
§1 ACHAIN3 INTRO 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Intro. This program is a sequel to ACHAIN2, which you should read first. I’m experimenting with a
brand-new way to find shortest addition chains. Maybe it will be good, maybe not; but in either case the
results should be interesting (at least to me). At the end of this program I shall discuss the observed running
time.

The new idea is to generalize the problem to lk(n), the minimum length of an addition chain for which
aj = 2j for 0 ≤ j ≤ k, assuming that n ≥ 2k. Clearly l0(n) = l1(n) = l(n) is the ordinary function,
and we have lk(n) ≤ lk+1(n). Furthermore the dual of the binary method (exercise 4.6.3–34) shows that
lk(n) ≤ blg nc + νn − 1. A slightly less obvious fact is the inequality lk+1(2n) ≤ lk(n) + 1; because if 1, 2,
. . . , 2k, ak+1, . . . , n is an addition chain, so is 1, 2, . . . , 2k, 2k+1, 2ak+1, . . . , 2n.

When I first thought of defining lk(n), I conjectured that lk+1(n) ≤ lk(n) + 1; but I’m tending to believe
this less and less, the more I think about it. If it fails, we would have lk+1(n) > lk+1(2n), by the previous
inequality; but addition chains are full of surprises.

[Indeed, Neill Clift found the counterexample l7(142025) = 20, l8(142025) = 22 in 2022!]
Two parameters are given on the given line. If they are foo and bar, this program reads from files foo−1,

foo−2, etc., and writes to files bar−1, bar−2, etc., with bytes of the kth file giving values of fk(n) for n = 2k,
2k + 1, 2k + 2, etc. An input file that doesn’t exist, or that is too short to contain information about the
number n being worked on, is simply disregarded; but if data is present in an input file, it is believed to be
true without further checking.

#define nmax (1� 20) /∗ should be less than 224 on a 32-bit machine ∗/
#include <stdio.h>

#include <stdlib.h>

#include <time.h>

char l[20][nmax];
int a[128], b[128];
unsigned int undo [128 ∗ 128];
int ptr ; /∗ this many items of the undo stack are in use ∗/
struct {

int lbp , lbq , ubq , r, ptrp , ptrq ;
} stack [128];
int tail [128], outdeg [128], outsum [128], limit [128];
FILE ∗infile [64], ∗outfile [64];
char buf [100];

int main (int argc , char ∗argv [])
{

register int i, j, n, p, q, r, s, ubq , lbp , lbq , ptrp , ptrq ;
int lg2n , kk , lb , ub , timer = 0;

〈Process the command line 2 〉;
a[0] = b[0] = 1, a[1] = b[1] = 2; /∗ an addition chain always begins like this ∗/
for (n = 2; n < nmax ; n++) {
〈Determine blg nc and the binary upper bound 5 〉;
for (kk = lg2n ; kk ; kk −−) {
〈Try to input lk(n); goto done if successful 4 〉;
〈Backtrack until lk(n) is known 6 〉;

done : 〈Output the value of lk(n) 3 〉;
}
if (n % 1000 ≡ 0) {
j = clock ();
printf ("%d..%d done in %.5g minutes\n", n− 999, n,

(double)(j − timer)/(60 ∗ CLOCKS_PER_SEC));

https://cs.stanford.edu/~knuth/programs.html

2 INTRO ACHAIN3 §1

timer = j;
}

}
}

2. 〈Process the command line 2 〉 ≡
if (argc 6= 3) {

fprintf (stderr , "Usage: %s foo bar\n", argv [0]);
exit (−1);
}

This code is used in section 1.

3. 〈Output the value of lk(n) 3 〉 ≡
if (¬outfile [kk]) {

sprintf (buf , "%s−%d", argv [2], kk);
outfile [kk] = fopen (buf , "w");
if (¬outfile [kk]) {

fprintf (stderr , "Can’t open file ‘%s’ for writing!\n", buf);
exit (−2);

}
}
fprintf (outfile [kk], "%c", l[kk][n] + ’ ’);
fflush (outfile [kk]); /∗ make sure the result is viewable immediately ∗/

This code is used in section 1.

