
§1 ACHAIN4 INTRO 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Intro. This program is a revision of ACHAIN2 (not ACHAIN3), which you should read first. After
I found an unpublished preprint by D. Bleichenbacher and A. Flammenkamp (1997) on the web, I realized
that several changes would speed that program up significantly.

The main changes here are: (i) Links are maintained so that it’s easy to skip past cases with large l[p].
(ii) When an odd number p is inserted into the chain at position j, we make sure that p ≤ min(b[j − 2] +
b[j − 1], b[j]). Previously the weaker test p ≤ b[j] was used. (iii) Whenever we find a good chain for n, we
update the upper bounds for larger numbers, in case this chain implies a better way to compute them than
was previously known. (The factor method, used previously, is just a special case of this technique.)

One change I intentionally did not make: When trying to make a[s] be equal to p + q for some previous
values p and q, Flammenkamp and Bleichenbacher check to see whether appropriate p and q are already
present; if so, they accept a[s] and move on. Very plausible. But they don’t implement a strong equivalence
test with canonical chains, as I do; and I have not been able to verify that their “move on” heuristic is
justifiable together with the strong cutoffs in my canonical approach, because of subtle ambiguities that
arise in special cases.

#define nmax 10000000 /∗ should be less than 224 on a 32-bit machine ∗/
#include <stdio.h>

#include <stdlib.h>

#include <time.h>

unsigned char l[nmax + 2];
int a[128], b[128];
unsigned int undo [128 ∗ 128];
int ptr ; /∗ this many items of the undo stack are in use ∗/
struct {

int lbp , ubp , lbq , ubq , r, ptrp , ptrq ;
} stack [128];
int tail [128], outdeg [128], outsum [128], limit [128];
FILE ∗infile , ∗outfile ;
int down [nmax]; /∗ a navigation aid discussed below ∗/
int link [nmax]; /∗ stack links when propagating upper bounds ∗/
int top ; /∗ top element of the stack (or 1 when empty) ∗/
int main (int argc , char ∗argv [])
{

register int i, j, n, p, q, r, s, ubp , ubq = 0, lbp , lbq , ptrp , ptrq ;
int lb , ub , timer = 0;

〈Process the command line 2 〉;
a[0] = b[0] = 1, a[1] = b[1] = 2; /∗ an addition chain always begins like this ∗/
〈 Initialize the l and down tables 5 〉;
for (n = 1; n < nmax ; n++) {
〈 Input the next lower bound, lb 4 〉;
〈Backtrack until l(n) is known 8 〉;
if (n % 1000 ≡ 0) {
j = clock ();
printf ("%d..%d done in %.5g minutes\n", n− 999, n,

(double)(j − timer)/(60 ∗ CLOCKS_PER_SEC));
timer = j;

}
done : 〈Update the down links 11 〉;
〈Output the value of l(n) 3 〉;

}
}

https://cs.stanford.edu/~knuth/programs.html

2 INTRO ACHAIN4 §2

2. 〈Process the command line 2 〉 ≡
if (argc 6= 3) {

fprintf (stderr , "Usage: %s infile outfile\n", argv [0]);
exit (−1);
}
infile = fopen (argv [1], "r");
if (¬infile) {

fprintf (stderr , "I couldn’t open ‘%s’ for reading!\n", argv [1]);
exit (−2);
}
outfile = fopen (argv [2], "w");
if (¬outfile) {

fprintf (stderr , "I couldn’t open ‘%s’ for writing!\n", argv [2]);
exit (−3);
}

This code is used in section 1.

3. 〈Output the value of l(n) 3 〉 ≡
fprintf (outfile , "%c", l[n] + ’ ’);
fflush (outfile); /∗ make sure the result is viewable immediately ∗/

This code is used in section 1.

4. At this point I compute the known lower bound blg nc+ dlg min(νn, 16)e.
(With a change file, I could make the program set l[n] = lb and goto done if the input value is ’ ’

or more. This change would amount to believing that the input file has true values, thereby essentially
restarting a computation that was only partly finished. Hmm, wait: Actually I should also use the factor
method to update upper bounds, before going to done , if l[n] has changed.)

