
§1 ACHAIN2 INTRO 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Intro. This program is a revision of ACHAIN1, which you should read first. I’m thinking that a few
changes will speed that program up, but as usual the proof of the pudding is in the eating.

The main changes here are: (i) If a[j] = b[j] = 2j + 2k, where k < j − 3, one can prove that a[j − k − 2]
and b[j − k − 2] must both be 2j−k−2. This additional constraint makes more chain values “exist” at early
stages. (ii) Every addition chain corresponds to a directed graph, and many different addition chains can
correspond to the same “reduced” digraph, as explained at the end of Section 4.6.3. Therefore I’ve worked
out a scheme by which only one chain of each equivalence class is explored.

These changes, and the various changes that distinguish ACHAIN1 from ACHAIN0, are fairly independent.
If I had time, I could therefore experiment with various subsets, in order to see which of them are really
worth the effort. Who knows, maybe some of them actually cause a slowdown, taken individually.

#define nmax 10000000 /∗ should be less than 224 on a 32-bit machine ∗/
#include <stdio.h>

#include <stdlib.h>

#include <time.h>

char l[nmax];
int a[128], b[128];
unsigned int undo [128 ∗ 128];
int ptr ; /∗ this many items of the undo stack are in use ∗/
struct {

int lbp , ubp , lbq , ubq , r, ptrp , ptrq ;
} stack [128];
int tail [128], outdeg [128], outsum [128], limit [128];
FILE ∗infile , ∗outfile ;
int prime [1000]; /∗ 1000 primes will take us past 60 million ∗/
int pr ; /∗ the number of primes known so far ∗/
char x[64]; /∗ exponents of the binary representation of n, less 1 ∗/
int main (int argc , char ∗argv [])
{

register int i, j, n, p, q, r, s, ubp , ubq , lbp , lbq , ptrp , ptrq ;
int lb , ub , timer = 0;

〈Process the command line 2 〉;
prime [0] = 2, pr = 1;
a[0] = b[0] = 1, a[1] = b[1] = 2; /∗ an addition chain always begins like this ∗/
for (n = 1; n < nmax ; n++) {
〈 Input the next lower bound, lb 4 〉;
〈Find an upper bound; or in simple cases, set l(n) and goto done 5 〉;
〈Backtrack until l(n) is known 7 〉;

done : 〈Output the value of l(n) 3 〉;
if (n % 1000 ≡ 0) {
j = clock ();
printf ("%d..%d done in %.5g minutes\n", n− 999, n,

(double)(j − timer)/(60 ∗ CLOCKS_PER_SEC));
timer = j;

}
}
}

https://cs.stanford.edu/~knuth/programs.html

2 INTRO ACHAIN2 §2

2. 〈Process the command line 2 〉 ≡
if (argc 6= 3) {

fprintf (stderr , "Usage: %s infile outfile\n", argv [0]);
exit (−1);
}
infile = fopen (argv [1], "r");
if (¬infile) {

fprintf (stderr , "I couldn’t open ‘%s’ for reading!\n", argv [1]);
exit (−2);
}
outfile = fopen (argv [2], "w");
if (¬outfile) {

fprintf (stderr , "I couldn’t open ‘%s’ for writing!\n", argv [2]);
exit (−3);
}

This code is used in section 1.

3. 〈Output the value of l(n) 3 〉 ≡
fprintf (outfile , "%c", l[n] + ’ ’);
fflush (outfile); /∗ make sure the result is viewable immediately ∗/

This code is used in section 1.

4. At this point I compute the “lower bound” blg nc + 3, which is valid if νn > 4. Simple cases where
νn ≤ 4 will be handled separately below.

〈 Input the next lower bound, lb 4 〉 ≡
for (q = n, i = −1, j = 0; q; q �= 1, i++)

if (q & 1) x[j++] = i; /∗ now i = blg nc and j = νn ∗/
lb = fgetc(infile)− ’ ’; /∗ fgetc will return a negative value after EOF ∗/
if (lb < i+ 3) lb = i+ 3;

This code is used in section 1.

5. Three elementary and well-known upper bounds are considered: (i) l(n) ≤ blg nc + νn − 1; (ii) l(n) ≤
l(n− 1) + 1; (iii) l(n) ≤ l(p) + l(q) if n = pq.

Furthermore, there are four special cases when Theorem 4.6.3C tells us we can save a step. In this regard,
I had to learn (the hard way) to avoid a curious bug: Three of the four cases in Theorem 4.6.3C arise when
we factor n, so I thought I needed to test only the other case here. But I got a surprise when n = 165: Then
n = 3 ·55, so the factor method gave the upper bound l(3)+ l(55) = 10; but another factorization, n = 5 ·33,
gives the better bound l(5) + l(33) = 9.

