the program might
goto quit from within any of the subsections named here, even though the section names don’t mention this
explicitly. For example, while checking for interference we might find out that time has run out, or that a
dwarf has killed you and no more reincarnations are possible.

The execution consists of two nested loops: There are “minor cycles” inside of “major cycles.” Actions
define minor cycles in which you stay in the same place and we tell you the result of your action. Motions
define major cycles in which you move and we tell you what you can see at the new place.

〈Simulate an adventure, going to quit when finished 75 〉 ≡
while (1) {
〈Check for interference with the proposed move to newloc 153 〉;
loc = newloc ; /∗ hey, we actually moved you ∗/
〈Possibly move dwarves and the pirate 161 〉;

commence : 〈Report the current state 86 〉;
while (1) {
〈Get user input; goto try move if motion is requested 76 〉;
〈Perform an action in the current place 79 〉;

}
try move : 〈Handle special motion words 140 〉;

oldoldloc = oldloc ;
oldloc = loc ;

go for it : 〈Determine the next location, newloc 146 〉;
}

This code is used in section 2.

54 THE MAIN CONTROL LOOP ADVENT §76

76. Our main task in the simulation loop is to parse your input. Depending on the kind of command you
give, the following section of the program will exit in one of four ways:

• goto try move with mot set to a desired motion.
• goto transitive with verb set to a desired action and obj set to the object of that motion.
• goto intransitive with verb set to a desired action and obj = NOTHING; no object has been specified.
• goto speakit with hash table [k].meaning the index of a message for a vocabulary word of message type .

Sometimes we have to ask you to complete an ambiguous command before we know both a verb and its
object. In most cases the words can be in either order; for example, take rod is equivalent to rod take.
A motion word overrides a previously given action or object.

Lots of special cases make the program a bit messy. For example, if the verb is say, we don’t want to look
up the object in our vocabulary; we simply want to “say” it.

〈Get user input; goto try move if motion is requested 76 〉 ≡
verb = oldverb = ABSTAIN;
oldobj = obj ;
obj = NOTHING;

cycle : 〈Check if a hint applies, and give it if requested 195 〉;
〈Make special adjustments before looking at new input 85 〉;
listen ();

pre parse : turns ++;
〈Handle special cases of input 82 〉;
〈Check the clocks and the lamp 178 〉;
〈Handle additional special cases of input 83 〉;

parse : 〈Give advice about going WEST 80 〉;
〈Look at word1 and exit to the right place if it completes a command 78 〉;

shift : strcpy (word1 ,word2); ∗word2 = ’\0’; goto parse ;

This code is used in section 75.

77. 〈Global variables 7 〉 +≡
motion mot ; /∗ currently specified motion, if any ∗/
action verb ; /∗ currently specified action, if any ∗/
action oldverb ; /∗ verb before it was changed ∗/
object obj ; /∗ currently specified object, if any ∗/
object oldobj ; /∗ former value of obj ∗/
wordtype command type ; /∗ type of word found in hash table ∗/
int turns ; /∗ how many times we’ve read your commands ∗/

§78 ADVENT THE MAIN CONTROL LOOP 55

78. The try motion macro is often used to end a major cycle.

#define try motion (m) { mot = m; goto try move ; }
#define stay put try motion (NOWHERE)

〈Look at word1 and exit to the right place if it completes a command 78 〉 ≡
k = lookup(word1);
if (k < 0) { /∗ Gee, I don’t understand ∗/

printf ("Sorry, I don’t know the word \"%s\".\n",word1); goto cycle ;
}

branch : command type = hash table [k].word type ;
switch (command type) {
case motion type : try motion (hash table [k].meaning);
case object type : obj = hash table [k].meaning ;
〈Make sure obj is meaningful at the current location 90 〉;
if (∗word2) break; /∗ fall through to shift ∗/
if (verb) goto transitive ;
printf ("What do you want to do with the %s?\n",word1); goto cycle ;

case action type : verb = hash table [k].meaning ;
if (verb ≡ SAY) obj = ∗word2 ;
else if (∗word2) break; /∗ fall through to shift ∗/
if (obj) goto transitive ; else goto intransitive ;

case message type : goto speakit ;
}

This code is used in section 76.

56 THE MAIN CONTROL LOOP ADVENT §79

79. Here is the multiway branch where many kinds of actions can be launched.
If a verb can only be transitive, but no object has been given, we must go back and ask for an object.
If a verb can only be intransitive, but an object has been given, we issue the default message for that verb

and start over.
The variable k, initially zero, is used to count various things in several of the action routines.
The report macro is often used to end a minor cycle.

#define report (m) { printf ("%s\n",m); continue; }
#define default to(v) report (default msg [v])
#define change to(v) { oldverb = verb ; verb = v; goto transitive ; }
〈Perform an action in the current place 79 〉 ≡
intransitive : k = 0;

switch (verb) {
case GO: case RELAX: goto report default ;
case ON: case OFF: case POUR: case FILL: case DRINK: case BLAST: case KILL: goto transitive ;
〈Handle cases of intransitive verbs and continue 92 〉;

default: goto get object ;
}

transitive : k = 0;
switch (verb) {
〈Handle cases of transitive verbs and continue 97 〉;

default: goto report default ;
}

speakit : report (message [hash table [k].meaning]);
report default : if (default msg [verb]) report (default msg [verb]) else continue;
get object : word1 [0] = toupper (word1 [0]); printf ("%s what?\n",word1);

goto cycle ;
cant see it : if ((verb ≡ FIND ∨ verb ≡ INVENTORY) ∧ ∗word2 ≡ ’\0’) goto transitive ;

printf ("I see no %s here.\n",word1); continue;

This code is used in section 75.

80. Here’s a freely offered hint that may save you typing.

〈Give advice about going WEST 80 〉 ≡
if (streq (word1 , "west")) {

if (++west count ≡ 10) printf (" If you prefer, simply type W rather than WEST.\n");
}

This code is used in section 76.

81. 〈Global variables 7 〉 +≡
int west count ; /∗ how many times have we parsed the word ‘west’? ∗/

82. Maybe you said ‘say’ and we said ‘Say what?’ and you replied with two things to say. Then we assume
you don’t really want us to say anything.

〈Handle special cases of input 82 〉 ≡
if (verb ≡ SAY) {

if (∗word2) verb = ABSTAIN; else goto transitive ;
}

See also section 138.

This code is used in section 76.

§83 ADVENT THE MAIN CONTROL LOOP 57

83. The verb ‘enter’ is listed in our vocabulary as a motion rather than an action. Here we deal with
cases where you try to use it as an action. Notice that ‘H2O’ is not a synonym for ‘water’ in this context.

〈Handle additional special cases of input 83 〉 ≡
if (streq (word1 , "enter")) {

if (streq (word2 , "water") ∨ streq (word2 , "strea")) {
if (water here) report ("Your feet are now wet.");
default to(GO);

}
else if (∗word2) goto shift ;
}

See also section 105.

This code is used in section 76.

84. Cavers can become cadavers if they don’t have light. We keep a variable was dark to remember how
dark things were when you gave your last command.

#define dark ((flags [loc] & lighted) ≡ 0 ∧ (prop [LAMP] ≡ 0 ∨ ¬here (LAMP)))

〈Global variables 7 〉 +≡
boolean was dark ; /∗ you’ve recently been in the dark ∗/

85. 〈Make special adjustments before looking at new input 85 〉 ≡
was dark = dark ;

See also sections 158, 169, and 182.

This code is used in section 76.

86. After moving to newloc , we act as your eyes. We print the long description of newloc if you haven’t
been there before; but when you return to a previously seen place, we often use a short form. The long form
is used every 5th time, unless you say ‘BRIEF’, in which case we use the shortest form we know. You can
always ask for the long form by saying ‘LOOK’.

〈Report the current state 86 〉 ≡
if (loc ≡ limbo) goto death ;
if (dark ∧ ¬forced move (loc)) {

if (was dark ∧ pct (35)) goto pitch dark ;
p = pitch dark msg ;
}
else if (short desc [loc] ≡ 0 ∨ visits [loc] % interval ≡ 0) p = long desc [loc];
else p = short desc [loc];
if (toting (BEAR)) printf ("You are being followed by a very large, tame bear.\n");
if (p) printf ("\n%s\n", p);
if (forced move (loc)) goto try move ;
〈Give optional plugh hint 157 〉;
if (¬dark) 〈Describe the objects at this location 88 〉;

This code is used in section 75.

87. 〈Global variables 7 〉 +≡
int interval = 5; /∗ will change to 10000 if you want us to be BRIEF ∗/
char pitch dark msg [] =

"It is now pitch dark. If you proceed you will most likely fall into a pit.";

58 THE MAIN CONTROL LOOP ADVENT §88

88. If TREADS are present but you have a heavy load, we don’t describe them. The treads never actually
get property value 1; we use the note for property 1 only when they are seen from above.

The global variable tally counts the number of treasures you haven’t seen. Another variable, lost treasures ,
counts those you never will see.

〈Describe the objects at this location 88 〉 ≡
{ register object tt ;

visits [loc]++;
for (t = first [loc]; t; t = link [t]) {

tt = (base [t] ? base [t] : t);
if (prop [tt] < 0) { /∗ you’ve spotted a treasure ∗/

if (closed) continue; /∗ no automatic prop change after hours ∗/
prop [tt] = (tt ≡ RUG ∨ tt ≡ CHAIN); /∗ initialize the property value ∗/
tally −−;
〈Zap the lamp if the remaining treasures are too elusive 183 〉;

}
if (tt ≡ TREADS ∧ toting (GOLD)) continue;
p = note [prop [tt] + offset [tt] + (tt ≡ TREADS ∧ loc ≡ emist)];
if (p) printf ("%s\n", p);

}
}

This code is used in section 86.

89. 〈Global variables 7 〉 +≡
int tally = 15; /∗ treasures awaiting you ∗/
int lost treasures ; /∗ treasures that you won’t find ∗/

90. When you specify an object, it must be at the current location, unless the verb is already known to
be FIND or INVENTORY. A few other special cases also are permitted; for example, water and oil are funny,
since they are never actually dropped at any location, but they might be present inside the bottle or as a
feature of the location.

#define object in bottle ((obj ≡ WATER ∧ prop [BOTTLE] ≡ 0) ∨ (obj ≡ OIL ∧ prop [BOTTLE] ≡ 2))

〈Make sure obj is meaningful at the current location 90 〉 ≡
if (¬toting (obj) ∧ ¬is at loc(obj))

switch (obj) {
case GRATE: 〈 If GRATE is actually a motion word, move to it 91 〉;

goto cant see it ;
case DWARF: if (dflag ≥ 2 ∧ dwarf ()) break; else goto cant see it ;
case PLANT: if (is at loc(PLANT2) ∧ prop [PLANT2]) {

obj = PLANT2; break;
}
else goto cant see it ;

case KNIFE: if (loc 6= knife loc) goto cant see it ;
knife loc = −1;
report ("The dwarves’ knives vanish as they strike the walls of the cave.");

case ROD: if (¬here (ROD2)) goto cant see it ;
obj = ROD2; break;

case WATER: case OIL: if (here (BOTTLE) ∧ object in bottle) break;
if ((obj ≡ WATER ∧ water here) ∨ (obj ≡ OIL ∧ oil here)) break;

default: goto cant see it ;
}

This code is used in section 78.

§91 ADVENT THE MAIN CONTROL LOOP 59

91. Henning Makholm has pointed out that the logic here makes GRATE a motion word regardless of the
verb. For example, you can get to the grate by saying ‘wave grate’ from the road or the valley (but curiously
not from the slit).

〈 If GRATE is actually a motion word, move to it 91 〉 ≡
if (loc < min lower loc)

switch (loc) {
case road : case valley : case slit : try motion (DEPRESSION);
case cobbles : case debris : case awk : case bird : case spit : try motion (ENTRANCE);
default: break;
}

This code is used in section 90.

60 SIMPLE VERBS ADVENT §92

92. Simple verbs. Let’s get experience implementing the actions by dispensing with the easy cases first.
First there are several “intransitive” verbs that reduce to transitive when we identify an appropriate object.

For example, ‘take’ makes sense by itself if there’s only one possible thing to take.

〈Handle cases of intransitive verbs and continue 92 〉 ≡
case TAKE: if (first [loc] ≡ 0 ∨ link [first [loc]] ∨ dwarf ()) goto get object ;

obj = first [loc]; goto transitive ;

case EAT: if (¬here (FOOD)) goto get object ;
obj = FOOD; goto transitive ;

See also sections 93, 94, 95, and 136.

This code is used in section 79.

93. Only the objects GRATE, DOOR, CLAM/OYSTER, and CHAIN can be opened or closed. And only a few
objects can be read.

〈Handle cases of intransitive verbs and continue 92 〉 +≡
case OPEN: case CLOSE: if (place [GRATE] ≡ loc ∨ place [GRATE_] ≡ loc) obj = GRATE;

else if (place [DOOR] ≡ loc) obj = DOOR;
else if (here (CLAM)) obj = CLAM;
else if (here (OYSTER)) obj = OYSTER;
if (here (CHAIN)) {

if (obj) goto get object ; else obj = CHAIN;
}
if (obj) goto transitive ;
report ("There is nothing here with a lock!");

case READ: if (dark) goto get object ; /∗ can’t read in the dark ∗/
if (here (MAG)) obj = MAG;
if (here (TABLET)) {

if (obj) goto get object ; else obj = TABLET;
}
if (here (MESSAGE)) {

if (obj) goto get object ; else obj = MESSAGE;
}
if (closed ∧ toting (OYSTER)) obj = OYSTER;
if (obj) goto transitive ; else goto get object ;

94. A request for an inventory is pretty simple too.

〈Handle cases of intransitive verbs and continue 92 〉 +≡
case INVENTORY: for (t = 1; t ≤ max obj ; t++)

if (toting (t) ∧ (base [t] ≡ NOTHING ∨ base [t] ≡ t) ∧ t 6= BEAR) {
if (k ≡ 0) k = 1, printf ("You are currently holding the following:\n");
printf (" %s\n",name [t]);

}
if (toting (BEAR)) report ("You are being followed by a very large, tame bear.");
if (k ≡ 0) report ("You’re not carrying anything.");
continue;

§95 ADVENT SIMPLE VERBS 61

95. Here are other requests about the mechanics of the game.

〈Handle cases of intransitive verbs and continue 92 〉 +≡
case BRIEF: interval = 10000;

look count = 3;
report ("Okay, from now on I’ll only describe a place in full the first time\n\

you come to it. To get the full description, say \"LOOK\".");

case SCORE: printf ("If you were to quit now, you would score %d\nout of a possible %d.\n",
score ()− 4,max score);

if (¬yes ("Do you indeed wish to quit now?", ok , ok)) continue;
goto give up ;

case QUIT: if (¬yes ("Do you really want to quit now?", ok , ok)) continue;
give up : gave up = true ; goto quit ;

96. 〈Global variables 7 〉 +≡
boolean gave up ; /∗ did you quit while you were alive? ∗/

97. The SAY routine is just an echo unless you say a magic word.

〈Handle cases of transitive verbs and continue 97 〉 ≡
case SAY: if (∗word2) strcpy (word1 ,word2);

k = lookup(word1);
switch (hash table [k].meaning) {
case FEEFIE:

if (hash table [k].word type 6= action type) break;
case XYZZY: case PLUGH: case PLOVER: ∗word2 = ’\0’; obj = NOTHING; goto branch ;
default: break;
}
printf ("Okay, \"%s\".\n",word1); continue;

See also sections 98, 99, 100, 101, 102, 106, 107, 110, 112, 117, 122, 125, 129, 130, and 135.