〈 Input the next lower bound, lb 4 〉 ≡
for (q = n, i = −1, j = 0; q; q �= 1, i++) j += q & 1; /∗ now i = blg nc and j = νn ∗/
if (j > 16) j = 16;
for (j−−; j; j �= 1) i++;
lb = fgetc(infile)− ’ ’; /∗ fgetc will return a negative value after EOF ∗/
if (lb < i) lb = i;

This code is used in section 1.

§5 ACHAIN4 INTRO 3

5. Initially we want to fill the l table with fairly decent upper bounds. Here I use Theorem 4.6.3F, which
includes the binary method as a special case; namely, l(2A +xy) ≤ A+νx+νy−1, when A ≥ blg xc+blg yc.
Then I also apply the factor method.

The down table temporarily holds νn values here. But then, as explained later, we want down [n] = n− 1
initially.

〈 Initialize the l and down tables 5 〉 ≡
for (n = 2, down [1] = 1; n < nmax ; n++) down [n] = down [n� 1] + (n& 1), l[n] = 127;
for (i = 1, p = 0; i ∗ i < nmax ; i++, p = (i ≡ 1� (p+ 1) ? p+ 1 : p)) { /∗ p = bic ∗/

for (j = i, q = p; i ∗ j < nmax ; j++, q = (j ≡ 1� (q + 1) ? q + 1 : q)) { /∗ q = bjc ∗/
for (r = p+ q; (1� r) + i ∗ j < nmax ; r++)

if (l[(1� r) + i ∗ j] ≥ r + down [i] + down [j]) l[(1� r) + i ∗ j] = r + down [i] + down [j]− 1;
/∗ Hansen’s method ∗/

}
}
for (n = 1; n < nmax ; n++) down [n] = n− 1;
〈Apply the factor method 6 〉;

This code is used in section 1.

6. Whenever we learn a better upper bound, we might as well broadcast all of its consequences, using the
factor method. (The total number of times this happens for a particular number n is at most lg n, and the
time to propagate is proportional to nmax /n, so the total time for all these updates is at most O(log n)2

times nmax .)
A linked stack is used to handle these updates. An element p is on the stack if and only if link [p] 6= 0, if

and only l[p] has decreased since the last time we checked all of its multiples.

#define upbound (p, x)
if (l[p] > x) {
l[p] = x;
if (link [p] ≡ 0) link [p] = top , top = p;
}

〈Apply the factor method 6 〉 ≡
top = 1; /∗ start with empty stack ∗/
for (i = 4; i < nmax ; i++) {

upbound (i, l[i− 2] + 1);
upbound (i, l[i− 1] + 1);
}
for (i = 2; i ∗ i < nmax ; i++)

for (j = i; i ∗ j < nmax ; j++) upbound (i ∗ j, l[i] + l[j]);
while (top > 1) {
p = top , top = link [p], link [p] = 0;
upbound (p+ 1, l[p] + 1);
upbound (p+ 2, l[p] + 2);
for (i = 2; i ∗ p < nmax ; i++) upbound (i ∗ p, l[i] + l[p]);
}

This code is used in section 5.

4 INTRO ACHAIN4 §7

7. Later, whenever we’ve come up with an addition chain a[0], . . . , a[lb] that beats the known upper bound,
we use the factor method again to send out the good news. And we also might as well use an extension of
the factor method found in equation (4.3) in the Bleichenbacher/Flammenkamp paper.

At the beginning of this step, top = 1. We’ve allocated space for l[nmax] and l[nmax + 1] in order to
avoid making a special test here.

〈Update the upper bounds based on the chain found 7 〉 ≡
for (j = 1; j ∗ n < nmax ; j++) upbound (j ∗ n, l[j] + l[n]);
for (i = 0; i < lb ; i++)

for (j = 1; j ∗ n+ a[i] < nmax ; j++) upbound (j ∗ n+ a[i], l[j] + l[n] + 1); /∗ B and F’s method ∗/
while (top > 1) {
p = top , top = link [p], link [p] = 0;
upbound (p+ 1, l[p] + 1);
upbound (p+ 2, l[p] + 2);
for (i = 2; i ∗ p < nmax ; i++) upbound (i ∗ p, l[i] + l[p]);
}

This code is used in section 12.