〈Find an upper bound; or in simple cases, set l(n) and goto done 5 〉 ≡
ub = i+ j − 1;
if (ub > l[n− 1] + 1) ub = l[n− 1] + 1;
〈Try reducing ub with the factor method 6 〉;
l[n] = ub ;
if (j ≤ 3) goto done ;
if (j ≡ 4) {
p = x[3]− x[2], q = x[1]− x[0];
if (p ≡ q ∨ p ≡ q + 1 ∨ (q ≡ 1 ∧ (p ≡ 3 ∨ (p ≡ 5 ∧ x[2] ≡ x[1] + 1)))) l[n] = i+ 2;
goto done ;
}

This code is used in section 1.

§6 ACHAIN2 INTRO 3

6. It’s important to try the factor method even when j ≤ 4, because of the way prime numbers are
recognized here: We would miss the prime 3, for example.

On the other hand, we don’t need to remember large primes that will never arise as factors of any future n.

〈Try reducing ub with the factor method 6 〉 ≡
if (n > 2)

for (s = 0; ; s++) {
p = prime [s];
q = n/p;
if (n ≡ p ∗ q) {

if (l[p] + l[q] < ub) ub = l[p] + l[q];
break;

}
if (q ≤ p) { /∗ n is prime ∗/

if (pr < 1000) prime [pr ++] = n;
break;

}
}

This code is used in section 5.

4 THE INTERESTING PART ACHAIN2 §7

7. The interesting part. Nontrivial changes begin to occur when we get into the guts of the backtrack-
ing structure carried over from the previous versions of this program, but the controlling loop at the outer
level remains intact.

〈Backtrack until l(n) is known 7 〉 ≡
l[n] = lb ;
while (lb < ub) {

for (i = 0; i ≤ lb ; i++) outdeg [i] = outsum [i] = 0;
a[lb] = b[lb] = n;
for (i = 2; i < lb ; i++) a[i] = a[i− 1] + 1, b[i] = b[i− 1]� 1;
for (i = lb − 1; i ≥ 2; i−−) {

if ((a[i]� 1) < a[i+ 1]) a[i] = (a[i+ 1] + 1)� 1;
if (b[i] ≥ b[i+ 1]) b[i] = b[i+ 1]− 1;

}
〈Try to fix the rest of the chain; goto done if it’s possible 9 〉;
l[n] = ++lb ;
}

This code is used in section 1.

8. The main new idea implemented below is related to the reduced digraph representation of an addition
chain, in which each element as of the chain is effectively expressed as a sum of two or more previous
elements. For example, we might have as = ai +aj +ak +al where i ≤ j ≤ k ≤ l, represented by four arrows
coming in to node as from nodes ai, aj , ak, and al. The colexicographically largest chain with this reduced
digraph has elements ak + al, aj + ak + al, and ai + aj + ak + al, and we want to avoid redundant work by
restricting consideration to such chains.

Fortunately there’s an easy way to do this: For each chain element x we remember its “tail,” which is the
smallest node that points to x; and we also keep track of the outdegree of each fixed element. If as = p+ q
with p ≥ q, the tail of as is q. And if as has outdegree 1 because it is used only as an input to at, we insist
that q be at least as large as the tail of at.

Array element outdeg [j] is the current number of elements as+1, as+2, . . . , that make use of aj , and array
element outsum [j] is the sum of all their subscripts. These two arrays are easily updated as we move forward
and backward while backtracking; and outsum [j] turns out to be exactly the value t that we need to know
when outdeg [j] = 1. (Has anybody seen this idea before? At my age I thought I had seen all such simple
tricks long ago, but maybe there still are many more waiting to be discovered.)

(Note added 08 Oct 2005: I just found this idea attributed to David Wood, by Eric Bach and Marcos Kiwi
in Theoretical Computer Science 235 (2000), 5. Bach and Kiwi go on to generalize the idea so that more
than one element can be identified, using power sums.)

One consequence: If outdeg [s− 1] ≡ 0, we must either have a[s− 1] = 1
2a[s] or a[s− 1] ≥ 2

3a[s]. Because
after setting a[s] to a value other than 1

2a[s] we will have outdeg [s − 1] = 1, and 1
2a[s − 1] ≥ tail [s − 1] ≥

tail [s] = a[s]− a[s− 1].