4. Note that the input file for l1(n) starts with n = 2, not n = 1 as in the previous programs.

〈Try to input lk(n); goto done if successful 4 〉 ≡
if (¬infile [kk]) {

sprintf (buf , "%s−%d", argv [1], kk);
infile [kk] = fopen (buf , "r");
if (¬infile [kk]) infile [kk] = (FILE ∗) 1;
}
if (infile [kk] 6= (FILE ∗) 1) {
l[kk][n] = fgetc(infile [kk])− ’ ’;
if (l[kk][n] ≤ 0) infile [kk] = (FILE ∗) 1; /∗ shut down input when something fails ∗/
goto done ; /∗ accept the input value unquestioningly ∗/
}

This code is used in section 1.

5. 〈Determine blg nc and the binary upper bound 5 〉 ≡
for (q = n, i = −1, j = 0; q; q �= 1, i++) j += q & 1;
lg2n = i, ub = i+ j − 1;

This code is used in section 1.

§6 ACHAIN3 THE INTERESTING PART 3

6. The interesting part. The canonical-chain reduction of ACHAIN2 works for lk(n) as well as for l(n),
because the first k steps of an lk chain are always reduced in the digraph. So I’ve taken it over here without
change.

Well, there is one change: In the former method, I started with a lower bound and worked upward until
achieving success; now I’m going to start at an upper-bound-less-1 and continue until failing (as in ACHAIN0).
This switch causes only minor modifications, in spite of what I believed when I wrote ACHAIN1.

At the top level, when k = blg nc, there’s nothing to do, because ub clearly contains the optimal value.
For smaller values of k, we start at lk+1(n)− 1, and we also set b[k+ 1]← 2k+1−, because we know that the
value 2k+1 has been ruled out.

〈Backtrack until lk(n) is known 6 〉 ≡
loop : l[kk][n] = ub ;

if (kk ≡ lg2n) goto done ;
lb = ub − 1; /∗ lb isn’t really a lower bound, it’s just a holdover from ACHAIN2 ∗/
if (lb ≤ kk + 1) goto done ;
for (i = 0; i ≤ lb ; i++) outdeg [i] = outsum [i] = 0;
a[lb] = b[lb] = n;
for (i = 2; i ≤ kk ; i++) a[i] = b[i] = 1� i;
a[i] = a[kk] + 1, b[i] = (1� i)− 1;
for (i++; i < lb ; i++) a[i] = a[i− 1] + 1, b[i] = b[i− 1]� 1;
for (i = lb − 1; i > kk ; i−−) {

if ((a[i]� 1) < a[i+ 1]) a[i] = (a[i+ 1] + 1)� 1;
if (b[i] ≥ b[i+ 1]) b[i] = b[i+ 1]− 1;
}
if (a[lb − 1] > b[lb − 1]) goto done ;
〈Try to fix the rest of the chain; goto done if it’s impossible 7 〉;
ub = lb ;
goto loop ;

This code is used in section 1.

4 THE INTERESTING PART ACHAIN3 §7

7. The only change to this algorithm for ACHAIN2 occurs when we happen to encounter an empty slot
(namely when outdeg [s] ≡ 0 and s isn’t the top level). Then we simply reject the current solution. Reason:
If it could be completed with the empty slot, that’s great; but we’ll discover the fact later. Meanwhile there
certainly are canonical solutions with all slots nonempty, and they should be easy to find.

〈Try to fix the rest of the chain; goto done if it’s impossible 7 〉 ≡
ptr = 0; /∗ clear the undo stack ∗/
for (r = s = lb ; s > kk ; s−−) {

if (outdeg [s] ≡ 0 ∧ s < lb) goto backup ;
if (outdeg [s] ≡ 1) limit [s] = tail [outsum [s]]; else limit [s] = 1;
for (; r > 1 ∧ a[r − 1] ≡ b[r − 1]; r−−) ;
if (outdeg [s− 1] ≡ 0 ∧ (a[s] & 1)) q = a[s]/3; else q = a[s]� 1;
for (p = a[s]− q; p ≤ b[s− 1];) {

if (p > b[r − 1]) {
while (p > a[r]) r++; /∗ this step keeps r < s ∗/
p = a[r], q = a[s]− p, r++;