§8 ACHAIN4 THE INTERESTING PART 5

8. The interesting part. Nontrivial changes begin to occur when we get into the guts of the backtrack-
ing structure carried over from the previous versions of this program, but the controlling loop at the outer
level remains intact.

〈Backtrack until l(n) is known 8 〉 ≡
ub = l[n], l[n] = lb ;
while (lb < ub) {

for (i = 0; i ≤ lb ; i++) outdeg [i] = outsum [i] = 0;
a[lb] = b[lb] = n;
for (i = 2; i < lb ; i++) a[i] = a[i− 1] + 1, b[i] = b[i− 1]� 1;
for (i = lb − 1; i ≥ 2; i−−) {

if ((a[i]� 1) < a[i+ 1]) a[i] = (a[i+ 1] + 1)� 1;
if (b[i] ≥ b[i+ 1]) b[i] = b[i+ 1]− 1;

}
〈Try to fix the rest of the chain; goto backtrackdone if it’s possible 12 〉;
l[n] = ++lb ;
}
backtrackdone :

This code is used in section 1.

9. One of the key operations we need is to increase p to the smallest element p′ > p that has l[p′] < s,
given that l[p] < s. Since l[p+ 1] ≤ l[p] + 1, we can do this quickly by first setting p← p+ 1; then, if l[p] = s,
we set p← down [p], where down [p] is the smallest p′ > p that has l[p′] < l[p].

The links down [p] can be prepared as we go, starting them off at∞ and updating them whenever we learn
a new value of l[n].

Instead of using infinite links, however, we can save space by temporarily letting down [p] = p′′ in such
cases, where p′′ is the largest element less than p whose down link is effectively infinite. These temporary
links tell us exactly what we need to know during the updating process. And we can distinguish them from
“real” down links by pretending that down [p] =∞ whenever down [p] ≤ p.
〈Given that l[p] < s, increase p to the next such element 9 〉 ≡
{
p++;
if (l[p] ≡ s) p = (down [p] > p ? down [p] : nmax);
}

This code is used in section 14.

10. 〈Given that l[p] ≥ s, increase p to the next element with l[p] < s 10 〉 ≡
do {

if (down [p] > p) p = down [p];
else {
p = nmax ; break;

}
} while (l[p] ≥ s);

This code is used in sections 13 and 14.

11. I can’t help exclaiming that this little algorithm is quite pretty.

〈Update the down links 11 〉 ≡
if (l[n] < l[n− 1]) {

for (p = down [n]; l[p] > l[n]; p = q) q = down [p], down [p] = n;
down [n] = p;
}

This code is used in section 1.

6 THE INTERESTING PART ACHAIN4 §12

12. We maintain a stack of subproblems, and a stack for undoing, as in ACHAIN2 and its predecessors.

〈Try to fix the rest of the chain; goto backtrackdone if it’s possible 12 〉 ≡
ptr = 0; /∗ clear the undo stack ∗/
for (r = s = lb ; s > 2; s−−) {

if (outdeg [s] ≡ 1) limit [s] = a[s]− tail [outsum [s]]; else limit [s] = a[s]− 1;
/∗ the max feasible p ∗/

if (limit [s] > b[s− 1]) limit [s] = b[s− 1];
〈Set p to its smallest feasible value, and q = a[s]− p 13 〉;
while (p ≤ limit [s]) {
〈Find bounds (lbp , ubp) and (lbq , ubq) on where p and q can be inserted; but go to failpq if they

can’t both be accommodated 17 〉;
ptrp = ptr ;
for (; ubp ≥ lbp ; ubp−−) {
〈Put p into the chain at location ubp ; goto failp if there’s a problem 19 〉;
if (p ≡ q) goto happiness ;
if (ubq ≥ ubp) ubq = ubp − 1;
ptrq = ptr ;
for (; ubq ≥ lbq ; ubq −−) {
〈Put q into the chain at location ubq ; goto failq if there’s a problem 21 〉;

happiness : 〈Put local variables on the stack and update outdegrees 15 〉;
goto onward ; /∗ now a[s] is covered; try to cover a[s− 1] ∗/

