
§1 ACHAIN0 INTRO 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Intro. This program is a transcription of the code that I wrote in 1969 to determine the length l(n) of
a shortest addition chain for n. My original program was written in IMP, an idiosyncratic language that was
basically an assembly program for the Control Data 6600. It computed l(n) for n ≤ 18269, and it consumed
an unknown but probably nontrivial amount of background time on the computer over a period of several
weeks. I decided to see how efficient that program really was, by recoding it for a modern machine.

Better techniques for that problem are known by now, of course. I think I can also make the original
method go quite a bit faster, by changing the data structures. But I’ll never know how much speedup is
achieved by any of the newer approaches until I get the old algorithm running again.

The command line should have two parameters, which name an input file and an output file. Both files
contain values of l(1), l(2), . . . , with one byte per value, using visible ASCII characters by adding ’ ’ to
each integer value. The numbers in the input file need not be exact, but they must be valid lower bounds; if
the input file contains fewer than n bytes, this program uses the simple lower bound of Theorem 4.6.3C. The
output file gets answers one byte at a time, and I expect to “kill” the program manually before it finishes.

By the way, it’s fun to look at the output file with a text editor.

#define nmax 10000000

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

char l[nmax];
int a[129];
struct {

int lbp , ubp , lbq , ubq , savep ;
} stack [128];
FILE ∗infile , ∗outfile ;
int prime [1000]; /∗ 1000 primes will take us past 60 million ∗/
int pr ; /∗ the number of primes known so far ∗/
char x[64]; /∗ exponents of the binary representation of n, less 1 ∗/
int main (int argc , char ∗argv [])
{

register int i, j, p, q, n, s, ubp , ubq , lbp , lbq ;
int lb , ub , timer = 0;

〈Process the command line 2 〉;
prime [0] = 2, pr = 1;
a[0] = 1, a[1] = 2; /∗ an addition chain always begins like this ∗/
for (n = 1; n < nmax ; n++) {
〈 Input the next lower bound, lb 4 〉;
〈Find an upper bound; or in simple cases, set l(n) and goto done 5 〉;
〈Backtrack until l(n) is known 7 〉;

done : 〈Output the value of l(n) 3 〉;
if (n % 1000 ≡ 0) {
j = clock ();
printf ("%d..%d done in %.5g minutes\n", n− 999, n,

(double)(j − timer)/(60 ∗ CLOCKS_PER_SEC));
timer = j;

}
}
}

https://cs.stanford.edu/~knuth/programs.html

2 INTRO ACHAIN0 §2

2. 〈Process the command line 2 〉 ≡
if (argc 6= 3) {

fprintf (stderr , "Usage: %s infile outfile\n", argv [0]);
exit (−1);
}
infile = fopen (argv [1], "r");
if (¬infile) {

fprintf (stderr , "I couldn’t open ‘%s’ for reading!\n", argv [1]);
exit (−2);
}
outfile = fopen (argv [2], "w");
if (¬outfile) {

fprintf (stderr , "I couldn’t open ‘%s’ for writing!\n", argv [2]);
exit (−3);
}

This code is used in section 1.

3. 〈Output the value of l(n) 3 〉 ≡
fprintf (outfile , "%c", l[n] + ’ ’);
fflush (outfile); /∗ make sure the result is viewable immediately ∗/

This code is used in section 1.

4. At this point I compute the “lower bound” blg nc + 3, which is valid if νn > 4. Simple cases where
νn ≤ 4 will be handled separately below.

〈 Input the next lower bound, lb 4 〉 ≡
for (q = n, i = −1, j = 0; q; q �= 1, i++)

if (q & 1) x[j++] = i; /∗ now i = blg nc and j = νn ∗/
lb = fgetc(infile)− ’ ’; /∗ fgetc will return a negative value after EOF ∗/
if (lb < i+ 3) lb = i+ 3;

This code is used in section 1.