}
if (q < limit [s]) goto backup ;
〈Find bounds (lbp , ubq) and (lbq , ubq) on where p and q can be inserted; but go to failpq if they

can’t both be accommodated 10 〉;
ptrp = ptr ;
for (; ubq ≥ lbp ; ubq −−) {
〈Put p into the chain at location ubq ; goto failp if there’s a problem 12 〉;
if (p ≡ q) goto happiness ;
if (ubq ≥ ubq) ubq = ubq − 1;
ptrq = ptr ;
for (; ubq ≥ lbq ; ubq −−) {
〈Put q into the chain at location ubq ; goto failq if there’s a problem 14 〉;

happiness : 〈Put local variables on the stack and update outdegrees 8 〉;
goto onward ; /∗ now a[s] is covered; try to fill in a[s− 1] ∗/

backup : s++;
if (s > lb) goto done ;
〈Restore local variables from the stack and downdate outdegrees 9 〉;
if (p ≡ q) goto failp ;

failq : while (ptr > ptrq) 〈Undo a change 11 〉;
}

failp : while (ptr > ptrp) 〈Undo a change 11 〉;
}

failpq : if (p ≡ q) {
if (outdeg [s− 1] ≡ 0) q = a[s]/3 + 1; /∗ will be decreased momentarily ∗/
if (q > b[s− 2]) q = b[s− 2];
else q−−;
p = a[s]− q;

} else p++, q−−;
}
goto backup ;

onward : continue;
}
possible :

This code is used in section 6.

§8 ACHAIN3 THE INTERESTING PART 5

8. 〈Put local variables on the stack and update outdegrees 8 〉 ≡
tail [s] = q, stack [s].r = r;
outdeg [ubq]++, outsum [ubq] += s;
outdeg [ubq]++, outsum [ubq] += s;
stack [s].lbp = lbp , stack [s].ubq = ubq ;
stack [s].lbq = lbq , stack [s].ubq = ubq ;
stack [s].ptrp = ptrp , stack [s].ptrq = ptrq ;

This code is used in section 7.

9. 〈Restore local variables from the stack and downdate outdegrees 9 〉 ≡
ptrq = stack [s].ptrq , ptrp = stack [s].ptrp ;
lbq = stack [s].lbq , ubq = stack [s].ubq ;
lbp = stack [s].lbp , ubq = stack [s].ubq ;
outdeg [ubq]−−, outsum [ubq] −= s;
outdeg [ubq]−−, outsum [ubq] −= s;
q = tail [s], p = a[s]− q, r = stack [s].r;

This code is used in section 7.

10. After the test in this step is passed, we’ll have ubq > ubq and lbp > lbq .

〈Find bounds (lbp , ubq) and (lbq , ubq) on where p and q can be inserted; but go to failpq if they can’t both
be accommodated 10 〉 ≡

lbp = l[kk][p];
if (lbp ≥ lb) goto failpq ;
while (b[lbp] < p) lbp ++;
if (a[lbp] > p) goto failpq ;
for (ubq = lbp ; a[ubq + 1] ≤ p; ubq ++) ;
if (ubq ≡ s− 1) lbp = ubq ;
if (p ≡ q) lbq = lbp , ubq = ubq ;
else {

lbq = l[kk][q];
if (lbq ≥ ubq) goto failpq ;
while (b[lbq] < q) lbq ++;
if (lbq ≥ ubq) goto failpq ;
if (a[lbq] > q) goto failpq ;
for (ubq = lbq ; a[ubq + 1] ≤ q ∧ ubq + 1 < ubq ; ubq ++) ;
if (lbp ≡ lbq) lbp ++;
}

This code is used in section 7.

11. The undoing mechanism is very simple: When changing a[j], we put (j � 24) + x on the undo stack,
where x was the former value. Similarly, when changing b[j], we stack the value (1� 31) + (j � 24) + x.

#define newa (j, y) undo [ptr ++] = (j � 24) + a[j], a[j] = y
#define newb(j, y) undo [ptr ++] = (1� 31) + (j � 24) + b[j], b[j] = y

〈Undo a change 11 〉 ≡
{
i = undo [−−ptr];
if (i ≥ 0) a[i� 24] = i& #ffffff;
else b[(i& #3fffffff)� 24] = i& #ffffff;
}

This code is used in section 7.