backup : s++;
if (s > lb) goto impossible ;
〈Restore local variables from the stack and downdate outdegrees 16 〉;
if (p ≡ q) goto failp ;

failq : while (ptr > ptrq) 〈Undo a change 18 〉;
} /∗ end loop on ubq ∗/

failp : while (ptr > ptrp) 〈Undo a change 18 〉;
} /∗ end loop on ubp ∗/

failpq : 〈Advance p to the next smallest feasible value, and set q = a[s]− p 14 〉;
} /∗ end loop on p ∗/
goto backup ;

onward : continue;
} /∗ end loop on s ∗/
〈Update the upper bounds based on the chain found 7 〉;
goto backtrackdone ;

impossible :

This code is used in section 8.

§13 ACHAIN4 THE INTERESTING PART 7

13. At this point we have a[k] = b[k] for all r ≤ k ≤ lb .

〈Set p to its smallest feasible value, and q = a[s]− p 13 〉 ≡
if (a[s] & 1) { /∗ necessarily p 6= q ∗/
unequal : if (outdeg [s− 1] ≡ 0) q = a[s]/3; else q = a[s]� 1;

if (q > b[s− 2]) q = b[s− 2];
p = a[s]− q;
if (l[p] ≥ s) {
〈Given that l[p] ≥ s, increase p to the next element with l[p] < s 10 〉;
q = a[s]− p;

}
} else {
p = q = a[s]� 1;
if (l[p] ≥ s) goto unequal ; /∗ a rare case like l[191] = l[382] ∗/
}
if (p > limit [s]) goto backup ;
for (; r > 2 ∧ a[r − 1] ≡ b[r − 1]; r−−) ;
if (p > b[r − 1]) { /∗ now r < s, since p ≤ b[s− 1] ∗/

while (p > a[r]) r++; /∗ this step keeps r < s, since a[s− 1] = b[s− 1] ∗/
p = a[r], q = a[s]− p;
} else if (q < p ∧ q > b[r − 2]) {

if (a[r] ≤ a[s]− b[r − 2]) p = a[r], q = b[s]− p;
else q = b[r − 2], p = a[s]− q;
}

This code is used in section 12.

8 THE INTERESTING PART ACHAIN4 §14

14. 〈Advance p to the next smallest feasible value, and set q = a[s]− p 14 〉 ≡
if (p ≡ q) {

if (outdeg [s− 1] ≡ 0) q = (a[s]/3) + 1; /∗ will be decreased momentarily ∗/
if (q > b[s− 2]) q = b[s− 2]; else q−−;
p = a[s]− q;
if (l[p] ≥ s) {
〈Given that l[p] ≥ s, increase p to the next element with l[p] < s 10 〉;
q = a[s]− p;

}
} else {
〈Given that l[p] < s, increase p to the next such element 9 〉;
q = a[s]− p;
}
if (q > 2) {

if (a[s− 1] ≡ b[s− 1]) { /∗ maybe p has to be present already ∗/
doublecheck : while (p < a[r] ∧ a[r − 1] ≡ b[r − 1]) r−−;

if (p > b[r − 1]) {
while (p > a[r]) r++;
p = a[r], q = a[s]− p; /∗ possibly r = s now ∗/

} else if (q > b[r − 2]) {
if (a[r] ≤ a[s]− b[r − 2]) p = a[r], q = b[s]− p;
else q = b[r − 2], p = a[s]− q;

}
}
if (ubq ≥ s) ubq = s− 1;
while (q ≥ a[ubq + 1]) ubq ++;
while (q < a[ubq]) ubq −−;
if (q > b[ubq]) {
q = b[ubq], p = a[s]− q;
if (a[s− 1] ≡ b[s− 1]) goto doublecheck ;
}

}
This code is used in section 12.

15. 〈Put local variables on the stack and update outdegrees 15 〉 ≡
tail [s] = q, stack [s].r = r;
outdeg [ubp]++, outsum [ubp] += s;
outdeg [ubq]++, outsum [ubq] += s;
stack [s].lbp = lbp , stack [s].ubp = ubp ;
stack [s].lbq = lbq , stack [s].ubq = ubq ;
stack [s].ptrp = ptrp , stack [s].ptrq = ptrq ;

This code is used in section 12.