5. Three elementary and well-known upper bounds are considered: (i) l(n) ≤ blg nc + νn − 1; (ii) l(n) ≤
l(n− 1) + 1; (iii) l(n) ≤ l(p) + l(q) if n = pq.

Furthermore, there are four special cases when Theorem 4.6.3C tells us we can save a step. In this regard,
I had to learn (the hard way) to avoid a curious bug: Three of the four cases in Theorem 4.6.3C arise when
we factor n, so I thought I needed to test only the other case here. But I got a surprise when n = 165: Then
n = 3 ·55, so the factor method gave the upper bound l(3)+ l(55) = 10; but another factorization, n = 5 ·33,
gives the better bound l(5) + l(33) = 9.

〈Find an upper bound; or in simple cases, set l(n) and goto done 5 〉 ≡
ub = i+ j − 1;
if (ub > l[n− 1] + 1) ub = l[n− 1] + 1;
〈Try reducing ub with the factor method 6 〉;
l[n] = ub ;
if (j ≤ 3) goto done ;
if (j ≡ 4) {
p = x[3]− x[2], q = x[1]− x[0];
if (p ≡ q ∨ p ≡ q + 1 ∨ (q ≡ 1 ∧ (p ≡ 3 ∨ (p ≡ 5 ∧ x[2] ≡ x[1] + 1)))) l[n] = i+ 2;
goto done ;
}

This code is used in section 1.

§6 ACHAIN0 INTRO 3

6. It’s important to try the factor method even when j ≤ 4, because of the way prime numbers are
recognized here: We would miss the prime 3, for example.

On the other hand, we don’t need to remember large primes that will never arise as factors of any future n.

〈Try reducing ub with the factor method 6 〉 ≡
if (n > 2)

for (s = 0; ; s++) {
p = prime [s];
q = n/p;
if (n ≡ p ∗ q) {

if (l[p] + l[q] < ub) ub = l[p] + l[q];
break;

}
if (q ≤ p) { /∗ n is prime ∗/

if (pr < 1000) prime [pr ++] = n;
break;

}
}

This code is used in section 5.

4 THE INTERESTING PART ACHAIN0 §7

7. The interesting part. All the above was necessary just to get warmed up and to set the groundwork
for nontrivial cases. The method adopted is simple, but it has some subtleties that I discovered one by one
in the 60s.

If lb < ub , we will try to build an addition chain of length ub − 1. If that succeeds, we decrease ub and
try again. Finally we will have established the fact that l(n) = ub .

〈Backtrack until l(n) is known 7 〉 ≡
while (lb < ub) {
a[ub − 1] = n;
for (i = 2; i < ub − 1; i++) a[i] = 0;
〈Try to fill in the rest of the chain; goto done if it’s impossible 8 〉;
l[n] = −−ub ;
}

This code is used in section 1.

§8 ACHAIN0 THE INTERESTING PART 5

8. We maintain a stack of subproblems, as usual when backtracking. Suppose a[t] is the sum of two items
already present, for all t > s; we want to make sure that a[s] is legitimate too. For this purpose we try all
combinations a[s] = p+ q where p ≥ a[s]/2, trying to make both p and q present.

Two key methods are used to prune down the number of possibilities explored. First, the number p can’t
be inserted into a[t] when t < l(p). Second, two consecutive nonzero entries of an addition chain must satisfy
at < at+1 ≤ 2at.

Suppose, for example, that we have a partial solution with a10 = 100 and a13 = 500, but a11 and a12 still
are zero (meaning that they haven’t been filled in). Then we can’t set a11 = 124, because that would force
a12 to be at most 248, and a13 would be unsupportable. It follows that a11 must lie between 125 and 200.

Now suppose that a10 = 100 and a13 = 200, while a11 and a12 are still vacant. In this case a11 can be any
value from 101 to 199, including 199 (because we cannot be sure that the chain will require a12). That’s
what I meant by a subtlety.