This code is used in section 79.

98. Hungry?

〈Handle cases of transitive verbs and continue 97 〉 +≡
case EAT: switch (obj) {

case FOOD: destroy (FOOD);
report ("Thank you, it was delicious!");

case BIRD: case SNAKE: case CLAM: case OYSTER: case DWARF: case DRAGON: case TROLL: case BEAR:
report ("I think I just lost my appetite.");

default: goto report default ;
}

62 SIMPLE VERBS ADVENT §99

99. Waving to the shadowy figure has no effect; but you might wave a rod at the fissure. Blasting has no
effect unless you’ve got dynamite, which is a neat trick! Rubbing yields only snide remarks.

〈Handle cases of transitive verbs and continue 97 〉 +≡
case WAVE: if (obj 6= ROD ∨ (loc 6= efiss ∧ loc 6= wfiss) ∨

¬toting (obj) ∨ closing) {
if (toting (obj) ∨ (obj ≡ ROD ∧ toting (ROD2))) goto report default ;
default to(DROP);
}
prop [CRYSTAL] = 1− prop [CRYSTAL];
report (note [offset [CRYSTAL] + 2− prop [CRYSTAL]]);

case BLAST: if (closed ∧ prop [ROD2] ≥ 0) {
bonus = (here (ROD2) ? 25 : loc ≡ neend ? 30 : 45);
printf ("%s\n",message [bonus/5]); goto quit ;
}
else goto report default ;

case RUB: if (obj ≡ LAMP) goto report default ;
report ("Peculiar. Nothing unexpected happens.");

100. If asked to find an object that isn’t visible, we give a caveat.

〈Handle cases of transitive verbs and continue 97 〉 +≡
case FIND: case INVENTORY: if (toting (obj)) default to(TAKE);

if (closed) report ("I daresay whatever you want is around here somewhere.");
if (is at loc(obj) ∨ (object in bottle ∧ place [BOTTLE] ≡ loc) ∨

(obj ≡ WATER ∧ water here) ∨ (obj ≡ OIL ∧ oil here) ∨
(obj ≡ DWARF ∧ dwarf ())) report ("I believe what you want is right here with you.");

goto report default ;

101. Breaking and/or waking have no effect until the cave is closed, except of course that you might break
the vase. The dwarves like mirrors and hate being awakened.

〈Handle cases of transitive verbs and continue 97 〉 +≡
case BREAK: if (obj ≡ VASE ∧ prop [VASE] ≡ 0) {

if (toting (VASE)) drop(VASE, loc); /∗ crash ∗/
printf ("You have taken the vase and hurled it delicately to the ground.\n");

smash : prop [VASE] = 2; base [VASE] = VASE; /∗ it’s no longer movable ∗/
continue;
}
else if (obj 6= MIRROR) goto report default ;
if (closed) {

printf ("You strike the mirror a resounding blow, whereupon it shatters into a\n\
myriad tiny fragments.");

goto dwarves upset ;
}
report ("It is too far up for you to reach.");

case WAKE: if (closed ∧ obj ≡ DWARF) {
printf ("You prod the nearest dwarf, who wakes up grumpily, takes one look at\n\

you, curses, and grabs for his axe.\n");
goto dwarves upset ;
}
else goto report default ;

§102 ADVENT SIMPLE VERBS 63

102. Here we deal with lighting or extinguishing the lamp. The variable limit tells how much juice you’ve
got left.

〈Handle cases of transitive verbs and continue 97 〉 +≡
case ON: if (¬here (LAMP)) goto report default ;

if (limit < 0) report ("Your lamp has run out of power.");
prop [LAMP] = 1;
printf ("Your lamp is now on.\n");
if (was dark) goto commence ;
continue;

case OFF: if (¬here (LAMP)) goto report default ;
prop [LAMP] = 0;
printf ("Your lamp is now off.\n");
if (dark) printf ("%s\n", pitch dark msg);
continue;

103. 〈Global variables 7 〉 +≡
int limit ; /∗ countdown till darkness ∗/

64 LIQUID ASSETS ADVENT §104

104. Liquid assets. Readers of this program will already have noticed that the BOTTLE is a rather
complicated object, since it can be empty or filled with either water or oil. Let’s consider now the main
actions that involve liquids.

When you are carrying a bottle full of water, place [WATER] will be inhand ; hence both toting (WATER) and
toting (BOTTLE) are true. A similar remark applies to a bottle full of oil.

The value of prop [BOTTLE] is 0 if it holds water, 2 if it holds oil, otherwise either 1 or −2. (The value −2
is used after closing the cave.)

#define bottle empty (prop [BOTTLE] ≡ 1 ∨ prop [BOTTLE] < 0)

105. Sometimes ‘water’ and ‘oil’ are used as verbs.

〈Handle additional special cases of input 83 〉 +≡
if ((streq (word1 , "water") ∨ streq (word1 , "oil")) ∧

(streq (word2 , "plant") ∨ streq (word2 , "door")) ∧
(loc ≡ place [hash table [lookup(word2)].meaning])) strcpy (word2 , "pour");

106. If you ask simply to drink, we assume that you want water. If there’s water in the bottle, you drink
that; otherwise you must be at a water location.

〈Handle cases of transitive verbs and continue 97 〉 +≡
case DRINK: if (obj ≡ NOTHING) {

if (¬water here ∧ ¬(here (BOTTLE) ∧ prop [BOTTLE] ≡ 0)) goto get object ;
}
else if (obj 6= WATER) default to(EAT);
if (¬(here (BOTTLE) ∧ prop [BOTTLE] ≡ 0)) goto report default ;
prop [BOTTLE] = 1; place [WATER] = limbo ;
report ("The bottle of water is now empty.");

107. Pouring involves liquid from the bottle.

〈Handle cases of transitive verbs and continue 97 〉 +≡
case POUR: if (obj ≡ NOTHING ∨ obj ≡ BOTTLE) {

obj = (prop [BOTTLE] ≡ 0 ? WATER : prop [BOTTLE] ≡ 2 ? OIL : 0);
if (obj ≡ NOTHING) goto get object ;
}
if (¬toting (obj)) goto report default ;
if (obj 6= WATER ∧ obj 6= OIL) report ("You can’t pour that.");
prop [BOTTLE] = 1; place [obj] = limbo ;
if (loc ≡ place [PLANT]) 〈Try to water the plant 108 〉;
if (loc ≡ place [DOOR]) 〈Pour water or oil on the door 109 〉;
report ("Your bottle is empty and the ground is wet.");

108. 〈Try to water the plant 108 〉 ≡
{

if (obj 6= WATER)
report ("The plant indignantly shakes the oil off its leaves and asks, \"Water?\"");

printf ("%s\n",note [prop [PLANT] + 1 + offset [PLANT]]);
prop [PLANT] += 2; if (prop [PLANT] > 4) prop [PLANT] = 0;
prop [PLANT2] = prop [PLANT]� 1;
stay put ;
}

This code is used in section 107.

§109 ADVENT LIQUID ASSETS 65

109. 〈Pour water or oil on the door 109 〉 ≡
switch (obj) {
case WATER: prop [DOOR] = 0;

report ("The hinges are quite thoroughly rusted now and won’t budge.");
case OIL: prop [DOOR] = 1;

report ("The oil has freed up the hinges so that the door will now open.");
}

This code is used in section 107.

110. You can fill the bottle only when it’s empty and liquid is available. You can’t fill the lamp with oil.

〈Handle cases of transitive verbs and continue 97 〉 +≡
case FILL: if (obj ≡ VASE) 〈Try to fill the vase 111 〉;

if (¬here (BOTTLE)) {
if (obj ≡ NOTHING) goto get object ; else goto report default ;
}
else if (obj 6= NOTHING ∧ obj 6= BOTTLE) goto report default ;
if (¬bottle empty) report ("Your bottle is already full.");
if (no liquid here) report ("There is nothing here with which to fill the bottle.");
prop [BOTTLE] = flags [loc] & oil ;
if (toting (BOTTLE)) place [prop [BOTTLE] ? OIL : WATER] = inhand ;
printf ("Your bottle is now full of %s.\n", prop [BOTTLE] ? "oil" : "water");
continue;

111. Filling the vase is a nasty business.

〈Try to fill the vase 111 〉 ≡
{

if (no liquid here) report ("There is nothing here with which to fill the vase.\n");
if (¬toting (VASE)) report (default msg [DROP]);
printf ("The sudden change in temperature has delicately shattered the vase.\n");
goto smash ;
}

This code is used in section 110.

66 LIQUID ASSETS ADVENT §112

112. Picking up a liquid depends, of course, on the status of the bottle. Other objects need special
handling, too, because of various side effects and the fact that we can’t take bird and cage separately when
the bird is in the cage.

〈Handle cases of transitive verbs and continue 97 〉 +≡
case TAKE: if (toting (obj)) goto report default ; /∗ already carrying it ∗/

if (base [obj]) { /∗ it is immovable ∗/
if (obj ≡ CHAIN ∧ prop [BEAR]) report ("The chain is still locked.");
if (obj ≡ BEAR ∧ prop [BEAR] ≡ 1) report ("The bear is still chained to the wall.");
if (obj ≡ PLANT ∧ prop [PLANT] ≤ 0)

report ("The plant has exceptionally deep roots and cannot be pulled free.");
report ("You can’t be serious!");
}
if (obj ≡ WATER ∨ obj ≡ OIL) 〈Check special cases for taking a liquid 113 〉;
if (holding ≥ 7)

report ("You can’t carry anything more. You’ll have to drop something first.");
if (obj ≡ BIRD ∧ prop [BIRD] ≡ 0) 〈Check special cases for taking a bird 114 〉;
if (obj ≡ BIRD ∨ (obj ≡ CAGE ∧ prop [BIRD])) carry (BIRD + CAGE − obj);
carry (obj);
if (obj ≡ BOTTLE ∧ ¬bottle empty) place [prop [BOTTLE] ? OIL : WATER] = inhand ;
default to(RELAX); /∗ OK, we’ve taken it ∗/

113. 〈Check special cases for taking a liquid 113 〉 ≡
if (here (BOTTLE) ∧ object in bottle) obj = BOTTLE;
else {

obj = BOTTLE;
if (toting (BOTTLE)) change to(FILL);
report ("You have nothing in which to carry it.");
}

This code is used in section 112.

114. 〈Check special cases for taking a bird 114 〉 ≡
{

if (toting (ROD))
report ("The bird was unafraid when you entered, but as you approach it becomes\n\

disturbed and you cannot catch it.");
if (toting (CAGE)) prop [BIRD] = 1;
else report ("You can catch the bird, but you cannot carry it.");
}

This code is used in section 112.

115. Similarly, when dropping the bottle we must drop also its liquid contents, if any.

〈Check special cases for dropping a liquid 115 〉 ≡
if (object in bottle) obj = BOTTLE;
if (obj ≡ BOTTLE ∧ ¬bottle empty) place [prop [BOTTLE] ? OIL : WATER] = limbo ;

This code is used in section 117.

§116 ADVENT THE OTHER ACTIONS 67

116. The other actions. Now that we understand how to write action routines, we’re ready to complete
the set.

117. Dropping an object has special cases for the bird (which might attack the snake or the dragon), the
cage, the vase, etc. The verb THROW also reduces to DROP for most objects.

(The term PONY is a nod to the vending machine once installed in a room called The Prancing Pony, part
of Stanford’s historic AI Laboratory.)

〈Handle cases of transitive verbs and continue 97 〉 +≡
case DROP: if (obj ≡ ROD ∧ toting (ROD2) ∧ ¬toting (ROD)) obj = ROD2;

if (¬toting (obj)) goto report default ;
if (obj ≡ COINS ∧ here (PONY)) 〈Put coins in the vending machine 118 〉;
if (obj ≡ BIRD) 〈Check special cases for dropping the bird 120 〉;
if (obj ≡ VASE ∧ loc 6= soft) 〈Check special cases for dropping the vase 121 〉;
if (obj ≡ BEAR ∧ is at loc(TROLL)) 〈Chase the troll away 119 〉;
〈Check special cases for dropping a liquid 115 〉;
if (obj ≡ BIRD) prop [BIRD] = 0;
else if (obj ≡ CAGE ∧ prop [BIRD]) drop(BIRD, loc);
drop(obj , loc);
if (k) continue; else default to(RELAX);

118. 〈Put coins in the vending machine 118 〉 ≡
{

destroy (COINS);
drop(BATTERIES, loc);
prop [BATTERIES] = 0;
report (note [offset [BATTERIES]]);
}

This code is used in section 117.

119. TROLL2 is the absent troll. We move the troll bridge up to first in the list of things at its location.

〈Chase the troll away 119 〉 ≡
{

printf ("The bear lumbers toward the troll, who lets out a startled shriek and\n\
scurries away. The bear soon gives up the pursuit and wanders back.\n");

k = 1; /∗ suppress the “OK” message ∗/
destroy (TROLL); destroy (TROLL_);
drop(TROLL2, swside); drop(TROLL2_,neside);
prop [TROLL] = 2;
move (BRIDGE, swside); move (BRIDGE_,neside); /∗ put first in their lists ∗/
}

This code is used in section 117.

68 THE OTHER ACTIONS ADVENT §120

120. 〈Check special cases for dropping the bird 120 〉 ≡
{

if (here (SNAKE)) {
printf ("The little bird attacks the green snake, and in an astounding flurry\n\

drives the snake away.\n");
k = 1;
if (closed) goto dwarves upset ;
destroy (SNAKE);
prop [SNAKE] = 1; /∗ used in conditional instructions ∗/

}
else if (is at loc(DRAGON) ∧ prop [DRAGON] ≡ 0) {

destroy (BIRD); prop [BIRD] = 0;
if (place [SNAKE] ≡ hmk) lost treasures ++;
report ("The little bird attacks the green dragon, and in an astounding flurry\n\

gets burnt to a cinder. The ashes blow away.");
}
}

This code is used in section 117.

121. 〈Check special cases for dropping the vase 121 〉 ≡
{

prop [VASE] = (place [PILLOW] ≡ loc ? 0 : 2);
printf ("%s\n",note [offset [VASE] + 1 + prop [VASE]]); k = 1;
if (prop [VASE]) base [VASE] = VASE;
}

This code is used in section 117.

122. Throwing is like dropping, except that it covers a few more cases.

〈Handle cases of transitive verbs and continue 97 〉 +≡
case TOSS: if (obj ≡ ROD ∧ toting (ROD2) ∧ ¬toting (ROD)) obj = ROD2;

if (¬toting (obj)) goto report default ;
if (is treasure (obj) ∧ is at loc(TROLL)) 〈Snarf a treasure for the troll 124 〉;
if (obj ≡ FOOD ∧ here (BEAR)) {

obj = BEAR; change to(FEED);
}
if (obj 6= AXE) change to(DROP);
if (dwarf ()) 〈Throw the axe at a dwarf 163 〉;
if (is at loc(DRAGON) ∧ prop [DRAGON] ≡ 0)

printf ("The axe bounces harmlessly off the dragon’s thick scales.\n");
else if (is at loc(TROLL))

printf ("The troll deftly catches the axe, examines it carefully, and tosses it\n\
back, declaring, \"Good workmanship, but it’s not valuable enough.\"\n");

else if (here (BEAR) ∧ prop [BEAR] ≡ 0) 〈Throw the axe at the bear 123 〉
else {

obj = NOTHING;
change to(KILL);
}
drop(AXE, loc); stay put ;

§123 ADVENT THE OTHER ACTIONS 69

123. This’ll teach you a lesson.

〈Throw the axe at the bear 123 〉 ≡
{

drop(AXE, loc);
prop [AXE] = 1; base [AXE] = AXE; /∗ it becomes immovable ∗/
if (place [BEAR] ≡ loc) move (BEAR, loc); /∗ put bear first in its list ∗/
report ("The axe misses and lands near the bear where you can’t get at it.");

}
This code is used in section 122.