6 THE INTERESTING PART ACHAIN3 §12

12. At this point we know that a[ubq] ≤ p ≤ b[ubq].
〈Put p into the chain at location ubq ; goto failp if there’s a problem 12 〉 ≡

if (a[ubq] 6= p) {
newa (ubq , p);
for (j = ubq − 1; (a[j]� 1) < a[j + 1]; j−−) {
i = (a[j + 1] + 1)� 1;
if (i > b[j]) goto failp ;
newa (j, i);

}
for (j = ubq + 1; a[j] ≤ a[j − 1]; j++) {
i = a[j − 1] + 1;
if (i > b[j]) goto failp ;
newa (j, i);

}
}
if (b[ubq] 6= p) {

newb(ubq , p);
for (j = ubq − 1; b[j] ≥ b[j + 1]; j−−) {
i = b[j + 1]− 1;
if (i < a[j]) goto failp ;
newb(j, i);

}
for (j = ubq + 1; b[j] > b[j − 1]� 1; j++) {
i = b[j − 1]� 1;
if (i < a[j]) goto failp ;
newb(j, i);

}
}
〈Make forced moves if p has a special form 13 〉;

This code is used in section 7.

§13 ACHAIN3 THE INTERESTING PART 7

13. If, say, we’ve just set a[8] = b[8] = 132, special considerations apply, because the only addition chains
of length 8 for 132 are

1, 2, 4, 8, 16, 32, 64, 128, 132;

1, 2, 4, 8, 16, 32, 64, 68, 132;

1, 2, 4, 8, 16, 32, 64, 66, 132;

1, 2, 4, 8, 16, 32, 34, 66, 132;

1, 2, 4, 8, 16, 32, 33, 66, 132;

1, 2, 4, 8, 16, 17, 33, 66, 132.

The values of a[4] and b[4] must therefore be 16; and then, of course, we also must have a[3] = b[3] = 8, etc.
Similar reasoning applies whenever we set a[j] = b[j] = 2j + 2k for k ≤ j − 4.

Such cases may seem extremely special. But they are especially useful in ruling out cases that have no
good lk(n).

〈Make forced moves if p has a special form 13 〉 ≡
i = p− (1� (ubq − 1));
if (i ∧ ((i& (i− 1)) ≡ 0) ∧ (i� 4) < p) {

for (j = ubq − 2; (i& 1) ≡ 0; i�= 1, j−−) ;
if (b[j] < (1� j)) goto failp ;
for (; a[j] < (1� j); j−−) newa (j, 1� j);
}

This code is used in section 12.

8 THE INTERESTING PART ACHAIN3 §14

14. At this point we had better not assume that a[ubq] ≤ q ≤ b[ubq], because p has just been inserted.
That insertion can mess up the bounds that we looked at when lbq and ubq were computed.

〈Put q into the chain at location ubq ; goto failq if there’s a problem 14 〉 ≡
if (a[ubq] 6= q) {

if (a[ubq] > q) goto failq ;
newa (ubq , q);
for (j = ubq − 1; (a[j]� 1) < a[j + 1]; j−−) {
i = (a[j + 1] + 1)� 1;
if (i > b[j]) goto failq ;
newa (j, i);

}
for (j = ubq + 1; a[j] ≤ a[j − 1]; j++) {
i = a[j − 1] + 1;
if (i > b[j]) goto failq ;
newa (j, i);

}
}
if (b[ubq] 6= q) {

if (b[ubq] < q) goto failq ;
newb(ubq , q);
for (j = ubq − 1; b[j] ≥ b[j + 1]; j−−) {
i = b[j + 1]− 1;
if (i < a[j]) goto failq ;
newb(j, i);

}
for (j = ubq + 1; b[j] > b[j − 1]� 1; j++) {
i = b[j − 1]� 1;
if (i < a[j]) goto failq ;
newb(j, i);

}
}
〈Make forced moves if q has a special form 15 〉;

This code is used in section 7.

15. 〈Make forced moves if q has a special form 15 〉 ≡
i = q − (1� (ubq − 1));
if (i ∧ ((i& (i− 1)) ≡ 0) ∧ (i� 4) < q) {

for (j = ubq − 2; (i& 1) ≡ 0; i�= 1, j−−) ;
if (b[j] < (1� j)) goto failq ;
for (; a[j] < (1� j); j−−) newa (j, 1� j);
}

This code is used in section 14.

16. The bottom line: Alas, this method turns out to be by far the slowest of all. But maybe somebody
will find a use for it? The most interesting thing I noticed is that l1(n) = l2(n) for 4 ≤ n < 14759; in other
words, when n is small there’s always a way to get by without using ‘3’ in the chain. But all four addition
chains of length 17 for n = 14759 start with 1, 2, 3. For example, one of them is 1, 2, 3, 5, 10, 13, 23, 46,
92, 184, 368, 736, 1472, 2944, 2957, 5901, 8858, 14759.

