
§1 ACHAIN1 INTRO 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Intro. This program is a revision of ACHAIN0, which you should read first. I’m thinking that a few
changes will speed that program up, but as usual the proof of the pudding is in the eating.

The main changes here are: (i) Instead of a simple array a containing the addition chain, I have two arrays
a and b, which contain lower and upper bounds on the current status. This idea should speed up the process
of placing tentative entries, because the logic in the previous program was rather tortuous. (ii) I try first to
find a chain satisfying the lower bound, and work upward until succeeding, instead of trying first to beat the
upper bound and continue until failing. This idea, analogous to “iterative deepening,” gives me a chance
to improve the bounds, because empty slots cannot occur. (iii) I consider ranges for placing both p and q
before trying either one of them, because it’s often possible to anticipate failure sooner that way. (iv) When
trying possibilities for a[s] = p+ q and p 6= q, we needn’t consider any cases with q > b[s− 2] or p > b[s− 1].
This observation makes a huge improvement; shame on me for not thinking of it in the 60s. (v) And it gets
even better: Suppose a[k] = b[k] for k ≥ r. Then as soon as p > b[r − 1], we have at most s− r possibilities
for p. (My old program ran through a[s]− a[r] possibilities!)

#define nmax 10000000 /∗ should be less than 224 on a 32-bit machine ∗/
#include <stdio.h>

#include <stdlib.h>

#include <time.h>

char l[nmax];
int a[128], b[128];
unsigned int undo [128 ∗ 128];
int ptr ; /∗ this many items of the undo stack are in use ∗/
struct {

int lbp , ubp , lbq , ubq , p, r, ptrp , ptrq ;
} stack [128];
FILE ∗infile , ∗outfile ;
int prime [1000]; /∗ 1000 primes will take us past 60 million ∗/
int pr ; /∗ the number of primes known so far ∗/
char x[64]; /∗ exponents of the binary representation of n, less 1 ∗/
int main (int argc , char ∗argv [])
{

register int i, j, n, p, q, r, s, ubp , ubq , lbp , lbq , ptrp , ptrq ;
int lb , ub , timer = 0;

〈Process the command line 2 〉;
prime [0] = 2, pr = 1;
a[0] = b[0] = 1, a[1] = b[1] = 2; /∗ an addition chain always begins like this ∗/
for (n = 1; n < nmax ; n++) {
〈 Input the next lower bound, lb 4 〉;
〈Find an upper bound; or in simple cases, set l(n) and goto done 5 〉;
〈Backtrack until l(n) is known 7 〉;

done : 〈Output the value of l(n) 3 〉;
if (n % 1000 ≡ 0) {
j = clock ();
printf ("%d..%d done in %.5g minutes\n", n− 999, n,

(double)(j − timer)/(60 ∗ CLOCKS_PER_SEC));
timer = j;

}
}
}

https://cs.stanford.edu/~knuth/programs.html

2 INTRO ACHAIN1 §2

2. 〈Process the command line 2 〉 ≡
if (argc 6= 3) {

fprintf (stderr , "Usage: %s infile outfile\n", argv [0]);
exit (−1);
}
infile = fopen (argv [1], "r");
if (¬infile) {

fprintf (stderr , "I couldn’t open ‘%s’ for reading!\n", argv [1]);
exit (−2);
}
outfile = fopen (argv [2], "w");
if (¬outfile) {

fprintf (stderr , "I couldn’t open ‘%s’ for writing!\n", argv [2]);
exit (−3);
}

This code is used in section 1.

3. 〈Output the value of l(n) 3 〉 ≡
fprintf (outfile , "%c", l[n] + ’ ’);
fflush (outfile); /∗ make sure the result is viewable immediately ∗/

This code is used in section 1.

4. At this point I compute the “lower bound” blg nc + 3, which is valid if νn > 4. Simple cases where
νn ≤ 4 will be handled separately below.

〈 Input the next lower bound, lb 4 〉 ≡
for (q = n, i = −1, j = 0; q; q �= 1, i++)

if (q & 1) x[j++] = i; /∗ now i = blg nc and j = νn ∗/
lb = fgetc(infile)− ’ ’; /∗ fgetc will return a negative value after EOF ∗/
if (lb < i+ 3) lb = i+ 3;

This code is used in section 1.

5. Three elementary and well-known upper bounds are considered: (i) l(n) ≤ blg nc + νn − 1; (ii) l(n) ≤
l(n− 1) + 1; (iii) l(n) ≤ l(p) + l(q) if n = pq.