16. 〈Restore local variables from the stack and downdate outdegrees 16 〉 ≡
ptrq = stack [s].ptrq , ptrp = stack [s].ptrp ;
lbq = stack [s].lbq , ubq = stack [s].ubq ;
lbp = stack [s].lbp , ubp = stack [s].ubp ;
outdeg [ubq]−−, outsum [ubq] −= s;
outdeg [ubp]−−, outsum [ubp] −= s;
q = tail [s], p = a[s]− q, r = stack [s].r;

This code is used in section 12.

§17 ACHAIN4 THE INTERESTING PART 9

17. After the test in this step is passed, we’ll have ubp > ubq and lbp > lbq .

〈Find bounds (lbp , ubp) and (lbq , ubq) on where p and q can be inserted; but go to failpq if they can’t both
be accommodated 17 〉 ≡

if (l[p] ≥ s) goto failpq ;
lbp = l[p];
while (b[lbp] < p) lbp ++;
if ((p& 1) ∧ p > b[lbp − 2] + b[lbp − 1]) {

if (++lbp ≥ s) goto failpq ;
}
if (a[lbp] > p) goto failpq ;
for (ubp = lbp ; a[ubp + 1] ≤ p; ubp ++) ;
if (ubp ≡ s− 1) lbp = ubp ;
if (p ≡ q) lbq = lbp , ubq = ubp ;
else {

lbq = l[q];
if (lbq ≥ ubp) goto failpq ;
while (b[lbq] < q) lbq ++;
if (a[lbq] < b[lbq]) {

if ((q & 1) ∧ q > b[lbq − 2] + b[lbq − 1]) lbq ++;
if (lbq ≥ ubp) goto failpq ;
if (a[lbq] > q) goto failpq ;
if (lbp ≤ lbq) lbp = lbq + 1;
while ((q � (lbp − lbq)) < p)

if (++lbp > ubp) goto failpq ;
}
for (ubq = lbq ; a[ubq + 1] ≤ q ∧ (q � (ubp − ubq − 1)) ≥ p; ubq ++) ;

}
This code is used in section 12.

18. The undoing mechanism is very simple: When changing a[j], we put (j � 24) + x on the undo stack,
where x was the former value. Similarly, when changing b[j], we stack the value (1� 31) + (j � 24) + x.

#define newa (j, y) undo [ptr ++] = (j � 24) + a[j], a[j] = y
#define newb(j, y) undo [ptr ++] = (1� 31) + (j � 24) + b[j], b[j] = y

〈Undo a change 18 〉 ≡
{
i = undo [−−ptr];
if (i ≥ 0) a[i� 24] = i& #ffffff;
else b[(i& #3fffffff)� 24] = i& #ffffff;
}

This code is used in section 12.

10 THE INTERESTING PART ACHAIN4 §19

19. At this point we know that a[ubp] ≤ p ≤ b[ubp].
〈Put p into the chain at location ubp ; goto failp if there’s a problem 19 〉 ≡

if (a[ubp] 6= p) {
newa (ubp , p);
for (j = ubp − 1; (a[j]� 1) < a[j + 1]; j−−) {
i = (a[j + 1] + 1)� 1;
if (i > b[j]) goto failp ;
newa (j, i);

}
for (j = ubp + 1; a[j] ≤ a[j − 1]; j++) {
i = a[j − 1] + 1;
if (i > b[j]) goto failp ;
newa (j, i);

}
}
if (b[ubp] 6= p) {

newb(ubp , p);
for (j = ubp − 1; b[j] ≥ b[j + 1]; j−−) {
i = b[j + 1]− 1;
if (i < a[j]) goto failp ;
newb(j, i);

}
for (j = ubp + 1; b[j] > b[j − 1]� 1; j++) {
i = b[j − 1]� 1;
if (i < a[j]) goto failp ;
newb(j, i);

}
}
〈Make forced moves if p has a special form 20 〉;

This code is used in section 12.