In general, for each value of s, we have three nested loops: one on the value of p described above, one on
the different places where p might go into the chain, and one on the different places where q might go into
the chain.

The following program is organized outside-in. I could also have written it inside-out; but either way (as
I tried to explain in my old paper on goto statements) there seems to be a need for jumping into a loop.

My program from 1969 didn’t have the statement ‘ if (ubp ≡ s − 1 ∧ lbp < ubp) lbp = ubp ; ’ but that
improvement is easily justified. For if there’s no solution with p in position a[s− 1], there won’t be one with
p placed even earlier.

[Hmm: My “subtle” argument above doesn’t really need to allow a11 = 199.]

〈Try to fill in the rest of the chain; goto done if it’s impossible 8 〉 ≡
for (s = ub − 1; s > 1; s−−)

if (a[s]) {
for (q = a[s]� 1, p = a[s]− q; q; p++, q−−) {
〈Find bounds lbp and ubp on where p can be inserted; goto tryq if p is already present 9 〉;
if (ubp ≡ s− 1 ∧ lbp < ubp) lbp = ubp ;
for (; ubp ≥ lbp ; ubp −−) {
a[ubp] = p;

tryq : 〈Find bounds lbq and ubq on where q can be inserted; goto happiness if q is already
present 10 〉;

for (; ubq ≥ lbq ; ubq −−) {
a[ubq] = q;

happiness : stack [s].savep = p;
stack [s].lbp = lbp , stack [s].ubp = ubp ;
stack [s].lbq = lbq , stack [s].ubq = ubq ;
goto onward ; /∗ now a[s] is covered; try to fill in a[s− 1] ∗/

backup : s++;
if (s ≡ ub) goto done ;
if (a[s] ≡ 0) goto backup ;
lbq = stack [s].lbq , ubq = stack [s].ubq ;
lbp = stack [s].lbp , ubp = stack [s].ubp ;
p = stack [s].savep , q = a[s]− p;
a[ubq] = 0;
}
a[ubp] = 0;

}
}
goto backup ;

onward : continue;
}

This code is used in section 7.

6 THE INTERESTING PART ACHAIN0 §9

9. The heart of the computation is the following routine, which decides where insertion is possible. A
tedious case analysis seems necessary. We set ubp to a harmless value so that the subsequent statement
a[ubp] = 0 doesn’t remove p if p was already present.

#define harmless 128

〈Find bounds lbp and ubp on where p can be inserted; goto tryq if p is already present 9 〉 ≡
lbp = l[p];
if (lbp ≤ 1) goto p ready ; /∗ if p is 1 or 2, it’s already there ∗/
if (lbp ≥ ub) goto p hopeless ;

p search : while (a[lbp] < p) {
if (a[lbp] ≡ 0) goto p empty slot ;
lbp ++;
}
if (a[lbp] ≡ p) goto p ready ;

p hopeless : ubp = lbp − 1; goto p done ; /∗ no way ∗/
p empty slot : for (j = lbp − 1; a[j] ≡ 0; j−−) ;
i = a[j];
if (p < i) goto p hopeless ;
for (i += i, j++; j < lbp ; j++) i += i;
while (p > i) {

lbp ++;
if (a[lbp]) goto p search ;
i += i;
}
for (j = lbp + 1; a[j] ≡ 0; j++) ;
i = a[j];
if (i ≤ p) {

if (i < p) {
lbp = j + 1; goto p search ;

}
p ready : ubp = lbp = harmless ;

goto tryq ; /∗ we found p ∗/
}
for (ubp = j − 1, i = (i+ 1)� 1; p < i; ubp −−) i = (i+ 1)� 1;

p done :

This code is used in section 8.

§10 ACHAIN0 THE INTERESTING PART 7

10. The other case is essentially the same. So if I have a bug in one routine, it probably is present in the
other one too.