Furthermore, there are four special cases when Theorem 4.6.3C tells us we can save a step. In this regard,
I had to learn (the hard way) to avoid a curious bug: Three of the four cases in Theorem 4.6.3C arise when
we factor n, so I thought I needed to test only the other case here. But I got a surprise when n = 165: Then
n = 3 ·55, so the factor method gave the upper bound l(3)+ l(55) = 10; but another factorization, n = 5 ·33,
gives the better bound l(5) + l(33) = 9.

〈Find an upper bound; or in simple cases, set l(n) and goto done 5 〉 ≡
ub = i+ j − 1;
if (ub > l[n− 1] + 1) ub = l[n− 1] + 1;
〈Try reducing ub with the factor method 6 〉;
l[n] = ub ;
if (j ≤ 3) goto done ;
if (j ≡ 4) {
p = x[3]− x[2], q = x[1]− x[0];
if (p ≡ q ∨ p ≡ q + 1 ∨ (q ≡ 1 ∧ (p ≡ 3 ∨ (p ≡ 5 ∧ x[2] ≡ x[1] + 1)))) l[n] = i+ 2;
goto done ;
}

This code is used in section 1.

§6 ACHAIN1 INTRO 3

6. It’s important to try the factor method even when j ≤ 4, because of the way prime numbers are
recognized here: We would miss the prime 3, for example.

On the other hand, we don’t need to remember large primes that will never arise as factors of any future n.

〈Try reducing ub with the factor method 6 〉 ≡
if (n > 2)

for (s = 0; ; s++) {
p = prime [s];
q = n/p;
if (n ≡ p ∗ q) {

if (l[p] + l[q] < ub) ub = l[p] + l[q];
break;

}
if (q ≤ p) { /∗ n is prime ∗/

if (pr < 1000) prime [pr ++] = n;
break;

}
}

This code is used in section 5.

4 THE INTERESTING PART ACHAIN1 §7

7. The interesting part. If lb < ub , we will try to build an addition chain of length lb . If that fails,
we increase lb and try again. Finally we will have established the fact that l(n) = lb .

Throughout the computation we’ll have a[j] < a[j + 1] ≤ 2a[j] and b[j] < b[j + 1] ≤ 2b[j]. Element a[j] of
the chain is “fixed” if and only if a[j] = b[j]. Those local conditions have the nice property that, if a[j] < b[j],
we can increase a[j] and/or decrease b[j] to any value in between, causing a corresponding increase and/or
decrease in neighboring values but always in a way that preserves the local inequalities without forcing
a[i] > b[i] anywhere. (Go figure.)

〈Backtrack until l(n) is known 7 〉 ≡
l[n] = lb ;
while (lb < ub) {
a[lb] = b[lb] = n;
for (i = 2; i < lb ; i++) a[i] = a[i− 1] + 1, b[i] = b[i− 1]� 1;
for (i = lb − 1; i ≥ 2; i−−) {

if ((a[i]� 1) < a[i+ 1]) a[i] = (a[i+ 1] + 1)� 1;
if (b[i] ≥ b[i+ 1]) b[i] = b[i+ 1]− 1;

}
〈Try to fix the rest of the chain; goto done if it’s possible 8 〉;
l[n] = ++lb ;
}

This code is used in section 1.

§8 ACHAIN1 THE INTERESTING PART 5

8. We maintain a stack of subproblems, as usual when backtracking. Suppose a[t] is the sum of two items
already present, for all t > s; we want to make sure that a[s] is legitimate too. For this purpose we try all
combinations a[s] = p + q where p ≥ a[s]/2, trying to make both p and q present. (By the nature of the
algorithm, we’ll have a[s] = b[s] at the time we choose p and q, because shorter addition chains have been
ruled out.)

As elements of a and b are changed, we record their previous values on the undo stack, so that we can
easily restore them later. Pointers ptrp and ptrq contain the limiting indexes for undo information.