§9 ACHAIN2 THE INTERESTING PART 5

9. We maintain a stack of subproblems, as usual when backtracking. Suppose a[t] is the sum of two items
already present, for all t > s; we want to make sure that a[s] is legitimate too. For this purpose we try all
combinations a[s] = p + q where p ≥ a[s]/2, trying to make both p and q present. (By the nature of the
algorithm, we’ll have a[s] = b[s] at the time we choose p and q, because shorter addition chains have been
ruled out.)

As elements of a and b are changed, we record their previous values on the undo stack, so that we can
easily restore them later. Pointers ptrp and ptrq contain the limiting indexes for undo information.

〈Try to fix the rest of the chain; goto done if it’s possible 9 〉 ≡
ptr = 0; /∗ clear the undo stack ∗/
for (r = s = lb ; s > 2; s−−) {

if (outdeg [s] ≡ 1) limit [s] = tail [outsum [s]]; else limit [s] = 1;
for (; r > 1 ∧ a[r − 1] ≡ b[r − 1]; r−−) ;
if (outdeg [s− 1] ≡ 0 ∧ (a[s] & 1)) q = a[s]/3; else q = a[s]� 1;
for (p = a[s]− q; p ≤ b[s− 1];) {

if (p > b[r − 1]) {
while (p > a[r]) r++; /∗ this step keeps r < s, since a[s− 1] = b[s− 1] ∗/
p = a[r], q = a[s]− p, r++;

}
if (q < limit [s]) goto backup ;
〈Find bounds (lbp , ubp) and (lbq , ubq) on where p and q can be inserted; but go to failpq if they

can’t both be accommodated 12 〉;
ptrp = ptr ;
for (; ubp ≥ lbp ; ubp −−) {
〈Put p into the chain at location ubp ; goto failp if there’s a problem 14 〉;
if (p ≡ q) goto happiness ;
if (ubq ≥ ubp) ubq = ubp − 1;
ptrq = ptr ;
for (; ubq ≥ lbq ; ubq −−) {
〈Put q into the chain at location ubq ; goto failq if there’s a problem 16 〉;

happiness : 〈Put local variables on the stack and update outdegrees 10 〉;
goto onward ; /∗ now a[s] is covered; try to fill in a[s− 1] ∗/

backup : s++;
if (s > lb) goto impossible ;
〈Restore local variables from the stack and downdate outdegrees 11 〉;
if (p ≡ q) goto failp ;

failq : while (ptr > ptrq) 〈Undo a change 13 〉;
}

failp : while (ptr > ptrp) 〈Undo a change 13 〉;
}

failpq : if (p ≡ q) {
if (outdeg [s− 1] ≡ 0) q = a[s]/3 + 1; /∗ will be decreased momentarily ∗/
if (q > b[s− 2]) q = b[s− 2];
else q−−;
p = a[s]− q;

} else p++, q−−;
}
goto backup ;

onward : continue;
}
goto done ;

impossible :

This code is used in section 7.

6 THE INTERESTING PART ACHAIN2 §10

10. 〈Put local variables on the stack and update outdegrees 10 〉 ≡
tail [s] = q, stack [s].r = r;
outdeg [ubp]++, outsum [ubp] += s;
outdeg [ubq]++, outsum [ubq] += s;
stack [s].lbp = lbp , stack [s].ubp = ubp ;
stack [s].lbq = lbq , stack [s].ubq = ubq ;
stack [s].ptrp = ptrp , stack [s].ptrq = ptrq ;

This code is used in section 9.

11. 〈Restore local variables from the stack and downdate outdegrees 11 〉 ≡
ptrq = stack [s].ptrq , ptrp = stack [s].ptrp ;
lbq = stack [s].lbq , ubq = stack [s].ubq ;
lbp = stack [s].lbp , ubp = stack [s].ubp ;
outdeg [ubq]−−, outsum [ubq] −= s;
outdeg [ubp]−−, outsum [ubp] −= s;
q = tail [s], p = a[s]− q, r = stack [s].r;

This code is used in section 9.

12. After the test in this step is passed, we’ll have ubp > ubq and lbp > lbq .

〈Find bounds (lbp , ubp) and (lbq , ubq) on where p and q can be inserted; but go to failpq if they can’t both
be accommodated 12 〉 ≡

lbp = l[p];
if (lbp ≥ s) goto failpq ;
while (b[lbp] < p) lbp ++;
if (a[lbp] > p) goto failpq ;
for (ubp = lbp ; a[ubp + 1] ≤ p; ubp ++) ;
if (ubp ≡ s− 1) lbp = ubp ;
if (p ≡ q) lbq = lbp , ubq = ubp ;
else {

lbq = l[q];
if (lbq ≥ ubp) goto failpq ;
while (b[lbq] < q) lbq ++;
if (lbq ≥ ubp) goto failpq ;
if (a[lbq] > q) goto failpq ;
for (ubq = lbq ; a[ubq + 1] ≤ q ∧ ubq + 1 < ubp ; ubq ++) ;
if (lbp ≡ lbq) lbp ++;
}

This code is used in section 9.