§20 ACHAIN4 THE INTERESTING PART 11

20. If, say, we’ve just set a[8] = b[8] = 132, special considerations apply, because the only addition chains
of length 8 for 132 are

1, 2, 4, 8, 16, 32, 64, 128, 132;

1, 2, 4, 8, 16, 32, 64, 68, 132;

1, 2, 4, 8, 16, 32, 64, 66, 132;

1, 2, 4, 8, 16, 32, 34, 66, 132;

1, 2, 4, 8, 16, 32, 33, 66, 132;

1, 2, 4, 8, 16, 17, 33, 66, 132.

The values of a[4] and b[4] must therefore be 16; and then, of course, we also must have a[3] = b[3] = 8, etc.
Similar reasoning applies whenever we set a[j] = b[j] = 2j + 2k for k ≤ j − 4.

Such cases may seem extremely special. But my hunch is that they are important, because efficient chains
need such values. When we try to prove that no efficient chain exists, we want to show that such values
can’t be present. Numbers with small l[p] are harder to rule out, so it should be helpful to penalize them.

〈Make forced moves if p has a special form 20 〉 ≡
i = p− (1� (ubp − 1));
if (i ∧ ((i& (i− 1)) ≡ 0) ∧ (i� 4) < p) {

for (j = ubp − 2; (i& 1) ≡ 0; i�= 1, j−−) ;
if (b[j] < (1� j)) goto failp ;
for (; a[j] < (1� j); j−−) newa (j, 1� j);
}

This code is used in section 19.

12 THE INTERESTING PART ACHAIN4 §21

21. At this point we had better not assume that a[ubq] ≤ q ≤ b[ubq], because p has just been inserted.
That insertion can mess up the bounds that we looked at when lbq and ubq were computed.

〈Put q into the chain at location ubq ; goto failq if there’s a problem 21 〉 ≡
if (a[ubq] 6= q) {

if (a[ubq] > q) goto failq ;
newa (ubq , q);
for (j = ubq − 1; (a[j]� 1) < a[j + 1]; j−−) {
i = (a[j + 1] + 1)� 1;
if (i > b[j]) goto failq ;
newa (j, i);

}
for (j = ubq + 1; a[j] ≤ a[j − 1]; j++) {
i = a[j − 1] + 1;
if (i > b[j]) goto failq ;
newa (j, i);

}
}
if (b[ubq] 6= q) {

if (b[ubq] < q) goto failq ;
newb(ubq , q);
for (j = ubq − 1; b[j] ≥ b[j + 1]; j−−) {
i = b[j + 1]− 1;
if (i < a[j]) goto failq ;
newb(j, i);

}
for (j = ubq + 1; b[j] > b[j − 1]� 1; j++) {
i = b[j − 1]� 1;
if (i < a[j]) goto failq ;
newb(j, i);

}
}
〈Make forced moves if q has a special form 22 〉;

This code is used in section 12.

22. 〈Make forced moves if q has a special form 22 〉 ≡
i = q − (1� (ubq − 1));
if (i ∧ ((i& (i− 1)) ≡ 0) ∧ (i� 4) < q) {

for (j = ubq − 2; (i& 1) ≡ 0; i�= 1, j−−) ;
if (b[j] < (1� j)) goto failq ;
for (; a[j] < (1� j); j−−) newa (j, 1� j);
}

This code is used in section 21.