〈Try to fix the rest of the chain; goto done if it’s possible 8 〉 ≡
ptr = 0; /∗ clear the undo stack ∗/
for (r = s = lb ; s > 2; s−−) { /∗ a[k] = b[k] for all k ≥ r ∗/

for (; r > 1 ∧ a[r − 1] ≡ b[r − 1]; r−−) ;
for (q = a[s]� 1, p = a[s]− q; p ≤ b[s− 1];) {

if (p > b[r − 1]) {
while (p > a[r]) r++; /∗ this step keeps r < s ∗/
p = a[r], q = a[s]− p, r++;

}
〈Find bounds (lbp , ubp) and (lbq , ubq) on where p and q can be inserted; but go to failpq if they

can’t both be accommodated 9 〉;
ptrp = ptr ;
for (; ubp ≥ lbp ; ubp −−) {
〈Put p into the chain at location ubp ; goto failp if there’s a problem 11 〉;
if (p ≡ q) goto happiness ;
if (ubq ≥ ubp) ubq = ubp − 1;
ptrq = ptr ;
for (; ubq ≥ lbq ; ubq −−) {
〈Put q into the chain at location ubq ; goto failq if there’s a problem 12 〉;

happiness : stack [s].p = p, stack [s].r = r;
stack [s].lbp = lbp , stack [s].ubp = ubp ;
stack [s].lbq = lbq , stack [s].ubq = ubq ;
stack [s].ptrp = ptrp , stack [s].ptrq = ptrq ;
goto onward ; /∗ now a[s] is covered; try to fill in a[s− 1] ∗/

backup : s++;
if (s > lb) goto impossible ;
ptrq = stack [s].ptrq , ptrp = stack [s].ptrp ;
lbq = stack [s].lbq , ubq = stack [s].ubq ;
lbp = stack [s].lbp , ubp = stack [s].ubp ;
p = stack [s].p, q = a[s]− p, r = stack [s].r;
if (p ≡ q) goto failp ;

failq : while (ptr > ptrq) 〈Undo a change 10 〉;
}

failp : while (ptr > ptrp) 〈Undo a change 10 〉;
}

failpq : if (p ≡ q ∧ q > b[s− 2]) q = b[s− 2], p = a[s]− q; else p++, q−−;
}
goto backup ;

onward : continue;
}
goto done ;

impossible :

This code is used in section 7.

6 THE INTERESTING PART ACHAIN1 §9

9. After the test in this step is passed, we’ll have ubp > ubq and lbp > lbq .

〈Find bounds (lbp , ubp) and (lbq , ubq) on where p and q can be inserted; but go to failpq if they can’t both
be accommodated 9 〉 ≡

lbp = l[p];
if (lbp ≥ lb) goto failpq ;
while (b[lbp] < p) lbp ++;
if (a[lbp] > p) goto failpq ;
for (ubp = lbp ; a[ubp + 1] ≤ p; ubp ++) ;
if (ubp ≡ s− 1) lbp = ubp ;
if (p ≡ q) lbq = lbp , ubq = ubp ;
else {

lbq = l[q];
if (lbq ≥ ubp) goto failpq ;
while (b[lbq] < q) lbq ++;
if (lbq ≥ ubp) goto failpq ;
if (a[lbq] > q) goto failpq ;
for (ubq = lbq ; a[ubq + 1] ≤ q ∧ ubq + 1 < ubp ; ubq ++) ;
if (lbp ≡ lbq) lbp ++;
}

This code is used in section 8.

10. The undoing mechanism is very simple: When changing a[j], we put (j � 24) + x on the undo stack,
where x was the former value. Similarly, when changing b[j], we stack the value (1� 31) + (j � 24) + x.

#define newa (j, y) undo [ptr ++] = (j � 24) + a[j], a[j] = y
#define newb(j, y) undo [ptr ++] = (1� 31) + (j � 24) + b[j], b[j] = y

〈Undo a change 10 〉 ≡
{
i = undo [−−ptr];
if (i ≥ 0) a[i� 24] = i& #ffffff;
else b[(i& #3fffffff)� 24] = i& #ffffff;
}

This code is used in section 8.

§11 ACHAIN1 THE INTERESTING PART 7

11. At this point we know that a[ubp] ≤ p ≤ b[ubp].
〈Put p into the chain at location ubp ; goto failp if there’s a problem 11 〉 ≡

if (a[ubp] 6= p) {
newa (ubp , p);
for (j = ubp − 1; (a[j]� 1) < a[j + 1]; j−−) {
i = (a[j + 1] + 1)� 1;
if (i > b[j]) goto failp ;
newa (j, i);

}
for (j = ubp + 1; a[j] ≤ a[j − 1]; j++) {
i = a[j − 1] + 1;
if (i > b[j]) goto failp ;
newa (j, i);

}
}
if (b[ubp] 6= p) {

newb(ubp , p);
for (j = ubp − 1; b[j] ≥ b[j + 1]; j−−) {
i = b[j + 1]− 1;
if (i < a[j]) goto failp ;
newb(j, i);

}
for (j = ubp + 1; b[j] > b[j − 1]� 1; j++) {
i = b[j − 1]� 1;
if (i < a[j]) goto failp ;
newb(j, i);

}
}

This code is used in section 8.