124. If you toss the vase, the skillful troll will catch it before it breaks.

〈Snarf a treasure for the troll 124 〉 ≡
{

drop(obj , limbo);
destroy (TROLL); destroy (TROLL_);
drop(TROLL2, swside); drop(TROLL2_,neside);
move (BRIDGE, swside); move (BRIDGE_,neside);
report ("The troll catches your treasure and scurries away out of sight.");
}

This code is used in section 122.

125. When you try to attack, the action becomes violent.

〈Handle cases of transitive verbs and continue 97 〉 +≡
case KILL: if (obj ≡ NOTHING) 〈See if there’s a unique object to attack 126 〉;

switch (obj) {
case 0: report ("There is nothing here to attack.");
case BIRD: 〈Dispatch the poor bird 127 〉;
case DRAGON: if (prop [DRAGON] ≡ 0) 〈Fun stuff for dragon 128 〉;
cry : report ("For crying out loud, the poor thing is already dead!");
case CLAM: case OYSTER: report ("The shell is very strong and impervious to attack.");
case SNAKE: report ("Attacking the snake both doesn’t work and is very dangerous.");
case DWARF: if (closed) goto dwarves upset ;

report ("With what? Your bare hands?");
case TROLL: report ("Trolls are close relatives with the rocks and have skin as tough as\n\

a rhinoceros hide. The troll fends off your blows effortlessly.");
case BEAR: switch (prop [BEAR]) {

case 0: report ("With what? Your bare hands? Against HIS bear hands?");
case 3: goto cry ;
default: report ("The bear is confused; he only wants to be your friend.");
}

default: goto report default ;
}

70 THE OTHER ACTIONS ADVENT §126

126. Attackable objects fall into two categories: enemies (snake, dwarf, etc.) and others (bird, clam).
We might get here when you threw an axe; you can’t attack the bird with an axe.

〈See if there’s a unique object to attack 126 〉 ≡
{

if (dwarf ()) k++, obj = DWARF;
if (here (SNAKE)) k++, obj = SNAKE;
if (is at loc(DRAGON) ∧ prop [DRAGON] ≡ 0) k++, obj = DRAGON;
if (is at loc(TROLL)) k++, obj = TROLL;
if (here (BEAR) ∧ prop [BEAR] ≡ 0) k++, obj = BEAR;
if (k ≡ 0) { /∗ no enemies present ∗/

if (here (BIRD) ∧ oldverb 6= TOSS) k++, obj = BIRD;
if (here (CLAM) ∨ here (OYSTER)) k++, obj = CLAM;

/∗ no harm done to call the oyster a clam in this case ∗/
}
if (k > 1) goto get object ;
}

This code is used in section 125.

127. 〈Dispatch the poor bird 127 〉 ≡
{

if (closed) report ("Oh, leave the poor unhappy bird alone.");
destroy (BIRD); prop [BIRD] = 0;
if (place [SNAKE] ≡ hmk) lost treasures ++;
report ("The little bird is now dead. Its body disappears.");
}

This code is used in section 125.

128. Here we impersonate the main dialog loop. If you insist on attacking the dragon, you win! He dies,
the Persian rug becomes free, and scan2 takes the place of scan1 and scan3 .

〈Fun stuff for dragon 128 〉 ≡
{

printf ("With what? Your bare hands?\n");
verb = ABSTAIN; obj = NOTHING;
listen ();
if (¬(streq (word1 , "yes") ∨ streq (word1 , "y"))) goto pre parse ;
printf ("%s\n",note [offset [DRAGON] + 1]);
prop [DRAGON] = 2; /∗ dead ∗/
prop [RUG] = 0; base [RUG] = NOTHING; /∗ now it’s a usable treasure ∗/
base [DRAGON_] = DRAGON_;
destroy (DRAGON_); /∗ inaccessible ∗/
base [RUG_] = RUG_;
destroy (RUG_); /∗ inaccessible ∗/
for (t = 1; t ≤ max obj ; t++)

if (place [t] ≡ scan1 ∨ place [t] ≡ scan3) move (t, scan2);
loc = scan2 ; stay put ;
}

This code is used in section 125.

§129 ADVENT THE OTHER ACTIONS 71

129. Feeding various animals leads to various quips. Feeding a dwarf is a bad idea. The bear is special.

〈Handle cases of transitive verbs and continue 97 〉 +≡
case FEED: switch (obj) {

case BIRD: report ("It’s not hungry (it’s merely pinin’ for the fjords). Besides, you\n\
have no bird seed.");

case TROLL: report ("Gluttony is not one of the troll’s vices. Avarice, however, is.");
case DRAGON: if (prop [DRAGON]) report (default msg [EAT]);

break;
case SNAKE: if (closed ∨ ¬here (BIRD)) break;

destroy (BIRD); prop [BIRD] = 0; lost treasures ++;
report ("The snake has now devoured your bird.");

case BEAR: if (¬here (FOOD)) {
if (prop [BEAR] ≡ 0) break;
if (prop [BEAR] ≡ 3) verb = EAT;
goto report default ;

}
destroy (FOOD); prop [BEAR] = 1;
prop [AXE] = 0; base [AXE] = NOTHING; /∗ axe is movable again ∗/
report ("The bear eagerly wolfs down your food, after which he seems to calm\n\

down considerably and even becomes rather friendly.");
case DWARF: if (¬here (FOOD)) goto report default ;

dflag ++;
report ("You fool, dwarves eat only coal! Now you’ve made him REALLY mad!");

default: report (default msg [CALM]);
}
report ("There’s nothing here it wants to eat (except perhaps you).");

130. Locking and unlocking involves several interesting special cases.

〈Handle cases of transitive verbs and continue 97 〉 +≡
case OPEN: case CLOSE: switch (obj) {

case OYSTER: case CLAM: 〈Open/close clam/oyster 134 〉;
case GRATE: case CHAIN: if (¬here (KEYS)) report ("You have no keys!");
〈Open/close grate/chain 131 〉;

case KEYS: report ("You can’t lock or unlock the keys.");
case CAGE: report ("It has no lock.");
case DOOR: if (prop [DOOR]) default to(RELAX);

report ("The door is extremely rusty and refuses to open.");
default: goto report default ;
}

72 THE OTHER ACTIONS ADVENT §131

131. 〈Open/close grate/chain 131 〉 ≡
if (obj ≡ CHAIN) 〈Open/close chain 132 〉;
if (closing) {
〈Panic at closing time 180 〉; continue;
}
k = prop [GRATE];
prop [GRATE] = (verb ≡ OPEN);
switch (k + 2 ∗ prop [GRATE]) {
case 0: report ("It was already locked.");
case 1: report ("The grate is now locked.");
case 2: report ("The grate is now unlocked.");
case 3: report ("It was already unlocked.");
}

This code is used in section 130.

132. 〈Open/close chain 132 〉 ≡
{

if (verb ≡ OPEN) 〈Open chain 133 〉;
if (loc 6= barr) report ("There is nothing here to which the chain can be locked.");
if (prop [CHAIN]) report ("It was already locked.");
prop [CHAIN] = 2, base [CHAIN] = CHAIN;
if (toting (CHAIN)) drop(CHAIN, loc);
report ("The chain is now locked.");
}

This code is used in section 131.

133. 〈Open chain 133 〉 ≡
{

if (prop [CHAIN] ≡ 0) report ("It was already unlocked.");
if (prop [BEAR] ≡ 0)

report ("There is no way to get past the bear to unlock the chain, which is\n\
probably just as well.");

prop [CHAIN] = 0, base [CHAIN] = NOTHING; /∗ chain is free ∗/
if (prop [BEAR] ≡ 3) base [BEAR] = BEAR;
else prop [BEAR] = 2, base [BEAR] = NOTHING;
report ("The chain is now unlocked.");

}
This code is used in section 132.

§134 ADVENT THE OTHER ACTIONS 73

134. The clam/oyster is extremely heavy to carry, although not as heavy as the gold.

#define clam oyster (obj ≡ CLAM ? "clam" : "oyster")

〈Open/close clam/oyster 134 〉 ≡
if (verb ≡ CLOSE) report ("What?");
if (¬toting (TRIDENT)) {

printf ("You don’t have anything strong enough to open the %s", clam oyster);
report (".");
}
if (toting (obj)) {

printf ("I advise you to put down the %s before opening it. ", clam oyster);
report (obj ≡ CLAM ? ">STRAIN!<" : ">WRENCH!<");
}
if (obj ≡ CLAM) {

destroy (CLAM); drop(OYSTER, loc); drop(PEARL, sac);
report ("A glistening pearl falls out of the clam and rolls away. Goodness,\n\

this must really be an oyster. (I never was very good at identifying\n\

bivalves.) Whatever it is, it has now snapped shut again.");
} else report ("The oyster creaks open, revealing nothing but oyster inside.\n\

It promptly snaps shut again.");

This code is used in section 130.

135. You get little satisfaction from asking us to read, unless you hold the oyster—after the cave is closed.

〈Handle cases of transitive verbs and continue 97 〉 +≡
case READ: if (dark) goto cant see it ;

switch (obj) {
case MAG: report ("I’m afraid the magazine is written in dwarvish.");
case TABLET: report ("\"CONGRATULATIONS ON BRINGING LIGHT INTO THE DARK−ROOM!\"");
case MESSAGE:

report ("\"This is not the maze where the pirate hides his treasure chest.\"");
case OYSTER: if (hinted [1]) {

if (toting (OYSTER)) report ("It says the same thing it did before.");
}
else if (closed ∧ toting (OYSTER)) {

offer (1); continue;
}

default: goto report default ;
}

136. OK, that just about does it. We’re left with only one more “action verb” to handle, and it is
intransitive. In order to penetrate this puzzle, you must pronounce the magic incantation in its correct
order, as it appears on the wall of the Giant Room. A global variable foobar records your progress.

〈Handle cases of intransitive verbs and continue 92 〉 +≡
case FEEFIE: while (¬streq (word1 , incantation [k])) k++;

if (foobar ≡ −k) 〈Proceed foobarically 139 〉;
if (foobar ≡ 0) goto nada sucede ;
report ("What’s the matter, can’t you read? Now you’d best start over.");

137. 〈Global variables 7 〉 +≡
char ∗incantation [] = {"fee", "fie", "foe", "foo", "fum"};
int foobar ; /∗ current incantation progress ∗/

74 THE OTHER ACTIONS ADVENT §138

138. Just after every command you give, we make the foobar counter negative if you’re on track, otherwise
we zero it.

〈Handle special cases of input 82 〉 +≡
if (foobar > 0) foobar = −foobar ;
else foobar = 0;

139. If you get all the way through, we zip the eggs back to the Giant Room, unless they’re already there.
The troll returns if you’ve stolen the eggs back from him.

〈Proceed foobarically 139 〉 ≡
{

foobar = k + 1;
if (foobar 6= 4) default to(RELAX);
foobar = 0;
if (place [EGGS] ≡ giant ∨ (toting (EGGS) ∧ loc ≡ giant))
nada sucede : report (default msg [WAVE]);
if (place [EGGS] ≡ limbo ∧ place [TROLL] ≡ limbo ∧ prop [TROLL] ≡ 0) prop [TROLL] = 1;
k = (loc ≡ giant ? 0 : here (EGGS) ? 1 : 2);
move (EGGS, giant);
report (note [offset [EGGS] + k]);
}

This code is used in section 136.

§140 ADVENT MOTIONS 75

140. Motions. A major cycle comes to an end when a motion verb mot has been given and we have
computed the appropriate newloc accordingly.

First, we deal with motions that don’t refer directly to the travel table.

〈Handle special motion words 140 〉 ≡
newloc = loc ; /∗ by default we will stay put ∗/
if (mot ≡ NOWHERE) continue;
if (mot ≡ BACK) 〈Try to go back 143 〉;
if (mot ≡ LOOK) 〈Repeat the long description and continue 141 〉;
if (mot ≡ CAVE) {

if (loc < min in cave)
printf ("I can’t see where the cave is, but hereabouts no stream can run on\n\

the surface for long. I would try the stream.\n");
else printf ("I need more detailed instructions to do that.\n");
continue;
}

This code is used in section 75.

141. When looking around, we pretend that it wasn’t dark (though it may now be dark), so you won’t
fall into a pit while staring into the gloom.

〈Repeat the long description and continue 141 〉 ≡
{

if (++look count ≤ 3)
printf ("Sorry, but I am not allowed to give more detail. I will repeat the\n\

long description of your location.\n");
was dark = false ;
visits [loc] = 0;
continue;
}

This code is used in section 140.

142. 〈Global variables 7 〉 +≡
int look count ; /∗ how many times you’ve asked us to look ∗/

76 MOTIONS ADVENT §143

143. If you ask us to go back, we look for a motion that goes from loc to oldloc , or to oldoldloc if oldloc
has forced motion. Otherwise we can’t take you back.

〈Try to go back 143 〉 ≡
{
l = (forced move (oldloc) ? oldoldloc : oldloc);
oldoldloc = oldloc ;
oldloc = loc ;
if (l ≡ loc) 〈Apologize for inability to backtrack 145 〉;
for (q = start [loc], qq = Λ; q < start [loc + 1]; q++) {

ll = q~dest ;
if (ll ≡ l) goto found ;
if (ll ≤ max loc ∧ forced move (ll) ∧ start [ll]~dest ≡ l) qq = q;

}
if (qq ≡ Λ) {

printf ("You can’t get there from here.\n"); continue;
}
else q = qq ;

found : mot = q~mot ;
goto go for it ;
}

This code is used in section 140.

144. 〈Additional local registers 22 〉 +≡
register location l, ll ;

145. 〈Apologize for inability to backtrack 145 〉 ≡
{

printf ("Sorry, but I no longer seem to remember how you got here.\n");
continue;
}

This code is used in section 143.

§146 ADVENT MOTIONS 77

146. Now we are ready to interpret the instructions in the travel table. The following code implements
the conventions of section 19.

〈Determine the next location, newloc 146 〉 ≡
for (q = start [loc]; q < start [loc + 1]; q++) {

if (forced move (loc) ∨ q~mot ≡ mot) break;
}
if (q ≡ start [loc + 1]) 〈Report on inapplicable motion and continue 148 〉;
〈 If the condition of instruction q isn’t satisfied, advance q 147 〉;
newloc = q~dest ;
if (newloc ≤ max loc) continue;
if (newloc > max spec) {

printf ("%s\n", remarks [newloc −max spec]);
stay : newloc = loc ; continue;
}
switch (newloc) {
case ppass : 〈Choose newloc via plover-alcove passage 149 〉;
case pdrop : 〈Drop the emerald during plover transportation 150 〉; goto no good ;
case troll : 〈Cross troll bridge if possible 151 〉;
}

This code is cited in section 19.

This code is used in section 75.