13. The undoing mechanism is very simple: When changing a[j], we put (j � 24) + x on the undo stack,
where x was the former value. Similarly, when changing b[j], we stack the value (1� 31) + (j � 24) + x.

#define newa (j, y) undo [ptr ++] = (j � 24) + a[j], a[j] = y
#define newb(j, y) undo [ptr ++] = (1� 31) + (j � 24) + b[j], b[j] = y

〈Undo a change 13 〉 ≡
{
i = undo [−−ptr];
if (i ≥ 0) a[i� 24] = i& #ffffff;
else b[(i& #3fffffff)� 24] = i& #ffffff;
}

This code is used in section 9.

§14 ACHAIN2 THE INTERESTING PART 7

14. At this point we know that a[ubp] ≤ p ≤ b[ubp].
〈Put p into the chain at location ubp ; goto failp if there’s a problem 14 〉 ≡

if (a[ubp] 6= p) {
newa (ubp , p);
for (j = ubp − 1; (a[j]� 1) < a[j + 1]; j−−) {
i = (a[j + 1] + 1)� 1;
if (i > b[j]) goto failp ;
newa (j, i);

}
for (j = ubp + 1; a[j] ≤ a[j − 1]; j++) {
i = a[j − 1] + 1;
if (i > b[j]) goto failp ;
newa (j, i);

}
}
if (b[ubp] 6= p) {

newb(ubp , p);
for (j = ubp − 1; b[j] ≥ b[j + 1]; j−−) {
i = b[j + 1]− 1;
if (i < a[j]) goto failp ;
newb(j, i);

}
for (j = ubp + 1; b[j] > b[j − 1]� 1; j++) {
i = b[j − 1]� 1;
if (i < a[j]) goto failp ;
newb(j, i);

}
}
〈Make forced moves if p has a special form 15 〉;

This code is used in section 9.

8 THE INTERESTING PART ACHAIN2 §15

15. If, say, we’ve just set a[8] = b[8] = 132, special considerations apply, because the only addition chains
of length 8 for 132 are

1, 2, 4, 8, 16, 32, 64, 128, 132;

1, 2, 4, 8, 16, 32, 64, 68, 132;

1, 2, 4, 8, 16, 32, 64, 66, 132;

1, 2, 4, 8, 16, 32, 34, 66, 132;

1, 2, 4, 8, 16, 32, 33, 66, 132;

1, 2, 4, 8, 16, 17, 33, 66, 132.

The values of a[4] and b[4] must therefore be 16; and then, of course, we also must have a[3] = b[3] = 8, etc.
Similar reasoning applies whenever we set a[j] = b[j] = 2j + 2k for k ≤ j − 4.

Such cases may seem extremely special. But my hunch is that they are important, because efficient chains
need such values. When we try to prove that no efficient chain exists, we want to show that such values
can’t be present. Numbers with small l[p] are harder to rule out, so it should be helpful to penalize them.

〈Make forced moves if p has a special form 15 〉 ≡
i = p− (1� (ubp − 1));
if (i ∧ ((i& (i− 1)) ≡ 0) ∧ (i� 4) < p) {

for (j = ubp − 2; (i& 1) ≡ 0; i�= 1, j−−) ;
if (b[j] < (1� j)) goto failp ;
for (; a[j] < (1� j); j−−) newa (j, 1� j);
}

This code is used in section 14.

§16 ACHAIN2 THE INTERESTING PART 9

16. At this point we had better not assume that a[ubq] ≤ q ≤ b[ubq], because p has just been inserted.
That insertion can mess up the bounds that we looked at when lbq and ubq were computed.

〈Put q into the chain at location ubq ; goto failq if there’s a problem 16 〉 ≡
if (a[ubq] 6= q) {

if (a[ubq] > q) goto failq ;
newa (ubq , q);
for (j = ubq − 1; (a[j]� 1) < a[j + 1]; j−−) {
i = (a[j + 1] + 1)� 1;
if (i > b[j]) goto failq ;
newa (j, i);

}
for (j = ubq + 1; a[j] ≤ a[j − 1]; j++) {
i = a[j − 1] + 1;
if (i > b[j]) goto failq ;
newa (j, i);

}
}
if (b[ubq] 6= q) {

if (b[ubq] < q) goto failq ;
newb(ubq , q);
for (j = ubq − 1; b[j] ≥ b[j + 1]; j−−) {
i = b[j + 1]− 1;
if (i < a[j]) goto failq ;
newb(j, i);

}
for (j = ubq + 1; b[j] > b[j − 1]� 1; j++) {
i = b[j − 1]� 1;
if (i < a[j]) goto failq ;
newb(j, i);

}
}
〈Make forced moves if q has a special form 17 〉;

This code is used in section 9.