§23 ACHAIN4 INDEX 13

23. Index.

a: 1.
argc : 1, 2.
argv : 1, 2.
b: 1.
backtrackdone : 8, 12.
backup : 12, 13.
Bleichenbacher, Daniel: 1, 7.
clock : 1.
CLOCKS_PER_SEC: 1.
done : 1, 4.
doublecheck : 14.
down : 1, 5, 9, 10, 11.
exit : 2.
failp : 12, 19, 20.
failpq : 12, 17.
failq : 12, 21, 22.
fflush : 3.
fgetc : 4.
Flammenkamp, Achim: 1, 7.
fopen : 2.
fprintf : 2, 3.
Hansen, Walter: 5.
happiness : 12.
i: 1.
impossible : 12.
infile : 1, 2, 4.
j: 1.
l: 1.
lb : 1, 4, 7, 8, 12, 13.
lbp : 1, 12, 15, 16, 17.
lbq : 1, 12, 15, 16, 17, 21.
limit : 1, 12, 13.
link : 1, 6, 7.
main : 1.
n: 1.
newa : 18, 19, 20, 21, 22.
newb : 18, 19, 21.
nmax : 1, 5, 6, 7, 9, 10.
onward : 12.
outdeg : 1, 8, 12, 13, 14, 15, 16.
outfile : 1, 2, 3.
outsum : 1, 8, 12, 15, 16.
p: 1.
printf : 1.
ptr : 1, 12, 18.
ptrp : 1, 12, 15, 16.
ptrq : 1, 12, 15, 16.
q: 1.
r: 1.
s: 1.
stack : 1, 15, 16.

stderr : 2.
tail : 1, 12, 15, 16.
timer : 1.
top : 1, 6, 7.
ub : 1, 8.
ubp : 1, 12, 15, 16, 17, 19, 20.
ubq : 1, 12, 14, 15, 16, 17, 21, 22.
undo : 1, 12, 18.
unequal : 13.
upbound : 6, 7.

14 NAMES OF THE SECTIONS ACHAIN4

〈Advance p to the next smallest feasible value, and set q = a[s]− p 14 〉 Used in section 12.

〈Apply the factor method 6 〉 Used in section 5.

〈Backtrack until l(n) is known 8 〉 Used in section 1.

〈Find bounds (lbp , ubp) and (lbq , ubq) on where p and q can be inserted; but go to failpq if they can’t both
be accommodated 17 〉 Used in section 12.

〈Given that l[p] < s, increase p to the next such element 9 〉 Used in section 14.

〈Given that l[p] ≥ s, increase p to the next element with l[p] < s 10 〉 Used in sections 13 and 14.

〈 Initialize the l and down tables 5 〉 Used in section 1.

〈 Input the next lower bound, lb 4 〉 Used in section 1.

〈Make forced moves if p has a special form 20 〉 Used in section 19.

〈Make forced moves if q has a special form 22 〉 Used in section 21.

〈Output the value of l(n) 3 〉 Used in section 1.

〈Process the command line 2 〉 Used in section 1.

〈Put local variables on the stack and update outdegrees 15 〉 Used in section 12.

〈Put p into the chain at location ubp ; goto failp if there’s a problem 19 〉 Used in section 12.

〈Put q into the chain at location ubq ; goto failq if there’s a problem 21 〉 Used in section 12.

〈Restore local variables from the stack and downdate outdegrees 16 〉 Used in section 12.

〈Set p to its smallest feasible value, and q = a[s]− p 13 〉 Used in section 12.

〈Try to fix the rest of the chain; goto backtrackdone if it’s possible 12 〉 Used in section 8.

〈Undo a change 18 〉 Used in section 12.

〈Update the upper bounds based on the chain found 7 〉 Used in section 12.

〈Update the down links 11 〉 Used in section 1.

ACHAIN4

Section Page
Intro . 1 1
The interesting part . 8 5
Index . 23 13

	Intro
	The interesting part
	Index
	Names of the sections
	Advance p to the next smallest feasible value, and set q=a[s]-p
	Apply the factor method
	Backtrack until l(n) is known
	Find bounds (lbp,ubp) and (lbq,ubq) on where p and q can be inserted; but go to failpq if they can't both be accommodated
	Given that l[p]<s, increase p to the next such element
	Given that l[p]>=s, increase p to the next element with l[p]<s
	Initialize the l and down tables
	Input the next lower bound, lb
	Make forced moves if p has a special form
	Make forced moves if q has a special form
	Output the value of l(n)
	Process the command line
	Put local variables on the stack and update outdegrees
	Put p into the chain at location ubp; goto failp if there's a problem
	Put q into the chain at location ubq; goto failq if there's a problem
	Restore local variables from the stack and downdate outdegrees
	Set p to its smallest feasible value, and q=a[s]-p
	Try to fix the rest of the chain; goto backtrackdone if it's possible
	Undo a change
	Update the upper bounds based on the chain found
	Update the down links