147. 〈 If the condition of instruction q isn’t satisfied, advance q 147 〉 ≡
while (1) {
j = q~cond ;
if (j > 300) {

if (prop [j % 100] 6= (int)((j − 300)/100)) break;
} else if (j ≤ 100) {

if (j ≡ 0 ∨ pct (j)) break;
} else if (toting (j % 100) ∨ (j ≥ 200 ∧ is at loc(j % 100))) break;

no good :
for (qq = q++;
q~dest ≡ qq~dest ∧ q~cond ≡ qq~cond ;
q++) ;
}

This code is used in section 146.

78 MOTIONS ADVENT §148

148. Here we look at verb just in case you asked us to ‘find gully’ or something like that.

〈Report on inapplicable motion and continue 148 〉 ≡
{

if (mot ≡ CRAWL) printf ("Which way?");
else if (mot ≡ XYZZY ∨mot ≡ PLUGH) printf (default msg [WAVE]);
else if (verb ≡ FIND ∨ verb ≡ INVENTORY) printf (default msg [FIND]);
else if (mot ≤ FORWARD)

switch (mot) {
case IN: case OUT:

printf ("I don’t know in from out here. Use compass points or name something\n\
in the general direction you want to go.");

break;
case FORWARD: case L: case R:

printf ("I am unsure how you are facing. Use compass points or nearby objects.");
break;

default: printf ("There is no way to go in that direction.");
} else printf ("I don’t know how to apply that word here.");

printf ("\n"); continue; /∗ newloc = loc ∗/
}

This code is used in section 146.

149. Only the emerald can be toted through the plover-alcove passage — not even the lamp.

〈Choose newloc via plover-alcove passage 149 〉 ≡
if (holding ≡ 0 ∨ (toting (EMERALD) ∧ holding ≡ 1)) {

newloc = alcove + proom − loc ; continue; /∗ move through the passage ∗/
} else {

printf ("Something you’re carrying won’t fit through the tunnel with you.\n\
You’d best take inventory and drop something.\n");

goto stay ;
}

This code is used in section 146.

150. The pdrop command applies only when you’re carrying the emerald. We make you drop it, thereby
forcing you to use the plover-alcove passage if you want to get it out. We don’t actually tell you that it was
dropped; we just pretend you weren’t carrying it after all.

〈Drop the emerald during plover transportation 150 〉 ≡
drop(EMERALD, loc);

This code is used in section 146.

§151 ADVENT MOTIONS 79

151. Troll bridge crossing is treated as a special motion so that dwarves won’t wander across and encounter
the bear.

You can get here only if TROLL is in limbo but TROLL2 has taken its place. Moreover, if you’re on the
southwest side, prop [TROLL] will be nonzero. If prop [TROLL] is 1, you’ve crossed since paying, or you’ve stolen
away the payment. Special stuff involves the bear.

〈Cross troll bridge if possible 151 〉 ≡
if (prop [TROLL] ≡ 1) 〈Block the troll bridge and stay put 152 〉;
newloc = neside + swside − loc ; /∗ cross it ∗/
if (prop [TROLL] ≡ 0) prop [TROLL] = 1;
if (¬toting (BEAR)) continue;
printf ("Just as you reach the other side, the bridge buckles beneath the\n\

weight of the bear, who was still following you around. You\n\

scrabble desperately for support, but as the bridge collapses you\n\

stumble back and fall into the chasm.\n");
prop [BRIDGE] = 1; prop [TROLL] = 2;
drop(BEAR,newloc); base [BEAR] = BEAR; prop [BEAR] = 3; /∗ the bear is dead ∗/
if (prop [SPICES] < 0 ∧ place [SPICES] ≥ neside) lost treasures ++;
if (prop [CHAIN] < 0 ∧ place [CHAIN] ≥ neside) lost treasures ++;
oldoldloc = newloc ; /∗ if you are revived, you got across ∗/
goto death ;

This code is used in section 146.

152. 〈Block the troll bridge and stay put 152 〉 ≡
{

move (TROLL, swside); move (TROLL_,neside); prop [TROLL] = 0;
destroy (TROLL2); destroy (TROLL2_);
move (BRIDGE, swside); move (BRIDGE_,neside);
printf ("%s\n",note [offset [TROLL] + 1]);
goto stay ;
}

This code is used in section 151.

153. Obstacles might still arise after the choice of newloc has been made. The following program is
executed at the beginning of each major cycle.

〈Check for interference with the proposed move to newloc 153 〉 ≡
if (closing ∧ newloc < min in cave ∧ newloc 6= limbo) {
〈Panic at closing time 180 〉; newloc = loc ;
} else if (newloc 6= loc) 〈Stay in loc if a dwarf is blocking the way to newloc 176 〉;

This code is used in section 75.

80 RANDOM NUMBERS ADVENT §154

154. Random numbers. You won’t realize it until you have played the game for awhile, but adventures
in Colossal Cave are not deterministic. Lots of things can happen differently when you give the same input,
because caves are continually changing, and the dwarves don’t have consistent aim, etc.

A simple linear congruential method is used to provide numbers that are random enough for our purposes.

〈Subroutines 6 〉 +≡
int ran ARGS((int));

int ran (range)
int range ; /∗ for uniform integers between 0 and range − 1 ∗/

{
rx = (1021 ∗ rx) & #fffff; /∗ multiply by 1021, modulo 220 ∗/
return (range ∗ rx)� 20;
}

155. 〈Global variables 7 〉 +≡
int rx ; /∗ the last random value generated ∗/

156. Each run is different.

〈 Initialize the random number generator 156 〉 ≡
rx = (((int) time (Λ)) & #fffff) | 1;

This code is used in section 200.

157. The pct macro returns true a given percentage of the time.

#define pct (r) (ran (100) < r)

〈Give optional plugh hint 157 〉 ≡
if (loc ≡ y2 ∧ pct (25) ∧ ¬closing) printf ("A hollow voice says \"PLUGH\".\n");

This code is used in section 86.

158. We kick the random number generator often, just to add variety to the chase.

〈Make special adjustments before looking at new input 85 〉 +≡
k = ran (0);

§159 ADVENT DWARF STUFF 81

159. Dwarf stuff. We’ve said a lot of vague stuff about dwarves; now is the time to be explicit. Five
dwarves roam about the cave. Initially they are dormant but eventually they each walk about at random.
A global variable called dflag governs their level of activity:

0 no dwarf stuff yet (we wait until you reach the Hall of Mists)
1 you’ve reached that hall, but haven’t met the first dwarf
2 you’ve met one; the others start moving, but no knives thrown yet
3 a knife has been thrown, but it misses
4 knives will hit you with probability .095
5 knives will hit you with probability .190
6 knives will hit you with probability .285

and so on. Dwarves get madder and madder as dflag increases; this increases their accuracy.
A pirate stalks the cave too. He acts a lot like a dwarf with respect to random walks, so we call him

dwarf [0], but actually he is quite different. He starts at the location of his treasure chest; you won’t see that
chest until after you’ve spotted him.

The present location of dwarf [i] is dloc [i]; initially no two dwarves are adjacent. The value of dseen [i]
records whether or not dwarf i is following you.

#define nd 5 /∗ this many dwarves ∗/
#define chest loc dead2
#define message loc pony

〈Global variables 7 〉 +≡
int dflag ; /∗ how angry are the dwarves? ∗/
int dkill ; /∗ how many of them have you killed? ∗/
location dloc [nd + 1] = { chest loc , hmk ,wfiss , y2 , like3 , complex } ; /∗ dwarf locations ∗/
location odloc [nd + 1]; /∗ prior locations ∗/
boolean dseen [nd + 1]; /∗ have you been spotted? ∗/

160. The following subroutine is often useful.

〈Subroutines 6 〉 +≡
boolean dwarf ARGS((void));

boolean dwarf () /∗ is a dwarf present? ∗/
{

register int j;

if (dflag < 2) return false ;
for (j = 1; j ≤ nd ; j++)

if (dloc [j] ≡ loc) return true ;
return false ;
}

82 DWARF STUFF ADVENT §161

161. Just after you’ve moved to a new loc , we move the other guys. But we bypass all dwarf motion if
you are in a place forbidden to the pirate, or if your next motion is forced. In particular, this means that
the pirate can’t steal the return toll, and dwarves can’t meet the bear. It also means that dwarves won’t
follow you into a dead end of the maze, but c’est la vie; they’ll wait for you outside the dead end.

〈Possibly move dwarves and the pirate 161 〉 ≡
if (loc ≤ max pirate loc ∧ loc 6= limbo) {

if (dflag ≡ 0) {
if (loc ≥ min lower loc) dflag = 1;

}
else if (dflag ≡ 1) {

if (loc ≥ min lower loc ∧ pct (5)) 〈Advance dflag to 2 162 〉;
}
else 〈Move dwarves and the pirate 164 〉;
}

This code is used in section 75.

162. When level 2 is reached, we silently kill 0, 1, or 2 of the dwarves. Then if any of the survivors is in
the current location, we move him to nugget ; thus no dwarf is presently tracking you. Another dwarf does,
however, toss an axe and grumpily leave the scene.

(The grumpy dwarf might throw the axe while you’re in the maze of all-different twists, even though other
dwarves never go in there!)

〈Advance dflag to 2 162 〉 ≡
{

dflag = 2;
for (j = 0; j < 2; j++)

if (pct (50)) dloc [1 + ran (nd)] = limbo ;
for (j = 1; j ≤ nd ; j++) {

if (dloc [j] ≡ loc) dloc [j] = nugget ;
odloc [j] = dloc [j];

}
printf ("A little dwarf just walked around a corner, saw you, threw a little\n\

axe at you, cursed, and ran away. (The axe missed.)\n");
drop(AXE, loc);
}

This code is used in section 161.

§163 ADVENT DWARF STUFF 83

163. It turns out that the only way you can get rid of a dwarf is to attack him with the axe. You’ll hit
him 2/3 of the time; in either case, the axe will be available for reuse.

〈Throw the axe at a dwarf 163 〉 ≡
{

for (j = 1; j ≤ nd ; j++)
if (dloc [j] ≡ loc) break;

if (ran (3) < 2) {
dloc [j] = limbo ; dseen [j] = 0; dkill ++;
if (dkill ≡ 1)

printf ("You killed a little dwarf. The body vanishes in a cloud of greasy\n\
black smoke.\n");

else printf ("You killed a little dwarf.\n");
} else printf ("You attack a little dwarf, but he dodges out of the way.\n");
drop(AXE, loc); stay put ;
}

This code is used in section 122.

164. Now things are in full swing. Dead dwarves don’t do much of anything, but each live dwarf tends to
stay with you if he’s seen you. Otherwise he moves at random, never backing up unless there’s no alternative.

〈Move dwarves and the pirate 164 〉 ≡
{

dtotal = attack = stick = 0; /∗ initialize totals for possible battles ∗/
for (j = 0; j ≤ nd ; j++)

if (dloc [j] 6= limbo) {
register int i;

〈Make a table of all potential exits, ploc [0] through ploc [i− 1] 166 〉;
if (i ≡ 0) i = 1, ploc [0] = odloc [j];
odloc [j] = dloc [j];
dloc [j] = ploc [ran (i)]; /∗ this is the random walk ∗/
dseen [j] = (dloc [j] ≡ loc ∨ odloc [j] ≡ loc ∨ (dseen [j] ∧ loc ≥ min lower loc));
if (dseen [j]) 〈Make dwarf j follow 167 〉;

}
if (dtotal) 〈Make the threatening dwarves attack 170 〉;
}

This code is used in section 161.

165. 〈Global variables 7 〉 +≡
int dtotal ; /∗ this many dwarves are in the room with you ∗/
int attack ; /∗ this many have had time to draw their knives ∗/
int stick ; /∗ this many have hurled their knives accurately ∗/
location ploc [19]; /∗ potential locations for the next random step ∗/

84 DWARF STUFF ADVENT §166

166. Random-moving dwarves think scan1 , scan2 , and scan3 are three different locations, although you
will never have that perception.

〈Make a table of all potential exits, ploc [0] through ploc [i− 1] 166 〉 ≡
for (i = 0, q = start [dloc [j]]; q < start [dloc [j] + 1]; q++) {

newloc = q~dest ;
if (newloc ≥ min lower loc ∧ newloc 6= odloc [j] ∧ newloc 6= dloc [j] ∧

(i ≡ 0 ∨ newloc 6= ploc [i− 1]) ∧ i < 19 ∧ q~cond 6= 100 ∧
newloc ≤ (j ≡ 0 ? max pirate loc : min forced loc − 1)) ploc [i++] = newloc ;

}
This code is used in section 164.

167. A global variable knife loc is used to remember where dwarves have most recently thrown knives at
you. But as soon as you try to refer to the knife, we tell you it’s pointless to do so; knife loc is −1 thereafter.

〈Make dwarf j follow 167 〉 ≡
{

dloc [j] = loc ;
if (j ≡ 0) 〈Make the pirate track you 172 〉
else {

dtotal ++;
if (odloc [j] ≡ dloc [j]) {

attack ++;
if (knife loc ≥ 0) knife loc = loc ;
if (ran (1000) < 95 ∗ (dflag − 2)) stick ++;

}
}
}

This code is used in section 164.

168. 〈Global variables 7 〉 +≡
int knife loc ; /∗ place where knife was mentioned, or −1 ∗/

169. 〈Make special adjustments before looking at new input 85 〉 +≡
if (knife loc > limbo ∧ knife loc 6= loc) knife loc = limbo ;

§170 ADVENT DWARF STUFF 85

170. We actually know the results of the attack already; this is where we inform you of the outcome,
pretending that the battle is now taking place.

〈Make the threatening dwarves attack 170 〉 ≡
{

if (dtotal ≡ 1) printf ("There is a threatening little dwarf");
else printf ("There are %d threatening little dwarves", dtotal);
printf (" in the room with you!\n");
if (attack) {

if (dflag ≡ 2) dflag = 3;
if (attack ≡ 1) k = 0, printf ("One sharp nasty knife is thrown");
else k = 2, printf (" %d of them throw knives", attack);
printf (" at you −−− ");
if (stick ≤ 1) printf ("%s!\n", attack msg [k + stick]);
else printf ("%d of them get you!\n", stick);
if (stick) {

oldoldloc = loc ; goto death ;
}

}
}

This code is used in section 164.

171. 〈Global variables 7 〉 +≡
char ∗attack msg [] = {"it misses", "it gets you",

"none of them hit you", "one of them gets you"};

86 DWARF STUFF ADVENT §172

172. The pirate leaves you alone once you have found the chest. Otherwise he steals all of the treasures
you’re carrying, although he ignores a treasure that’s too easy. (The pyramid is too easy, if you’re in the
Plover Room or the Dark-Room.)

You spot the pirate if he robs you, or when you have seen all of the possible treasures (except, of course,
the chest) and the current location has no treasures. Before you’ve spotted him, we may give you a vague
indication of his movements.

We use the value of place [MESSAGE] to determine whether the pirate has been seen; the condition of
place [CHEST] is not a reliable indicator, since the chest might be in limbo if you’ve thrown it to the troll.

#define pirate not spotted (place [MESSAGE] ≡ limbo)
#define too easy (i) (i ≡ PYRAMID ∧ (loc ≡ proom ∨ loc ≡ droom))

〈Make the pirate track you 172 〉 ≡
{

if (loc 6= max pirate loc ∧ prop [CHEST] < 0) {
for (i = min treasure , k = 0; i ≤ max obj ; i++) {

if (¬too easy (i) & toting (i)) {
k = −1; break;
}
if (here (i)) k = 1;

}
if (k < 0) 〈Take booty and hide it in the chest 173 〉
else if (tally ≡ lost treasures + 1 ∧ k ≡ 0 ∧ pirate not spotted ∧ prop [LAMP] ∧ here (LAMP))
〈Let the pirate be spotted 175 〉

else if (odloc [0] 6= dloc [0] ∧ pct (20))
printf ("There are faint rustling noises from the darkness behind you.\n");

}
}

This code is used in section 167.