(I learned subsequently that Schönhage had conjectured l1(n) = l2(n) in 1975. Moreover, Bleichenbacher
and Flammenkamp mentioned the first three counterexamples in an unpublished preprint of 1997. In fact,
the counterexample n = 38587 had actually been found already by Tsai and Chin in 1992 [Proc. Nat. Sci.
Council A16 (Taiwan: 1992), 506–514].)

§17 ACHAIN3 INDEX 9

17. Index.

a: 1.
argc : 1, 2.
argv : 1, 2, 3, 4.
b: 1.
backup : 7.
buf : 1, 3, 4.
clock : 1.
CLOCKS_PER_SEC: 1.
done : 1, 4, 6, 7.
exit : 2, 3.
failp : 7, 12, 13.
failpq : 7, 10.
failq : 7, 14, 15.
fflush : 3.
fgetc : 4.
fopen : 3, 4.
fprintf : 2, 3.
happiness : 7.
i: 1.
infile : 1, 4.
j: 1.
kk : 1, 3, 4, 6, 7, 10.
l: 1.
lb : 1, 6, 7, 10.
lbp : 1, 7, 8, 9, 10.
lbq : 1, 7, 8, 9, 10, 14.
lg2n : 1, 5, 6.
limit : 1, 7.
loop : 6.
main : 1.
n: 1.
newa : 11, 12, 13, 14, 15.
newb : 11, 12, 14.
nmax : 1.
onward : 7.
outdeg : 1, 6, 7, 8, 9.
outfile : 1, 3.
outsum : 1, 6, 7, 8, 9.
p: 1.
possible : 7.
printf : 1.
ptr : 1, 7, 11.
ptrp : 1, 7, 8, 9.
ptrq : 1, 7, 8, 9.
q: 1.
r: 1.
s: 1.
sprintf : 3, 4.
stack : 1, 8, 9.
stderr : 2, 3.
tail : 1, 7, 8, 9.

timer : 1.
ub : 1, 5, 6.
ubq : 1, 7, 8, 9, 10, 12, 13, 14, 15.
undo : 1, 7, 11.

10 NAMES OF THE SECTIONS ACHAIN3

〈Backtrack until lk(n) is known 6 〉 Used in section 1.

〈Determine blg nc and the binary upper bound 5 〉 Used in section 1.

〈Find bounds (lbp , ubq) and (lbq , ubq) on where p and q can be inserted; but go to failpq if they can’t both
be accommodated 10 〉 Used in section 7.

〈Make forced moves if p has a special form 13 〉 Used in section 12.

〈Make forced moves if q has a special form 15 〉 Used in section 14.

〈Output the value of lk(n) 3 〉 Used in section 1.

〈Process the command line 2 〉 Used in section 1.

〈Put local variables on the stack and update outdegrees 8 〉 Used in section 7.

〈Put p into the chain at location ubq ; goto failp if there’s a problem 12 〉 Used in section 7.

〈Put q into the chain at location ubq ; goto failq if there’s a problem 14 〉 Used in section 7.

〈Restore local variables from the stack and downdate outdegrees 9 〉 Used in section 7.

〈Try to fix the rest of the chain; goto done if it’s impossible 7 〉 Used in section 6.

〈Try to input lk(n); goto done if successful 4 〉 Used in section 1.

〈Undo a change 11 〉 Used in section 7.

ACHAIN3

Section Page
Intro . 1 1
The interesting part . 6 3
Index . 17 9

	Intro
	The interesting part
	Index
	Names of the sections
	Backtrack until l_k(n) is known
	Determine n and the binary upper bound
	Find bounds (lbp,ubq) and (lbq,ubq) on where p and q can be inserted; but go to failpq if they can't both be accommodated
	Make forced moves if p has a special form
	Make forced moves if q has a special form
	Output the value of l_k(n)
	Process the command line
	Put local variables on the stack and update outdegrees
	Put p into the chain at location ubq; goto failp if there's a problem
	Put q into the chain at location ubq; goto failq if there's a problem
	Restore local variables from the stack and downdate outdegrees
	Try to fix the rest of the chain; goto done if it's impossible
	Try to input l_k(n); goto done if successful
	Undo a change