8 THE INTERESTING PART ACHAIN1 §12

12. At this point we had better not assume that a[ubq] ≤ q ≤ b[ubq], because p has just been inserted.
That insertion can mess up the bounds that we looked at when lbq and ubq were computed.

〈Put q into the chain at location ubq ; goto failq if there’s a problem 12 〉 ≡
if (a[ubq] 6= q) {

if (a[ubq] > q) goto failq ;
newa (ubq , q);
for (j = ubq − 1; (a[j]� 1) < a[j + 1]; j−−) {
i = (a[j + 1] + 1)� 1;
if (i > b[j]) goto failq ;
newa (j, i);

}
for (j = ubq + 1; a[j] ≤ a[j − 1]; j++) {
i = a[j − 1] + 1;
if (i > b[j]) goto failq ;
newa (j, i);

}
}
if (b[ubq] 6= q) {

if (b[ubq] < q) goto failq ;
newb(ubq , q);
for (j = ubq − 1; b[j] ≥ b[j + 1]; j−−) {
i = b[j + 1]− 1;
if (i < a[j]) goto failq ;
newb(j, i);

}
for (j = ubq + 1; b[j] > b[j − 1]� 1; j++) {
i = b[j − 1]� 1;
if (i < a[j]) goto failq ;
newb(j, i);

}
}

This code is used in section 8.

§13 ACHAIN1 INDEX 9

13. Index.

a: 1.
argc : 1, 2.
argv : 1, 2.
b: 1.
backup : 8.
clock : 1.
CLOCKS_PER_SEC: 1.
done : 1, 5, 8.
exit : 2.
failp : 8, 11.
failpq : 8, 9.
failq : 8, 12.
fflush : 3.
fgetc : 4.
fopen : 2.
fprintf : 2, 3.
happiness : 8.
i: 1.
impossible : 8.
infile : 1, 2, 4.
j: 1.
l: 1.
lb : 1, 4, 7, 8, 9.
lbp : 1, 8, 9.
lbq : 1, 8, 9, 12.
main : 1.
n: 1.
newa : 10, 11, 12.
newb : 10, 11, 12.
nmax : 1.
onward : 8.
outfile : 1, 2, 3.
p: 1.
pr : 1, 6.
prime : 1, 6.
printf : 1.
ptr : 1, 8, 10.
ptrp : 1, 8.
ptrq : 1, 8.
q: 1.
r: 1.
s: 1.
stack : 1, 8.
stderr : 2.
timer : 1.
ub : 1, 5, 6, 7.
ubp : 1, 8, 9, 11.
ubq : 1, 8, 9, 12.
undo : 1, 8, 10.
x: 1.

10 NAMES OF THE SECTIONS ACHAIN1

〈Backtrack until l(n) is known 7 〉 Used in section 1.

〈Find an upper bound; or in simple cases, set l(n) and goto done 5 〉 Used in section 1.

〈Find bounds (lbp , ubp) and (lbq , ubq) on where p and q can be inserted; but go to failpq if they can’t both
be accommodated 9 〉 Used in section 8.

〈 Input the next lower bound, lb 4 〉 Used in section 1.

〈Output the value of l(n) 3 〉 Used in section 1.

〈Process the command line 2 〉 Used in section 1.

〈Put p into the chain at location ubp ; goto failp if there’s a problem 11 〉 Used in section 8.

〈Put q into the chain at location ubq ; goto failq if there’s a problem 12 〉 Used in section 8.

〈Try reducing ub with the factor method 6 〉 Used in section 5.

〈Try to fix the rest of the chain; goto done if it’s possible 8 〉 Used in section 7.

〈Undo a change 10 〉 Used in section 8.

ACHAIN1

Section Page
Intro . 1 1
The interesting part . 7 4
Index . 13 9

	Intro
	The interesting part
	Index
	Names of the sections
	Backtrack until l(n) is known
	Find an upper bound; or in simple cases, set l(n) and goto done
	Find bounds (lbp,ubp) and (lbq,ubq) on where p and q can be inserted; but go to failpq if they can't both be accommodated
	Input the next lower bound, lb
	Output the value of l(n)
	Process the command line
	Put p into the chain at location ubp; goto failp if there's a problem
	Put q into the chain at location ubq; goto failq if there's a problem
	Try reducing ub with the factor method
	Try to fix the rest of the chain; goto done if it's possible
	Undo a change