173. The pirate isn’t secretive about the fact that his chest is somewhere in a maze. However, he doesn’t
say which maze he means. Nor does he explain why he is interested in treasures only when you are carrying
them; evidently he just likes to see you squirm.

〈Take booty and hide it in the chest 173 〉 ≡
{

printf ("Out from the shadows behind you pounces a bearded pirate! \"Har, har,\"\n\
he chortles, \"I’ll just take all this booty and hide it away with me\n\

chest deep in the maze!\" He snatches your treasure and vanishes into\n\

the gloom.\n");
〈Snatch all treasures that are snatchable here 174 〉;
if (pirate not spotted) {
move chest : move (CHEST, chest loc); move (MESSAGE,message loc);
}
dloc [0] = odloc [0] = chest loc ; dseen [0] = false ;
}

This code is used in section 172.

§174 ADVENT DWARF STUFF 87

174. 〈Snatch all treasures that are snatchable here 174 〉 ≡
for (i = min treasure ; i ≤ max obj ; i++)

if (¬too easy (i)) {
if (base [i] ≡ NOTHING ∧ place [i] ≡ loc) carry (i);
if (toting (i)) drop(i, chest loc);

}
This code is used in section 173.

175. The window rooms are slightly lighted, but you don’t spot the pirate there unless your lamp is on.
(And you do spot him even if the lighted lamp is on the ground.)

〈Let the pirate be spotted 175 〉 ≡
{

printf ("There are faint rustling noises from the darkness behind you. As you\n\
turn toward them, the beam of your lamp falls across a bearded pirate.\n\

He is carrying a large chest. \"Shiver me timbers!\" he cries, \"I’ve\n\

been spotted! I’d best hie meself off to the maze to hide me chest!\"\n\

With that, he vanishes into the gloom.\n");
goto move chest ;
}

This code is used in section 172.

176. One more loose end related to dwarfs needs to be addressed here. If you’re coming from a place
forbidden to the pirate, so that the dwarves are rooted in place, we let you get out (and be attacked).
Otherwise, if a dwarf has seen you and has come from where you want to go, he blocks you.

We use the fact that loc ≤ max pirate loc implies ¬forced move (loc).

〈Stay in loc if a dwarf is blocking the way to newloc 176 〉 ≡
if (loc ≤ max pirate loc) {

for (j = 1; j ≤ nd ; j++)
if (odloc [j] ≡ newloc ∧ dseen [j]) {

printf ("A little dwarf with a big knife blocks your way.\n");
newloc = loc ; break;

}
}

This code is used in section 153.

88 CLOSING THE CAVE ADVENT §177

177. Closing the cave. You get to wander around until you’ve located all fifteen treasures, although
you need not have taken them yet. After that, you enter a new level of complexity: A global variable called
clock1 starts ticking downwards, every time you take a turn inside the cave. When it hits zero, we start
closing the cave; then we sit back and wait for you to try to get out, letting clock2 do the ticking. The initial
value of clock1 is large enough for you to get outside.

#define closing (clock1 < 0)

〈Global variables 7 〉 +≡
int clock1 = 15, clock2 = 30; /∗ clocks that govern closing time ∗/
boolean panic , closed ; /∗ various stages of closedness ∗/

178. Location Y2 is virtually outside the cave, so clock1 doesn’t tick there. If you stay outside the cave
with all your treasures, and with the lamp switched off, the game might go on forever; but you wouldn’t be
having any fun.

There’s an interesting hack by which you can keep tally positive until you’ve taken all the treasures out
of the cave. Namely, if your first moves are

in, take lamp, plugh, on, drop lamp, s, take silver,
back, take lamp, plugh, out, drop silver, in,

the silver bars will be at road ; but prop [SILVER] will still be −1 and tally will still be 15. You can bring the
other 14 treasures to the house at your leisure; then the tally will drop to zero when you step outside and
actually see the silver for the first time.

〈Check the clocks and the lamp 178 〉 ≡
if (tally ≡ 0 ∧ loc ≥ min lower loc ∧ loc 6= y2) clock1 −−;
if (clock1 ≡ 0) 〈Warn that the cave is closing 179 〉
else {

if (clock1 < 0) clock2 −−;
if (clock2 ≡ 0) 〈Close the cave 181 〉
else 〈Check the lamp 184 〉;
}

This code is used in section 76.

179. At the time of first warning, we lock the grate, destroy the crystal bridge, kill all the dwarves (and
the pirate), remove the troll and the bear (unless dead), and set closing to true. It’s too much trouble to
move the dragon, so we leave it. From now on until clock2 runs out, you cannot unlock the grate, move to
any location outside the cave, or create the bridge. Nor can you be resurrected if you die.

〈Warn that the cave is closing 179 〉 ≡
{

printf ("A sepulchral voice, reverberating through the cave, says, \"Cave\n\
closing soon. All adventurers exit immediately through main office.\"\n");

clock1 = −1;
prop [GRATE] = 0;
prop [CRYSTAL] = 0;
for (j = 0; j ≤ nd ; j++) dseen [j] = 0, dloc [j] = limbo ;
destroy (TROLL); destroy (TROLL_);
move (TROLL2, swside); move (TROLL2_,neside);
move (BRIDGE, swside); move (BRIDGE_,neside);
if (prop [BEAR] 6= 3) destroy (BEAR);
prop [CHAIN] = 0; base [CHAIN] = NOTHING;
prop [AXE] = 0; base [AXE] = NOTHING;

}
This code is used in section 178.

§180 ADVENT CLOSING THE CAVE 89

180. If you try to get out while the cave is closing, we assume that you panic; we give you a few additional
turns to get frantic before we close.

〈Panic at closing time 180 〉 ≡
{

if (¬panic) clock2 = 15, panic = true ;
printf ("A mysterious recorded voice groans into life and announces:\n\

\"This exit is closed. Please leave via main office.\"\n");
}

This code is used in sections 131 and 153.

90 CLOSING THE CAVE ADVENT §181

181. Finally, after clock2 hits zero, we transport you to the final puzzle, which takes place in the previously
inaccessible storage room. We have to set everything up anew, in order to use the existing machinery instead
of writing a special program. We are careful not to include keys in the room, since we don’t want to allow
you to unlock the grate that separates you from your treasures. There is no water; otherwise we would need
special code for watering the beanstalks.

The storage room has two locations, neend and swend . At the northeast end, we place empty bottles,
a nursery of plants, a bed of oysters, a pile of lamps, rods with stars, sleeping dwarves, and you. At the
southwest end we place a grate, a snake pit, a covey of caged birds, more rods, and pillows. A mirror
stretches across one wall. But we destroy all objects you might be carrying, lest you have some that could
cause trouble, such as the keys. We describe the flash of light and trundle back.

From the fact that you’ve seen all the treasures, we can infer that the snake is already gone, since the
jewels are accessible only from the Hall of the Mountain King. We also know that you’ve been in the Giant
Room (to get eggs); you’ve discovered that the clam is an oyster (because of the pearl); the dwarves have
been activated, since you’ve found the chest. Therefore the long descriptions of neend and swend will make
sense to you when you see them.

Dear reader, all the clues to this final puzzle are presented in the program itself, so you should have no
trouble finding the solution.

[Two statements marked ‘bugfix’ have been inserted here, on the recommendation of Arthur O’Dwyer,
because they correct a subtle error in Woods’s original implementation.]

〈Close the cave 181 〉 ≡
{

printf ("The sepulchral voice intones, \"The cave is now closed.\" As the echoes\n\
fade, there is a blinding flash of light (and a small puff of orange\n\

smoke). . . . Then your eyes refocus; you look around and find...\n");
move (BOTTLE,neend); prop [BOTTLE] = −2;
move (PLANT,neend); prop [PLANT] = −1;
move (OYSTER,neend); prop [OYSTER] = −1;
move (LAMP,neend); prop [LAMP] = −1;
move (ROD,neend); prop [ROD] = −1;
move (DWARF,neend); prop [DWARF] = −1;
move (MIRROR,neend); prop [MIRROR] = −1;
loc = oldloc = neend ;
move (GRATE, swend); /∗ prop [GRATE] still zero ∗/
move (SNAKE, swend); prop [SNAKE] = −2;
move (BIRD, swend); prop [BIRD] = −2;
move (CAGE, swend); prop [CAGE] = −1;
move (ROD2, swend); prop [ROD2] = −1;
move (PILLOW, swend); prop [PILLOW] = −1;
move (MIRROR_, swend);
place [WATER] = limbo ; place [OIL] = limbo ; /∗ bugfix ∗/
for (j = 1; j ≤ max obj ; j++)

if (toting (j)) destroy (j);
closed = true ;
bonus = 10;
stay put ;
}

This code is used in section 178.

§182 ADVENT CLOSING THE CAVE 91

182. Once the cave has closed, we look for objects being toted with prop < 0; their property value is
changed to −1 − prop . This means they won’t be described until they’ve been picked up and put down,
separate from their respective piles.

〈Make special adjustments before looking at new input 85 〉 +≡
if (closed) {

if (prop [OYSTER] < 0 ∧ toting (OYSTER)) printf ("%s\n",note [offset [OYSTER] + 1]);
for (j = 1; j ≤ max obj ; j++)

if (toting (j) ∧ prop [j] < 0) prop [j] = −1− prop [j];
}

92 DEATH AND RESURRECTION ADVENT §183

183. Death and resurrection. Only the most persistent adventurers get to see the closing of the cave,
because their lamp gives out first. For example, if you have lost the ability to find any treasures, tally will
never go to zero.

〈Zap the lamp if the remaining treasures are too elusive 183 〉 ≡
if (tally ≡ lost treasures ∧ tally > 0 ∧ limit > 35) limit = 35;

This code is used in section 88.

184. On every turn, we check to see if you are in trouble lampwise.

〈Check the lamp 184 〉 ≡
{

if (prop [LAMP] ≡ 1) limit −−;
if (limit ≤ 30 ∧ here (BATTERIES) ∧ prop [BATTERIES] ≡ 0 ∧ here (LAMP)) 〈Replace the batteries 186 〉
else if (limit ≡ 0) 〈Extinguish the lamp 187 〉
else if (limit < 0 ∧ loc < min in cave) {

printf ("There’s not much point in wandering around out here, and you can’t\n\
explore the cave without a lamp. So let’s just call it a day.\n");

goto give up ;
} else if (limit ≤ 30 ∧ ¬warned ∧ here (LAMP)) {

printf ("Your lamp is getting dim");
if (prop [BATTERIES] ≡ 1) printf (", and you’re out of spare batteries. You’d\n\

best start wrapping this up.\n");
else if (place [BATTERIES] ≡ limbo) printf (". You’d best start wrapping this up, unless\n\

you can find some fresh batteries. I seem to recall that there’s\n\

a vending machine in the maze. Bring some coins with you.\n");
else printf (". You’d best go back for those batteries.\n");
warned = true ;

}
}

This code is used in section 178.

185. 〈Global variables 7 〉 +≡
boolean warned ; /∗ have you been warned about the low power supply? ∗/

186. The batteries hold a pretty hefty charge.

〈Replace the batteries 186 〉 ≡
{

printf ("Your lamp is getting dim. I’m taking the liberty of replacing\n\
the batteries.\n");

prop [BATTERIES] = 1;
if (toting (BATTERIES)) drop(BATTERIES, loc);
limit = 2500;
}

This code is used in section 184.

187. 〈Extinguish the lamp 187 〉 ≡
{

limit = −1; prop [LAMP] = 0;
if (here (LAMP)) printf ("Your lamp has run out of power.");
}

This code is used in section 184.

§188 ADVENT DEATH AND RESURRECTION 93

188. The easiest way to get killed is to fall into a pit in pitch darkness.

〈Deal with death and resurrection 188 〉 ≡
pitch dark : printf ("You fell into a pit and broke every bone in your body!\n");

oldoldloc = loc ;

See also sections 189, 191, and 192.

This code is used in section 2.

189. “You’re dead, Jim.”
When you die, newloc is undefined (often limbo) and oldloc is what killed you. So we look at oldoldloc ,

the last place you were safe.
We generously allow you to die up to three times; death count is the number of deaths you have had so far.

#define max deaths 3

〈Deal with death and resurrection 188 〉 +≡
death : death count ++;

if (closing) {
printf ("It looks as though you’re dead. Well, seeing as how it’s so close\n\

to closing time anyway, let’s just call it a day.\n");
goto quit ;
}
if (¬yes (death wishes [2∗death count−2], death wishes [2∗death count−1], ok)∨death count ≡ max deaths)

goto quit ;

190. 〈Global variables 7 〉 +≡
int death count ; /∗ how often have you kicked the bucket? ∗/
char ∗death wishes [2 ∗max deaths] = {
"Oh dear, you seem to have gotten yourself killed. I might be able to\n\

help you out, but I’ve never really done this before. Do you want me\n\

to try to reincarnate you?",
"All right. But don’t blame me if something goes wr......\n\

 −−− POOF!! −−−\n\

You are engulfed in a cloud of orange smoke. Coughing and gasping,\n\

you emerge from the smoke and find....",
"You clumsy oaf, you’ve done it again! I don’t know how long I can\n\

keep this up. Do you want me to try reincarnating you again?",
"Okay, now where did I put my resurrection kit?.... >POOF!<\n\

Everything disappears in a dense cloud of orange smoke.",
"Now you’ve really done it! I’m out of orange smoke! You don’t expect\n\

me to do a decent reincarnation without any orange smoke, do you?",
"Okay, if you’re so smart, do it yourself! I’m leaving!"};

94 DEATH AND RESURRECTION ADVENT §191

191. At this point you are reborn. All objects you were carrying are dropped at oldoldloc (presumably your
last place prior to being killed), with their properties unchanged. The loop runs backwards, so that the bird
is dropped before the cage. The lamp is a special case, because we wouldn’t want to leave it underground;
we turn it off and leave it outside the building—only if you were carrying it, of course. You yourself are left
inside the building. (Heaven help you if you try to xyzzy back into the cave without the lamp.) We zap
oldloc so that you can’t just go back.

〈Deal with death and resurrection 188 〉 +≡
if (toting (LAMP)) prop [LAMP] = 0;
place [WATER] = limbo ; place [OIL] = limbo ; /∗ must not drop them ∗/
for (j = max obj ; j > 0; j−−)

if (toting (j)) drop(j, j ≡ LAMP ? road : oldoldloc);
loc = oldloc = house ;
goto commence ;

192. Oh dear, you’ve disturbed the dwarves.

〈Deal with death and resurrection 188 〉 +≡
dwarves upset :

printf ("The resulting ruckus has awakened the dwarves. There are now several\n\
threatening little dwarves in the room with you! Most of them throw\n\

knives at you! All of them get you!\n");

§193 ADVENT SCORING 95

193. Scoring. Here is the scoring algorithm we use:

Objective Points Total possible

Getting well into cave 25 25
Each treasure < chest 12 60
Treasure chest itself 14 14
Each treasure > chest 16 144
Each unused death 10 30
Not quitting 4 4
Reaching Witt’s End 1 1
Getting to closing 25 25
Various additional bonuses 45
Round out the total 2 2

Total: 350

Points can also be deducted for using hints. One consequence of these rules is that you get 32 points just
for quitting on your first turn. And there’s a way to get 57 points in just three turns.