〈Find bounds lbq and ubq on where q can be inserted; goto happiness if q is already present 10 〉 ≡
lbq = l[q];
if (lbq ≥ ub) goto q hopeless ;
if (lbq ≤ 1) goto q ready ; /∗ if q is 1 or 2, it’s already there ∗/

q search : while (a[lbq] < q) {
if (a[lbq] ≡ 0) goto q empty slot ;
lbq ++;
}
if (a[lbq] ≡ q) goto q ready ;

q hopeless : ubq = lbq − 1; goto q done ; /∗ no way ∗/
q empty slot : for (j = lbq − 1; a[j] ≡ 0; j−−) ;
i = a[j];
if (q < i) goto q hopeless ;
for (i += i, j++; j < lbq ; j++) i += i;
while (q > i) {

lbq ++;
if (a[lbq]) goto q search ;
i += i;
}
for (j = lbq + 1; a[j] ≡ 0; j++) ;
i = a[j];
if (i ≤ q) {

if (i < q) {
lbq = j + 1; goto q search ;

}
q ready : ubq = lbq = harmless ;

goto happiness ; /∗ we found q ∗/
}
for (ubq = j − 1, i = (i+ 1)� 1; q < i; ubq −−) i = (i+ 1)� 1;

q done :

This code is used in section 8.

8 INDEX ACHAIN0 §11

11. Index.

a: 1.
argc : 1, 2.
argv : 1, 2.
backup : 8.
clock : 1.
CLOCKS_PER_SEC: 1.
done : 1, 5, 8.
exit : 2.
fflush : 3.
fgetc : 4.
fopen : 2.
fprintf : 2, 3.
happiness : 8, 10.
harmless : 9, 10.
i: 1.
infile : 1, 2, 4.
j: 1.
l: 1.
lb : 1, 4, 7.
lbp : 1, 8, 9.
lbq : 1, 8, 10.
main : 1.
n: 1.
nmax : 1.
onward : 8.
outfile : 1, 2, 3.
p: 1.
p done : 9.
p empty slot : 9.
p hopeless : 9.
p ready : 9.
p search : 9.
pr : 1, 6.
prime : 1, 6.
printf : 1.
q: 1.
q done : 10.
q empty slot : 10.
q hopeless : 10.
q ready : 10.
q search : 10.
s: 1.
savep : 1, 8.
stack : 1, 8.
stderr : 2.
timer : 1.
tryq : 8, 9.
ub : 1, 5, 6, 7, 8, 9, 10.
ubp : 1, 8, 9.
ubq : 1, 8, 10.
x: 1.

ACHAIN0 NAMES OF THE SECTIONS 9

〈Backtrack until l(n) is known 7 〉 Used in section 1.

〈Find an upper bound; or in simple cases, set l(n) and goto done 5 〉 Used in section 1.

〈Find bounds lbp and ubp on where p can be inserted; goto tryq if p is already present 9 〉 Used in section 8.

〈Find bounds lbq and ubq on where q can be inserted; goto happiness if q is already present 10 〉 Used in

section 8.

〈 Input the next lower bound, lb 4 〉 Used in section 1.

〈Output the value of l(n) 3 〉 Used in section 1.

〈Process the command line 2 〉 Used in section 1.

〈Try reducing ub with the factor method 6 〉 Used in section 5.

〈Try to fill in the rest of the chain; goto done if it’s impossible 8 〉 Used in section 7.

ACHAIN0

Section Page
Intro . 1 1
The interesting part . 7 4
Index . 11 8

	Intro
	The interesting part
	Index
	Names of the sections
	Backtrack until l(n) is known
	Find an upper bound; or in simple cases, set l(n) and goto done
	Find bounds lbp and ubp on where p can be inserted; goto tryq if p is already present
	Find bounds lbq and ubq on where q can be inserted; goto happiness if q is already present
	Input the next lower bound, lb
	Output the value of l(n)
	Process the command line
	Try reducing ub with the factor method
	Try to fill in the rest of the chain; goto done if it's impossible