17. 〈Make forced moves if q has a special form 17 〉 ≡
i = q − (1� (ubq − 1));
if (i ∧ ((i& (i− 1)) ≡ 0) ∧ (i� 4) < q) {

for (j = ubq − 2; (i& 1) ≡ 0; i�= 1, j−−) ;
if (b[j] < (1� j)) goto failq ;
for (; a[j] < (1� j); j−−) newa (j, 1� j);
}

This code is used in section 16.

10 INDEX ACHAIN2 §18

18. Index.

a: 1.
argc : 1, 2.
argv : 1, 2.
b: 1.
backup : 9.
clock : 1.
CLOCKS_PER_SEC: 1.
done : 1, 5, 9.
exit : 2.
failp : 9, 14, 15.
failpq : 9, 12.
failq : 9, 16, 17.
fflush : 3.
fgetc : 4.
fopen : 2.
fprintf : 2, 3.
happiness : 9.
i: 1.
impossible : 9.
infile : 1, 2, 4.
j: 1.
l: 1.
lb : 1, 4, 7, 9.
lbp : 1, 9, 10, 11, 12.
lbq : 1, 9, 10, 11, 12, 16.
limit : 1, 9.
main : 1.
n: 1.
newa : 13, 14, 15, 16, 17.
newb : 13, 14, 16.
nmax : 1.
onward : 9.
outdeg : 1, 7, 8, 9, 10, 11.
outfile : 1, 2, 3.
outsum : 1, 7, 8, 9, 10, 11.
p: 1.
pr : 1, 6.
prime : 1, 6.
printf : 1.
ptr : 1, 9, 13.
ptrp : 1, 9, 10, 11.
ptrq : 1, 9, 10, 11.
q: 1.
r: 1.
s: 1.
stack : 1, 10, 11.
stderr : 2.
tail : 1, 8, 9, 10, 11.
timer : 1.
ub : 1, 5, 6, 7.
ubp : 1, 9, 10, 11, 12, 14, 15.

ubq : 1, 9, 10, 11, 12, 16, 17.
undo : 1, 9, 13.
x: 1.

ACHAIN2 NAMES OF THE SECTIONS 11

〈Backtrack until l(n) is known 7 〉 Used in section 1.

〈Find an upper bound; or in simple cases, set l(n) and goto done 5 〉 Used in section 1.

〈Find bounds (lbp , ubp) and (lbq , ubq) on where p and q can be inserted; but go to failpq if they can’t both
be accommodated 12 〉 Used in section 9.

〈 Input the next lower bound, lb 4 〉 Used in section 1.

〈Make forced moves if p has a special form 15 〉 Used in section 14.

〈Make forced moves if q has a special form 17 〉 Used in section 16.

〈Output the value of l(n) 3 〉 Used in section 1.

〈Process the command line 2 〉 Used in section 1.

〈Put local variables on the stack and update outdegrees 10 〉 Used in section 9.

〈Put p into the chain at location ubp ; goto failp if there’s a problem 14 〉 Used in section 9.

〈Put q into the chain at location ubq ; goto failq if there’s a problem 16 〉 Used in section 9.

〈Restore local variables from the stack and downdate outdegrees 11 〉 Used in section 9.

〈Try reducing ub with the factor method 6 〉 Used in section 5.

〈Try to fix the rest of the chain; goto done if it’s possible 9 〉 Used in section 7.

〈Undo a change 13 〉 Used in section 9.

ACHAIN2

Section Page
Intro . 1 1
The interesting part . 7 4
Index . 18 10

	Intro
	The interesting part
	Index
	Names of the sections
	Backtrack until l(n) is known
	Find an upper bound; or in simple cases, set l(n) and goto done
	Find bounds (lbp,ubp) and (lbq,ubq) on where p and q can be inserted; but go to failpq if they can't both be accommodated
	Input the next lower bound, lb
	Make forced moves if p has a special form
	Make forced moves if q has a special form
	Output the value of l(n)
	Process the command line
	Put local variables on the stack and update outdegrees
	Put p into the chain at location ubp; goto failp if there's a problem
	Put q into the chain at location ubq; goto failq if there's a problem
	Restore local variables from the stack and downdate outdegrees
	Try reducing ub with the factor method
	Try to fix the rest of the chain; goto done if it's possible
	Undo a change