Full points for treasures are awarded only if they aren’t broken and you have deposited them in the
building. But we give you 2 points just for seeing a treasure.

#define max score 350

〈Global variables 7 〉 +≡
int bonus ; /∗ extra points awarded for exceptional adventuring skills ∗/

194. The hints are table driven, using several arrays:
• hint count [j] is the number of recent turns whose location is relevant to hint j;
• hint thresh [j] is the number of such turns before we consider offering that hint;
• hint cost [j] is the number of points you pay for it;
• hint prompt [j] is the way we offer it;
• hint [j] is the hint;
• hinted [j] is true after we’ve given it.

Hint 0 is for instructions at the beginning; it costs you 5 points, but you get extra power in the lamp. The
other hints also usually extend the lamp’s power. Hint 1 is for reading the oyster. And hints 2 through 7
are for the cave hint , bird hint , snake hint , twist hint , dark hint , and witt hint , respectively.

Here’s the subroutine that handles all eight kinds of hints.

〈Subroutines 6 〉 +≡
void offer ARGS((int));

void offer (j)
int j;

{
if (j > 1) {

if (¬yes (hint prompt [j], " I am prepared to give you a hint,", ok)) return;
printf (" but it will cost you %d points. ", hint cost [j]);
hinted [j] = yes ("Do you want the hint?", hint [j], ok);

} else hinted [j] = yes (hint prompt [j], hint [j], ok);
if (hinted [j] ∧ limit > 30) limit += 30 ∗ hint cost [j];
}

96 SCORING ADVENT §195

195. 〈Check if a hint applies, and give it if requested 195 〉 ≡
for (j = 2, k = cave hint ; j ≤ 7; j++, k += k)

if (¬hinted [j]) {
if ((flags [loc] & k) ≡ 0) hint count [j] = 0;
else if (++hint count [j] ≥ hint thresh [j]) {

switch (j) {
case 2: if (prop [GRATE] ≡ 0 ∧ ¬here (KEYS)) break; else goto bypass ;
case 3: if (here (BIRD) ∧ oldobj ≡ BIRD ∧ toting (ROD)) break;

else continue;
case 4: if (here (SNAKE) ∧ ¬here (BIRD)) break; else goto bypass ;
case 5: if (first [loc] ≡ 0 ∧ first [oldloc] ≡ 0 ∧ first [oldoldloc] ≡ 0 ∧ holding > 1) break;

else goto bypass ;
case 6: if (prop [EMERALD] 6= −1 ∧ prop [PYRAMID] ≡ −1) break;

else goto bypass ;
case 7: break;
}
offer (j);

bypass : hint count [j] = 0;
}

}
This code is used in section 76.

§196 ADVENT SCORING 97

196. #define n hints 8

〈Global variables 7 〉 +≡
int hint count [n hints]; /∗ how long you have needed this hint ∗/
int hint thresh [n hints] = {0, 0, 4, 5, 8, 75, 25, 20}; /∗ how long we will wait ∗/
int hint cost [n hints] = {5, 10, 2, 2, 2, 4, 5, 3}; /∗ how much we will charge ∗/
char ∗hint prompt [n hints] = {
"Welcome to Adventure!! Would you like instructions?",
"Hmmm, this looks like a clue, which means it’ll cost you 10 points to\n\

read it. Should I go ahead and read it anyway?",
"Are you trying to get into the cave?",
"Are you trying to catch the bird?",
"Are you trying to deal somehow with the snake?",
"Do you need help getting out of the maze?",
"Are you trying to explore beyond the Plover Room?",
"Do you need help getting out of here?"};
char ∗hint [n hints] = {
"Somewhere nearby is Colossal Cave, where others have found fortunes in\n\

treasure and gold, though it is rumored that some who enter are never\n\

seen again. Magic is said to work in the cave. I will be your eyes\n\

and hands. Direct me with commands of one or two words. I should\n\

warn you that I look at only the first five letters of each word, so\n\

you’ll have to enter \"NORTHEAST\" as \"NE\" to distinguish it from\n\

\"NORTH\". Should you get stuck, type \"HELP\" for some general hints.\n\

For information on how to end your adventure, etc., type \"INFO\".\n\

 − − −\n\

The first adventure program was developed by Willie Crowther.\n\

Most of the features of the current program were added by Don Woods;\n\

all of its bugs were added by Don Knuth.",
"It says, \"There is something strange about this place, such that one\n\

of the words I’ve always known now has a new effect.\"",
"The grate is very solid and has a hardened steel lock. You cannot\n\

enter without a key, and there are no keys in sight. I would recommend\n\

looking elsewhere for the keys.",
"Something seems to be frightening the bird just now and you cannot\n\

catch it no matter what you try. Perhaps you might try later.",
"You can’t kill the snake, or drive it away, or avoid it, or anything\n\

like that. There is a way to get by, but you don’t have the necessary\n\

resources right now.",
"You can make the passages look less alike by dropping things.",
"There is a way to explore that region without having to worry about\n\

falling into a pit. None of the objects available is immediately\n\

useful for discovering the secret.",
"Don’t go west."};
boolean hinted [n hints]; /∗ have you seen the hint? ∗/

98 SCORING ADVENT §197

197. Here’s a subroutine that computes the current score.

〈Subroutines 6 〉 +≡
int score ARGS((void));

int score ()
{

register int j, s = 2;
register object k;

if (dflag) s += 25; /∗ you’ve gotten well inside ∗/
for (k = min treasure ; k ≤ max obj ; k++) {

if (prop [k] ≥ 0) {
s += 2;
if (place [k] ≡ house ∧ prop [k] ≡ 0) s += (k < CHEST ? 10 : k ≡ CHEST ? 12 : 14);

}
}
s += 10 ∗ (max deaths − death count);
if (¬gave up) s += 4;
if (place [MAG] ≡ witt) s++; /∗ proof of your visit ∗/
if (closing) s += 25;
s += bonus ;
for (j = 0; j < n hints ; j++)

if (hinted [j]) s −= hint cost [j];
return s;
}

198. The worst possible score is −3. It is possible (but unusual) to earn exactly 1 point.

#define highest class 8

〈Print the score and say adieu 198 〉 ≡
k = score ();
printf ("You scored %d point%s out of a possible %d, using %d turn%s.\n", k, k ≡ 1 ? "" : "s",

max score , turns , turns ≡ 1 ? "" : "s");
for (j = 0; class score [j] < k; j++) ;
printf ("%s\nTo achieve the next higher rating", class message [j]);
if (j < highest class)

printf (", you need %d more point%s.\n", class score [j] + 1− k, class score [j] ≡ k ? "" : "s");
else printf (" would be a neat trick!\nCongratulations!!\n");

This code is used in section 2.

199. 〈Global variables 7 〉 +≡
int class score [] = {35, 100, 130, 200, 250, 300, 330, 349, 9999};
char ∗class message [] = {
"You are obviously a rank amateur. Better luck next time.",
"Your score qualifies you as a novice class adventurer.",
"You have achieved the rating \"Experienced Adventurer\".",
"You may now consider yourself a \"Seasoned Adventurer\".",
"You have reached \"Junior Master\" status.",
"Your score puts you in Master Adventurer Class C.",
"Your score puts you in Master Adventurer Class B.",
"Your score puts you in Master Adventurer Class A.",
"All of Adventuredom gives tribute to you, Adventure Grandmaster!"};

§200 ADVENT LAUNCHING THE PROGRAM 99

200. Launching the program. The program is now complete; all we must do is put a few of the pieces
together.

Most of the initialization takes place while you are reading the opening message.

〈 Initialize all tables 200 〉 ≡
〈 Initialize the random number generator 156 〉;
offer (0); /∗ Give the welcome message and possible instructions ∗/
limit = (hinted [0] ? 1000 : 330); /∗ set lifetime of lamp ∗/
〈Build the vocabulary 10 〉;
〈Build the travel table 23 〉;
〈Build the object tables 69 〉;
oldoldloc = oldloc = loc = newloc = road ;

This code is used in section 2.

100 INDEX ADVENT §201

201. Index. A large cloud of green smoke appears in front of you. It clears away to reveal a tall wizard,
clothed in grey. He fixes you with a steely glare and declares, “This adventure has lasted too long.” With
that he makes a single pass over you with his hands, and everything around you fades away into a grey
nothingness.

__STDC__: 3.
abovep : 18, 45, 48.
abover : 18, 52, 53.
ABSTAIN: 13, 76, 82, 128.
ACROSS: 9, 10, 34, 46, 55, 57.
action: 13, 77.
action type : 5, 14, 78, 97.
alcove : 18, 50, 51, 149.
all alike : 21, 36.
ante : 18, 42, 44, 45, 70.
arch : 18, 43.
ARGS: 3, 6, 8, 64, 65, 66, 71, 72, 154, 160, 194, 197.
ART: 11, 12, 70.
attack : 164, 165, 167, 170.
attack msg : 170, 171.
awk : 18, 31, 91.
AWKWARD: 9, 10.
AXE: 11, 12, 70, 122, 123, 129, 162, 163, 179.
BACK: 9, 10, 140.
barr : 18, 57, 70, 132.
BARREN: 9, 10, 57.
base : 63, 66, 67, 88, 94, 101, 112, 121, 123, 128,

129, 132, 133, 151, 174, 179.
BATTERIES: 11, 12, 70, 118, 184, 186.
BEAR: 11, 12, 70, 86, 94, 98, 112, 117, 122, 123,

125, 126, 129, 133, 151, 179.
BED: 9, 10, 28.
BEDQUILT: 9, 10, 42, 48.
bedquilt : 18, 42, 44, 45, 48, 52.
bird : 18, 31, 37, 70, 91.
BIRD: 11, 12, 70, 98, 112, 114, 117, 120, 125,

126, 127, 129, 181, 195.
bird hint : 20, 31, 194.
BLAST: 13, 14, 79, 99.
block : 18, 47.
bonus : 99, 181, 193, 197.
boolean: 2, 66, 71, 84, 96, 159, 160, 177, 185, 196.
BOTTLE: 11, 12, 70, 90, 100, 104, 106, 107, 110,

112, 113, 115, 181.
bottle empty : 104, 110, 112, 115.
boulders : 18, 54.
branch : 78, 97.
BREAK: 13, 14, 101.
BRIDGE: 11, 12, 55, 69, 119, 124, 151, 152, 179.
BRIDGE_: 11, 69, 119, 124, 152, 179.
bridge rmk : 21, 34, 55, 57.
BRIEF: 13, 14, 86, 87, 95.
brink : 18, 36, 37, 56.

BROKEN: 9, 10, 41.
Brucker, Roger W.: 45.
buf size : 71, 72, 73.
buffer : 71, 72, 73.
bypass : 195.
CAGE: 11, 12, 70, 112, 114, 117, 130, 181.
CALM: 13, 14, 129.
cant : 18, 32, 61.
cant see it : 79, 90, 135.
CANYON: 9, 10, 31, 45.
carry : 65, 112, 174.
CAVE: 9, 10, 140.
cave hint : 20, 29, 194, 195.
CAVERN: 9, 10, 47, 50, 51.
CHAIN: 11, 12, 63, 70, 88, 93, 112, 130, 131,

132, 133, 151, 179.
chamber : 18, 57, 70.
change to : 79, 113, 122.
check : 18, 46, 61.
cheese : 18, 45, 46, 50, 54.
CHEST: 11, 12, 70, 172, 173, 197.
chest loc : 159, 173, 174.
CLAM: 11, 12, 43, 70, 93, 98, 125, 126, 130, 134.
clam oyster : 134.
class message : 198, 199.
class score : 198, 199.
clean : 18, 42.
CLIMB: 9, 10, 35, 37, 42, 46, 47, 48, 52.
climb : 18, 46, 61.
clock1 : 177, 178, 179.
clock2 : 177, 178, 179, 180, 181.
CLOSE: 13, 14, 93, 130, 134.
closed : 88, 93, 99, 100, 101, 120, 125, 127, 129,

135, 177, 181, 182.
closing : 99, 131, 153, 157, 177, 179, 189, 193, 197.
COBBLES: 9, 10, 30, 31.
cobbles : 18, 30, 31, 70, 91.
COINS: 11, 12, 70, 117, 118.
Colossal Cave: 18, 45, 196.
command type : 77, 78.
commence : 75, 102, 191.
complex: 18, 42, 43, 44, 45, 159.
cond : 19, 21, 147, 166.
corr : 18, 57.
CRACK: 9, 10, 31.
crack : 18, 31, 59.
CRAWL: 9, 10, 30, 31, 35, 38, 42, 48, 50, 54, 57, 148.
crawl : 18, 48.

§201 ADVENT INDEX 101

CROSS: 9, 10, 34, 55, 57.
cross : 18, 38, 40, 56.
Crowther, William R.: 1, 25, 41, 45, 196.
cry : 125.
CRYSTAL: 11, 12, 34, 69, 99, 179.
CRYSTAL_: 11, 69.
current type : 6, 7, 10, 12, 14, 16.
cycle : 76, 78, 79.
D: 9.
dark : 84, 85, 86, 93, 102, 135.
DARK: 9, 10, 31, 51.
dark hint : 20, 51, 194.
dead end : 21, 39, 56.
dead0 : 18, 40, 56.
dead1 : 18, 36, 56.
dead10 : 18, 36, 56.
dead11 : 18, 36, 56.
dead2 : 18, 36, 56, 159.
dead3 : 18, 36, 56.
dead4 : 18, 36, 56.
dead5 : 18, 36, 56.
dead6 : 18, 36, 56.
dead7 : 18, 36, 56.
dead8 : 18, 37, 56.
dead9 : 18, 36, 56.
death : 86, 151, 170, 189.
death count : 189, 190, 197.
death wishes : 189, 190.
debris : 18, 25, 30, 31, 70, 91.
DEBRIS: 9, 10, 30, 31.
default msg : 14, 15, 57, 79, 111, 129, 139, 148.
default to : 79, 83, 99, 100, 106, 112, 117, 130, 139.
DEPRESSION: 9, 10, 23, 26, 28, 31, 91.
dest : 19, 21, 143, 146, 147, 166.
destroy : 65, 98, 118, 119, 120, 124, 127, 128,

129, 134, 152, 179, 181.
dflag : 90, 129, 159, 160, 161, 162, 167, 170, 197.
DIAMONDS: 11, 12, 70.
didit : 18, 61.
diff0 : 18, 38, 39.
diff1 : 18, 39.
diff10 : 18, 39.
diff2 : 18, 39.
diff3 : 18, 39.
diff4 : 18, 39.
diff5 : 18, 39.
diff6 : 18, 39.
diff7 : 18, 39.
diff8 : 18, 39.
diff9 : 18, 39.
dirty : 18, 41, 42.

ditto : 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 50, 51, 52, 53, 54, 55, 56, 57.

dkill : 159, 163.
dloc : 159, 160, 162, 163, 164, 166, 167, 172,

173, 179.
DOME: 9, 10, 32.
DOOR: 11, 12, 47, 70, 93, 107, 109, 130.
DOWNSTREAM: 9, 10, 23, 25, 26, 28, 42.
DRAGON: 11, 12, 52, 53, 69, 98, 120, 122, 125,

126, 128, 129.
DRAGON_: 11, 69, 128.
DRINK: 13, 14, 79, 106.
droom : 18, 51, 70, 172.
drop : 64, 65, 67, 101, 117, 118, 119, 122, 123, 124,

132, 134, 150, 151, 162, 163, 174, 186, 191.
DROP: 13, 14, 99, 111, 117, 122.
dseen : 159, 163, 164, 173, 176, 179.
dtotal : 164, 165, 167, 170.
duck : 18, 35, 61.
dusty : 18, 42, 45.
DWARF: 11, 12, 70, 90, 98, 100, 101, 125, 126,

129, 181.
dwarf : 90, 92, 100, 122, 126, 159, 160.
dwarves upset : 101, 120, 125, 192.
E: 9.
EAT: 13, 14, 57, 92, 98, 106, 129.
efiss : 18, 32, 34, 69, 99.
EGGS: 11, 12, 70, 139.
elong : 18, 35, 38, 40.
EMERALD: 11, 12, 41, 51, 70, 149, 150, 195.
Emerson, Ralph Waldo: 26.
emist : 18, 31, 32, 33, 34, 40, 41, 61, 69, 88.
ENTER: 9, 10, 23, 25, 29, 47, 57.
ENTRANCE: 9, 10, 31, 91.
epit : 18, 46.
exit : 2, 62.
e2pit : 18, 45, 46, 69.
falls : 18, 47, 70.
false : 2, 66, 71, 141, 160, 173.
fbarr : 18, 57.
FEED: 13, 14, 122, 129.
FEEFIE: 13, 14, 97, 136.
fflush : 71, 72.
fgets : 2, 71, 72.
FILL: 13, 14, 79, 110, 113.
FIND: 13, 14, 79, 90, 100, 148.
first : 63, 64, 65, 88, 92, 195.
flags : 20, 21, 74, 84, 110, 195.
FLOOR: 9, 10, 42.
foobar : 136, 137, 138, 139.
FOOD: 11, 12, 70, 92, 98, 122, 129.

102 INDEX ADVENT §201

FORCE: 59, 60, 61.
forced move : 59, 86, 143, 146, 176.
forest : 18, 23, 24, 26, 27, 28, 29.
fork : 18, 57.
FORK: 9, 10, 57.
FORWARD: 9, 10, 24, 27, 32, 34, 40, 53, 148.
found : 143.
gave up : 95, 96, 197.
get object : 79, 92, 93, 106, 107, 110, 126.
GEYSER: 11, 12, 70.
GIANT: 9, 10, 47.
giant : 18, 47, 70, 139.
give up : 95, 184.
GO: 13, 14, 79, 83.
go for it : 75, 143.
GOLD: 11, 12, 31, 32, 70, 88.
GRATE: 11, 12, 29, 30, 31, 63, 69, 90, 91, 93,

130, 131, 179, 181, 195.
GRATE_: 11, 63, 69, 93.
grate rmk : 21, 29, 30, 58.
GULLY: 9, 10, 23, 29.
h: 6, 8.
HALL: 9, 10, 32, 33, 34, 40, 41, 43.
hash entry: 5, 7.
hash prime : 6, 7, 8.
hash table : 6, 7, 8, 76, 78, 79, 97, 105.
here : 74, 84, 90, 92, 93, 99, 102, 106, 110, 113, 117,

120, 122, 126, 129, 130, 139, 172, 184, 187, 195.
highest class : 198.
hill : 18, 23, 24.
hint : 194, 196.
hint cost : 194, 196, 197.
hint count : 194, 195, 196.
hint prompt : 194, 196.
hint thresh : 194, 195, 196.
hinted : 135, 194, 195, 196, 197, 200.
hmk : 18, 32, 40, 41, 53, 61, 70, 120, 127, 159.
holding : 63, 64, 65, 112, 149, 195.
holds : 21, 31, 32, 41, 43, 51.
HOLE: 9, 10, 38, 41, 42, 46.
HOUSE: 9, 10, 23, 24, 26, 28, 29.
house : 18, 23, 25, 31, 41, 61, 70, 178, 191, 197.
i: 164.
immense : 18, 47, 70.
IN: 9, 10, 23, 29, 30, 31, 57, 148.
incantation : 136, 137.
inhand : 18, 63, 65, 104, 110, 112.
inside : 18, 29, 30, 31, 69.
instruction: 19, 20, 22.
interval : 86, 87, 95.
intransitive : 76, 78, 79.
INVENTORY: 13, 14, 79, 90, 94, 100, 148.

is at loc : 66, 90, 100, 117, 120, 122, 126, 147.
is treasure : 11, 67, 122.
isspace : 2, 72.
j: 2, 160, 194, 197.
JEWELS: 11, 12, 70.
jumble : 18, 32, 41.
JUMP: 9, 10, 34, 41, 47, 48, 49, 55, 57.
k: 2, 6, 197.
KEYS: 11, 12, 29, 63, 70, 130, 195.
KILL: 13, 14, 79, 122, 125.
KNIFE: 11, 12, 70, 90.
knife loc : 90, 167, 168, 169.
Knuth, Donald Ervin: 1, 196.
L: 9.
LAMP: 11, 12, 70, 84, 99, 102, 172, 181, 184,

187, 191.
Levy, Steven: 23, 55.
lighted : 20, 23, 24, 25, 26, 27, 28, 29, 30, 31,

51, 57, 58, 84.
like1 : 18, 35, 36.
like10 : 18, 36, 37, 56.
like11 : 18, 36, 56.
like12 : 18, 36, 37, 56.
like13 : 18, 36, 37, 56.
like14 : 18, 36.
like2 : 18, 36.
like3 : 18, 36, 56, 159.
like4 : 18, 36, 48, 56.
like5 : 18, 36.
like6 : 18, 36, 48.
like7 : 18, 36.
like8 : 18, 36, 56.
like9 : 18, 36, 48, 56.
limbo : 18, 60, 63, 65, 69, 70, 86, 106, 107, 115,

124, 139, 153, 161, 162, 163, 164, 169, 172,
179, 181, 184, 189, 191.

lime : 18, 57.
limit : 102, 103, 183, 184, 186, 187, 194, 200.
link : 63, 64, 65, 88, 92.
liquid : 20, 23, 25, 26, 28, 42, 46, 47, 52, 74.
list : 3.
listen : 72, 76, 128.
ll : 143, 144.
loc : 59, 66, 74, 75, 84, 86, 88, 90, 91, 92, 93, 99,

100, 101, 105, 107, 110, 117, 118, 121, 122,
123, 128, 132, 134, 139, 140, 141, 143, 146,
148, 149, 150, 151, 153, 157, 160, 161, 162,
163, 164, 167, 169, 170, 172, 174, 176, 178,
181, 184, 186, 188, 191, 195, 200.

location : 18, 19, 21, 63, 64, 65, 74, 144, 159, 165.
long desc : 20, 21, 23, 53, 61, 86.
LOOK: 9, 10, 86, 140.

§201 ADVENT INDEX 103

look count : 95, 141, 142.
lookup : 8, 78, 97, 105.
loop rmk : 21, 44, 45.
lose : 18, 34, 55, 60.
lost treasures : 88, 89, 120, 127, 129, 151, 172, 183.
LOW: 9, 10, 31.
low : 18, 45, 47, 48, 50, 55.
m: 6.
MAG: 11, 12, 70, 93, 135, 197.
main : 2.
make inst : 21, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61.

make loc : 21, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61.

Makholm, Henning: 91.
max deaths : 189, 190, 197.
max loc : 18, 19, 20, 63, 143, 146.
max obj : 11, 63, 66, 94, 128, 172, 174, 181,

182, 191, 197.
max pirate loc : 56, 161, 166, 172, 176.
max score : 95, 193, 198.
max spec : 18, 19, 21, 146.
McCarthy, John: 1.
meaning : 5, 6, 76, 78, 79, 97, 105.
mess wd : 16.
MESSAGE: 11, 12, 70, 93, 135, 172, 173.
message : 16, 17, 79, 99.
message loc : 159, 173.
message type : 5, 16, 76, 78.
min forced loc : 18, 59, 166.
min in cave : 18, 140, 153, 184.
min lower loc : 18, 91, 161, 164, 166, 178.
min treasure : 11, 172, 174, 197.
mirror : 18, 49, 52, 70.
MIRROR: 11, 12, 69, 70, 101, 181.
MIRROR_: 11, 69, 181.
misty : 18, 50, 51.
MOSS: 11, 12, 70.
mot : 19, 21, 76, 77, 78, 140, 143, 146, 148.
motion: 9, 19, 77.
motion type : 5, 10, 78.
move : 65, 119, 123, 124, 128, 139, 152, 173,

179, 181.
move chest : 173, 175.
N: 9.
n: 71.
n hints : 196, 197.
nada sucede : 136, 139.

name : 63, 67, 94.
narrow : 18, 47, 61.
nd : 159, 160, 162, 163, 164, 176, 179.
ne : 39.
NE: 9, 10, 39, 44, 45, 51, 55, 57, 58.
neck : 18, 31, 41, 47, 49, 60.
neend : 18, 58, 99, 181.
neside : 18, 57, 69, 119, 124, 151, 152, 179.
new mess : 16.
new note : 67, 69, 70.
new obj : 67, 69, 70.
new word : 6, 10, 12, 14, 16.
newloc : 74, 75, 86, 140, 146, 148, 149, 151, 153,

166, 176, 189, 200.
no good : 146, 147.
no liquid here : 74, 110, 111.
no type : 5.
not : 21, 29, 30, 31, 34, 40, 46, 47, 52, 53, 55, 61.
note : 63, 67, 88, 99, 108, 118, 121, 128, 139,

152, 182.
note ptr : 63, 67.
NOTHING: 11, 63, 66, 76, 94, 97, 106, 107, 110,

122, 125, 128, 129, 133, 174, 179.
NOWHERE: 9, 10, 31, 78, 140.
ns : 18, 40, 41, 42, 70.
nugget : 18, 32, 33, 70, 162.
nw : 39.
NW: 9, 10, 36, 39, 44, 45, 51.
obj : 76, 77, 78, 90, 92, 93, 97, 98, 99, 100, 101,

106, 107, 108, 109, 110, 112, 113, 115, 117, 122,
124, 125, 126, 128, 129, 130, 131, 134, 135.

object: 11, 63, 64, 65, 66, 68, 77, 88, 197.
Object-oriented programming: 11.
object in bottle : 90, 100, 113, 115.
object type : 5, 12, 78.
odloc : 159, 162, 164, 166, 167, 172, 173, 176.
OFF: 13, 14, 79, 102.
offer : 135, 194, 195, 200.
OFFICE: 9, 10.
offset : 63, 67, 88, 99, 108, 118, 121, 128, 139,

152, 182.
OIL: 11, 12, 70, 90, 100, 107, 109, 110, 112,

115, 181, 191.
oil : 20, 46, 74, 110.
oil here : 74, 90, 100.
ok : 14, 95, 189, 194.
oldloc : 74, 75, 143, 181, 189, 191, 195, 200.
oldobj : 76, 77, 195.
oldoldloc : 74, 75, 143, 151, 170, 188, 189, 191,

195, 200.
oldverb : 76, 77, 79, 126.
ON: 13, 14, 79, 102.

104 INDEX ADVENT §201

OPEN: 13, 14, 93, 130, 131, 132.
ORIENTAL: 9, 10, 45, 48, 50.
oriental : 18, 45, 48, 50, 70.
OUT: 9, 10, 25, 30, 31, 33, 39, 40, 41, 42, 43, 45,

46, 47, 48, 51, 52, 53, 56, 57, 148.
OUTDOORS: 9, 10, 25.
outside : 18, 23, 26, 28, 29, 30, 31, 69.
OVER: 9, 10, 34, 55, 57.
OYSTER: 11, 12, 43, 70, 93, 98, 125, 126, 130,

134, 135, 181, 182.
p: 2, 6, 8, 72.
panic : 177, 180.
parse : 76.
PASSAGE: 9, 10, 31, 32, 35, 42, 47, 48, 51, 57.
pct : 86, 147, 157, 161, 162, 172.
pdrop : 18, 41, 51, 62, 146, 150.
PEARL: 11, 12, 70, 134.
PILLOW: 11, 12, 70, 121, 181.
PIRATE: 11, 12, 70.
pirate not spotted : 172, 173.
PIT: 9, 10, 30, 31, 32, 42, 46.
pitch dark : 86, 188.
pitch dark msg : 86, 87, 102.
place : 63, 64, 65, 66, 74, 93, 100, 104, 105, 106,

107, 110, 112, 115, 120, 121, 123, 127, 128, 139,
151, 172, 174, 181, 184, 191, 197.

PLANT: 11, 12, 46, 61, 63, 70, 90, 107, 108, 112, 181.
PLANT2: 11, 69, 90, 108.
PLANT2_: 11, 69.
ploc : 164, 165, 166.
PLOVER: 9, 10, 41, 51, 97.
PLUGH: 9, 10, 25, 41, 97, 148.
pony : 18, 39, 70, 159.
PONY: 11, 12, 70, 117.
POUR: 13, 14, 79, 107.
ppass : 18, 51, 62, 146.
pre parse : 76, 128.
printf : 2, 62, 71, 72, 78, 79, 80, 86, 88, 94, 95,

97, 99, 101, 102, 108, 110, 111, 119, 120, 121,
122, 128, 134, 140, 141, 143, 145, 146, 148,
149, 151, 152, 157, 162, 163, 170, 172, 173,
175, 176, 179, 180, 181, 182, 184, 186, 187,
188, 189, 192, 194, 198.

proom : 18, 41, 51, 70, 149, 172.
prop : 19, 21, 63, 67, 84, 88, 90, 99, 101, 102, 104,

106, 107, 108, 109, 110, 112, 114, 115, 117, 118,
119, 120, 121, 122, 123, 125, 126, 127, 128, 129,
130, 131, 132, 133, 139, 147, 151, 152, 172, 178,
179, 181, 182, 184, 186, 187, 191, 195, 197.

prototypes for functions: 3.
PYRAMID: 11, 12, 70, 172, 195.
q: 22, 71, 72.

qq : 22, 143, 147.
quit : 2, 75, 95, 99, 189.
QUIT: 13, 14, 95.
R: 9.
r: 65.
ragged : 18, 43.
ran : 154, 157, 158, 162, 163, 164, 167.
range : 154.
READ: 13, 14, 93, 135.
RELAX: 13, 14, 79, 112, 117, 130, 139.
rem count : 20, 21, 62.
rem size : 20, 62.
remark : 21, 28, 29, 34, 43, 44, 46, 47, 53, 55, 57.
remarks : 19, 20, 21, 146.
report : 79, 83, 90, 93, 94, 95, 98, 99, 100, 101,

102, 106, 107, 108, 109, 110, 111, 112, 113,
114, 118, 120, 123, 124, 125, 127, 129, 130,
131, 132, 133, 134, 135, 136, 139.

report default : 79, 98, 99, 100, 101, 102, 106, 107,
110, 112, 117, 122, 125, 129, 130, 135.

res : 18, 52.
RESERVOIR: 9, 10, 52.
road : 18, 23, 24, 25, 26, 27, 28, 29, 91, 178,

191, 200.
ROAD: 9, 10, 23, 24, 27.
ROCK: 9, 10, 28.
ROD: 11, 12, 70, 90, 99, 114, 117, 122, 181, 195.
ROD2: 11, 70, 90, 99, 117, 122, 181.
ROOM: 9, 10, 42.
RUB: 13, 14, 99.
RUG: 11, 12, 63, 69, 88, 128.
RUG_: 11, 69, 128.
rx : 154, 155, 156.
S: 9.
s: 65, 197.
sac : 18, 43, 134.
SAY: 13, 14, 78, 82, 97.
sayit : 21, 28, 29, 34, 43, 44, 46, 47, 53, 55, 57.
scan1 : 18, 52, 53, 69, 128, 166.
scan2 : 18, 52, 53, 128, 166.
scan3 : 18, 53, 69, 128, 166.
SCORE: 13, 14, 95.
score : 95, 197, 198.
scorr : 18, 48, 55.
se : 39.
SE: 9, 10, 39, 44, 48, 50, 56, 57.
secret : 18, 40, 53, 54.
SECRET: 9, 10, 40.
sees : 21, 40, 55, 57.
sewer : 18, 25, 61.
SHADOW: 11, 12, 69.
SHADOW_: 11, 69.

§201 ADVENT INDEX 105

SHELL: 9, 10, 42, 43.
shell : 18, 42, 43, 70.
shift : 76, 78, 83.
short desc : 20, 21, 27, 49, 86.
SILVER: 11, 12, 70, 178.
sjunc : 18, 45, 48, 49.
slab : 18, 45, 46, 52.
SLAB: 9, 10, 45, 46, 52.
slit : 18, 26, 28, 29, 91.
SLIT: 9, 10, 28, 42.
slit rmk : 21, 28, 42.
smash : 101, 111.
SNAKE: 11, 12, 40, 63, 70, 98, 120, 125, 126,

127, 129, 181, 195.
snake hint : 20, 40, 194.
snaked : 18, 40, 61.
soft : 18, 45, 70, 117.
south : 18, 40, 70.
speakit : 76, 78, 79.
SPICES: 11, 12, 70, 151.
spit : 18, 30, 31, 32, 59, 69, 91.
STAIRS: 9, 10, 32, 40.
STALACTITE: 11, 12, 70.
start : 20, 21, 62, 143, 146, 166.
stay : 146, 149, 152.
stay put : 78, 108, 122, 128, 163, 181.
stdin : 71, 72.
stdout : 71, 72.
steep : 18, 47.
STEPS: 9, 10, 31, 32.
stick : 164, 165, 167, 170.
strcpy : 2, 6, 76, 97, 105.
STREAM: 9, 10, 23, 25, 28, 42.
streq : 8, 80, 83, 105, 128, 136.
strncmp : 2, 8.
SURFACE: 9, 10, 31.
sw : 39.
SW: 9, 10, 39, 40, 44, 48, 55, 57, 58.
swend : 18, 58, 181.
swside : 18, 55, 69, 119, 124, 151, 152, 179.
t: 8, 64, 65, 66, 68.
TABLET: 11, 12, 70, 93, 135.
TAKE: 13, 14, 92, 100, 112.
tall : 18, 45, 54.
tally : 88, 89, 172, 178, 183.
text : 5, 6, 8.
THROW: 117.
thru : 18, 34, 61.
tight : 18, 54.
time : 2, 156.
tite : 18, 48, 70.
Tolkien, John Ronald Reuel: 57.

tolower : 2, 71, 72.
too easy : 172, 174.
TOSS: 13, 14, 122, 126.
toting : 63, 64, 74, 86, 88, 90, 93, 94, 99, 100,

101, 104, 107, 110, 111, 112, 113, 114, 117,
122, 132, 134, 135, 139, 147, 149, 151, 172,
174, 181, 182, 186, 191, 195.

toupper : 2, 79.
transitive : 76, 78, 79, 82, 92, 93.
travel size : 20, 62.
travels : 20, 23, 62.
TREADS: 11, 69, 88.
TREADS_: 11, 69.
TRIDENT: 11, 12, 70, 134.
TROLL: 11, 12, 55, 57, 69, 98, 117, 119, 122, 124,

125, 126, 129, 139, 151, 152, 179.
troll : 18, 55, 57, 62, 146.
TROLL_: 11, 69, 119, 124, 152, 179.
TROLL2: 11, 69, 119, 124, 151, 152, 179.
TROLL2_: 11, 69, 119, 124, 152, 179.
true : 2, 66, 71, 95, 160, 180, 181, 184.
try motion : 78, 91.
try move : 75, 76, 78, 86.
tt : 66, 88.
turns : 76, 77, 198.
twist : 39.
twist hint : 20, 36, 56, 194.
U: 9.
upnout : 18, 61.
UPSTREAM: 9, 10, 26, 28, 29, 42.
valley : 18, 23, 26, 27, 28, 91.
VALLEY: 9, 10, 27.
VASE: 11, 12, 70, 101, 110, 111, 117, 121.
verb : 76, 77, 78, 79, 82, 128, 129, 131, 132,

134, 148.
view : 18, 57, 70.
VIEW: 9, 10, 57.
visits : 20, 86, 88, 141.
W: 9.
w: 6, 8.
WAKE: 13, 14, 101.
WALL: 9, 10, 41.
warm : 18, 57.
warned : 184, 185.
was dark : 84, 85, 86, 102, 141.
WATER: 11, 12, 70, 90, 100, 104, 106, 107, 108,

109, 110, 112, 115, 181, 191.
water here : 74, 83, 90, 100, 106.
Watson, Richard Allan: 45.
WAVE: 13, 14, 99, 139, 148.
west : 18, 40, 70.
west count : 80, 81.

106 INDEX ADVENT §201

wet : 18, 42.
wfiss : 18, 34, 35, 61, 69, 70, 99, 159.
wide : 18, 53, 54.
windoe : 18, 41, 49, 69.
window : 18, 48, 49, 69.
witt : 18, 44, 197.
witt hint : 20, 44, 194.
wlong : 18, 38, 39, 40.
wmist : 18, 34, 35, 36, 38, 61.
WOODS: 9, 10, 23, 24, 26, 27, 28, 29.
woods : 18, 27.
Woods, Donald Roy: 1, 10, 49, 55, 196.
word type : 5, 6, 8, 78, 97.
wordtype: 5, 7, 77.
word1 : 72, 73, 76, 78, 79, 80, 83, 97, 105, 128, 136.
word2 : 72, 73, 76, 78, 79, 82, 83, 97, 105.
wpit : 18, 46, 47, 61, 70.
w2pit : 18, 46, 52, 61, 69.
XYZZY: 9, 10, 25, 31, 97, 148.
y: 71.
yes : 71, 95, 189, 194.
y2 : 18, 25, 41, 51, 157, 159, 178.
Y2: 9, 10, 32, 41.

ADVENT NAMES OF THE SECTIONS 107

〈Additional local registers 22, 68, 144 〉 Used in section 2.

〈Advance dflag to 2 162 〉 Used in section 161.

〈Apologize for inability to backtrack 145 〉 Used in section 143.

〈Block the troll bridge and stay put 152 〉 Used in section 151.

〈Build the object tables 69, 70 〉 Used in section 200.

〈Build the travel table 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,

50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62 〉 Used in section 200.

〈Build the vocabulary 10, 12, 14, 16 〉 Used in section 200.

〈Chase the troll away 119 〉 Used in section 117.

〈Check for interference with the proposed move to newloc 153 〉 Used in section 75.

〈Check if a hint applies, and give it if requested 195 〉 Used in section 76.

〈Check special cases for dropping a liquid 115 〉 Used in section 117.

〈Check special cases for dropping the bird 120 〉 Used in section 117.

〈Check special cases for dropping the vase 121 〉 Used in section 117.

〈Check special cases for taking a bird 114 〉 Used in section 112.

〈Check special cases for taking a liquid 113 〉 Used in section 112.

〈Check the clocks and the lamp 178 〉 Used in section 76.

〈Check the lamp 184 〉 Used in section 178.

〈Choose newloc via plover-alcove passage 149 〉 Used in section 146.

〈Close the cave 181 〉 Used in section 178.

〈Cross troll bridge if possible 151 〉 Used in section 146.

〈Deal with death and resurrection 188, 189, 191, 192 〉 Used in section 2.

〈Describe the objects at this location 88 〉 Used in section 86.

〈Determine the next location, newloc 146 〉 Cited in section 19. Used in section 75.

〈Dispatch the poor bird 127 〉 Used in section 125.

〈Drop the emerald during plover transportation 150 〉 Used in section 146.

〈Extinguish the lamp 187 〉 Used in section 184.

〈Fun stuff for dragon 128 〉 Used in section 125.

〈Get user input; goto try move if motion is requested 76 〉 Used in section 75.

〈Give advice about going WEST 80 〉 Used in section 76.

〈Give optional plugh hint 157 〉 Used in section 86.

〈Global variables 7, 15, 17, 20, 21, 63, 73, 74, 77, 81, 84, 87, 89, 96, 103, 137, 142, 155, 159, 165, 168, 171, 177, 185, 190,

193, 196, 199 〉 Used in section 2.

〈Handle additional special cases of input 83, 105 〉 Used in section 76.

〈Handle cases of intransitive verbs and continue 92, 93, 94, 95, 136 〉 Used in section 79.

〈Handle cases of transitive verbs and continue 97, 98, 99, 100, 101, 102, 106, 107, 110, 112, 117, 122, 125, 129, 130,

135 〉 Used in section 79.

〈Handle special cases of input 82, 138 〉 Used in section 76.

〈Handle special motion words 140 〉 Used in section 75.

〈 If the condition of instruction q isn’t satisfied, advance q 147 〉 Used in section 146.

〈 If GRATE is actually a motion word, move to it 91 〉 Used in section 90.

〈 Initialize all tables 200 〉 Used in section 2.

〈 Initialize the random number generator 156 〉 Used in section 200.

〈Let the pirate be spotted 175 〉 Used in section 172.

〈Look at word1 and exit to the right place if it completes a command 78 〉 Used in section 76.

〈Macros for subroutine prototypes 3 〉 Used in section 2.

〈Make a table of all potential exits, ploc [0] through ploc [i− 1] 166 〉 Used in section 164.

〈Make dwarf j follow 167 〉 Used in section 164.

〈Make special adjustments before looking at new input 85, 158, 169, 182 〉 Used in section 76.

〈Make sure obj is meaningful at the current location 90 〉 Used in section 78.

〈Make the pirate track you 172 〉 Used in section 167.

〈Make the threatening dwarves attack 170 〉 Used in section 164.

108 NAMES OF THE SECTIONS ADVENT

〈Move dwarves and the pirate 164 〉 Used in section 161.

〈Open chain 133 〉 Used in section 132.

〈Open/close chain 132 〉 Used in section 131.

〈Open/close clam/oyster 134 〉 Used in section 130.

〈Open/close grate/chain 131 〉 Used in section 130.

〈Panic at closing time 180 〉 Used in sections 131 and 153.

〈Perform an action in the current place 79 〉 Used in section 75.

〈Possibly move dwarves and the pirate 161 〉 Used in section 75.

〈Pour water or oil on the door 109 〉 Used in section 107.

〈Print the score and say adieu 198 〉 Used in section 2.

〈Proceed foobarically 139 〉 Used in section 136.

〈Put coins in the vending machine 118 〉 Used in section 117.

〈Repeat the long description and continue 141 〉 Used in section 140.

〈Replace the batteries 186 〉 Used in section 184.

〈Report on inapplicable motion and continue 148 〉 Used in section 146.

〈Report the current state 86 〉 Used in section 75.

〈See if there’s a unique object to attack 126 〉 Used in section 125.

〈Simulate an adventure, going to quit when finished 75 〉 Used in section 2.

〈Snarf a treasure for the troll 124 〉 Used in section 122.

〈Snatch all treasures that are snatchable here 174 〉 Used in section 173.

〈Stay in loc if a dwarf is blocking the way to newloc 176 〉 Used in section 153.

〈Subroutines 6, 8, 64, 65, 66, 71, 72, 154, 160, 194, 197 〉 Used in section 2.

〈Take booty and hide it in the chest 173 〉 Used in section 172.

〈Throw the axe at a dwarf 163 〉 Used in section 122.

〈Throw the axe at the bear 123 〉 Used in section 122.

〈Try to fill the vase 111 〉 Used in section 110.

〈Try to go back 143 〉 Used in section 140.

〈Try to water the plant 108 〉 Used in section 107.

〈Type definitions 5, 9, 11, 13, 18, 19 〉 Used in section 2.

〈Warn that the cave is closing 179 〉 Used in section 178.

〈Zap the lamp if the remaining treasures are too elusive 183 〉 Used in section 88.

ADVENT

Section Page
Introduction . 1 1
The vocabulary . 4 3
Cave data . 18 14
Cave connections . 21 16
Data structures for objects . 63 43
Object data . 69 46
Low-level input . 71 51
The main control loop . 74 53
Simple verbs . 92 60
Liquid assets . 104 64
The other actions . 116 67
Motions . 140 75
Random numbers . 154 80
Dwarf stuff . 159 81
Closing the cave . 177 88
Death and resurrection . 183 92
Scoring . 193 95
Launching the program . 200 99
Index . 201 100

	Introduction
	The vocabulary
	Cave data
	Cave connections
	Data structures for objects
	Object data
	Low-level input
	The main control loop
	Simple verbs
	Liquid assets
	The other actions
	Motions
	Random numbers
	Dwarf stuff
	Closing the cave
	Death and resurrection
	Scoring
	Launching the program
	Index
	Names of the sections
	Additional local registers
	Advance dflag to 2
	Apologize for inability to backtrack
	Block the troll bridge and stay put
	Build the object tables
	Build the travel table
	Build the vocabulary
	Chase the troll away
	Check for interference with the proposed move to newloc
	Check if a hint applies, and give it if requested
	Check special cases for dropping a liquid
	Check special cases for dropping the bird
	Check special cases for dropping the vase
	Check special cases for taking a bird
	Check special cases for taking a liquid
	Check the clocks and the lamp
	Check the lamp
	Choose newloc via plover-alcove passage
	Close the cave
	Cross troll bridge if possible
	Deal with death and resurrection
	Describe the objects at this location
	Determine the next location, newloc
	Dispatch the poor bird
	Drop the emerald during plover transportation
	Extinguish the lamp
	Fun stuff for dragon
	Get user input; goto try_move if motion is requested
	Give advice about going WEST
	Give optional plugh hint
	Global variables
	Handle additional special cases of input
	Handle cases of intransitive verbs and continue
	Handle cases of transitive verbs and continue
	Handle special cases of input
	Handle special motion words
	If the condition of instruction q isn't satisfied, advance q
	If GRATE is actually a motion word, move to it
	Initialize all tables
	Initialize the random number generator
	Let the pirate be spotted
	Look at word1 and exit to the right place if it completes a command
	Macros for subroutine prototypes
	Make a table of all potential exits, ploc[0] through ploc[i-1]
	Make dwarf j follow
	Make special adjustments before looking at new input
	Make sure obj is meaningful at the current location
	Make the pirate track you
	Make the threatening dwarves attack
	Move dwarves and the pirate
	Open chain
	Open/close chain
	Open/close clam/oyster
	Open/close grate/chain
	Panic at closing time
	Perform an action in the current place
	Possibly move dwarves and the pirate
	Pour water or oil on the door
	Print the score and say adieu
	Proceed foobarically
	Put coins in the vending machine
	Repeat the long description and continue
	Replace the batteries
	Report on inapplicable motion and continue
	Report the current state
	See if there's a unique object to attack
	Simulate an adventure, going to quit when finished
	Snarf a treasure for the troll
	Snatch all treasures that are snatchable here
	Stay in loc if a dwarf is blocking the way to newloc
	Subroutines
	Take booty and hide it in the chest
	Throw the axe at a dwarf
	Throw the axe at the bear
	Try to fill the vase
	Try to go back
	Try to water the plant
	Type definitions
	Warn that the cave is closing
	Zap the lamp if the remaining treasures are too elusive

