81 ACHAIN-ALL INTRO 1

(See htips://cs.stanford.edu/ knuth/programs.htm] for date.)

1. Intro. This program, hacked from ACHAIN4, finds all canonical addition chains of minimum length
for a given integer.

There are two command-line parameters. First is a file that contains values of I(n), as output by the
previous program. Then comes the desired integer n.

efine nmax * shou e less than on a 32-bit machine x
#defi 10000000 hould be 1 han 224 32-bi hi

#include <stdio.h>
#include <stdlib.h>
unsigned char [[nmaz];
int a[128], b[128];
unsigned int undo[128 x 128];
int ptr; /* this many items of the undo stack are in use */
struct {
int [bp, ubp, Ibq, ubq,r, ptrp, ptrq;
} stack[128];
int tail[128], outdeg[128], outsum [128], limit[128];
int down[nmaz); /* a navigation aid discussed below x/
FILE xinfile;

main (int argc, char xargv|])
{
register int i, j,n,p,q,r, s, ubp, ubg = 0, lbp, lbq, ptrp, ptry;
int (b, nn;
(Process the command line 2);
(Initialize the down table 7);
for (n=1; n < nn; n++) {
(Input the next value, {[n] 3);
(Update the down links 8);

}

(Backtrack through all solutions 4);

2. (Process the command line 2) =
if (arge #3) {
forintf (stderr, "Usage: u%hsuinfile n\n", argv[0]);
exit (—1);

infile = fopen(argv[1],"r");

if (—infile) {
forintf (stderr, "I couldn’t open,‘%s’ foryreading!\n", argv[l]);
exit (—2);

if (sscanf (argv[2],"%d",&nn) # 1V nn <3V nn > nmaz) {
forintf (stderr, "The_ number, ‘%s’ was supposed to be between; 3 and %d!\n", argv[2], nmaz — 1);
exit (—3);

}

This code is used in section 1.

https://cs.stanford.edu/~knuth/programs.html

2 INTRO ACHAIN-ALL §3

3. (Input the next value, l[n] 3) =
Ib = fgetc(infile) — 77 /* fgetc will return a negative value after EOF x/
if (b<0V(n>1AWb>In-1+1)) {
forintf (stderr, "Input file_ has the wrong value,(%d) for 1[%d] '\n", b, n);
exit (—4);
}

l[n] = Ib;

This code is used in section 1.

84 ACHAIN-ALL THE INTERESTING PART 3

4. The interesting part.

(Backtrack through all solutions 4) =

al0] =b[0] = 1,a[1] = b[1] = 2;

n=nn,lb =In];

for (i =0; ¢ < b; i++) outdeg|i] = outsum[i] = 0;

allb] = b[lb] = n;

for (i=2; i <b; i++) ali] =

for (i=10—-1;i>2; i—) {
if ((afi]l < 1) <ali+1]) afi] = (ali+ 1]+ 1) > 1;
if (b[d) = bli+1]) bli] =b[i +1] —1;

ali — 1]+ 1,b[i] = bi — 1] < 1;

}

(Try to fix the rest of the chain, and output all the solutions 9);

This code is used in section 1.

5. One of the key operations we need is to increase p to the smallest element p’ > p that has I[p/] < s,
given that [[p] < s. Since {[p+1] < I[p] + 1, we can do this quickly by first setting p +— p+1; then, if I[p] = s,
we set p < down[p|, where down[p] is the smallest p’ > p that has [[p/] < I[p].

The links down[p] can be prepared as we go, starting them off at co and updating them whenever we learn
a new value of [[n].

Instead of using infinite links, however, we can save space by temporarily letting down[p] = p” in such
cases, where p” is the largest element less than p whose down link is effectively infinite. These temporary
links tell us exactly what we need to know during the updating process. And we can distinguish them from
“real” down links by pretending that down[p] = oo whenever down[p] < p.

(Given that [[p] < s, increase p to the next such element 5) =

DA
} if (I[p] =) p= (down[p] > p ? downlp| : nmazx);

This code is used in section 11.

6. (Given that {[p] > s, increase p to the next element with I[p] < s 6) =
do {
if (down[p] > p) p = down|p];
else {
p = nmaz; break;

} while (I[p] > s);

This code is used in sections 10 and 11.

7. (Initialize the down table 7) =
for (n=1; n < nn; n++) downln] =n—1;

This code is used in section 1.

8. I can’t help exclaiming that this little algorithm is quite pretty.

(Update the down links 8) =
if (I[n] <ln—1]) {
for (p = down|[n]; lUp] > l[n]; p=q) q = down|p], down[p] = n;
down[n] = p;

}

This code is used in section 1.

4 THE INTERESTING PART ACHAIN-ALL 89

9. (Try to fix the rest of the chain, and output all the solutions 9) =
ptr = 0; /* clear the undo stack */
for (r=s=1b; s>2; s—) {
if (outdeg[s] =1) limit[s] = a[s] — tail[outsum|s]]; else limit[s] = a[s] — 1;
/* the max feasible p x/
if (limit[s] > b[s — 1]) limit[s] = b[s — 1];
(Set p to its smallest feasible value, and ¢ = a[s] — p 10);
while (p < limit[s]) {
(Find bounds (Ibp, ubp) and (lbg, ubg) on where p and ¢ can be inserted; but go to failpq if they
can’t both be accommodated 14);
ptrp = ptr;
for (; ubp > lbp; ubp—) {
(Put p into the chain at location ubp; goto failp if there’s a problem 16);
if (p=¢q) goto happiness;
if (ubg > ubp) ubqg = ubp — 1;
ptrq = ptr;
for (; ubg > lbg; ubg—) {
(Put ¢ into the chain at location ubg; goto failg if there’s a problem 18);
happiness: (Put local variables on the stack and update outdegrees 12);
goto onward; /* now a[s] is covered; try to cover a[s — 1] x/
backup: s++;
if (s > Ib) goto impossible;
(Restore local variables from the stack and downdate outdegrees 13);
if (p=q) goto failp;
failg: while (ptr > ptrq) (Undo a change 15);
} /* end loop on ubg */
failp: while (ptr > ptrp) (Undo a change 15);
} /* end loop on ubp */
failpg: (Advance p to the next smallest feasible value, and set ¢ = a[s] — p 11);
} /* end loop on p */
goto backup;
onward: continue;
} /* end loop on s */
(Print a solution 20);
goto backup;
impossible:

This code is used in section 4.

810 ACHAIN-ALL THE INTERESTING PART

10. At this point we have alk] = b[k] for all r < k < Ib.

(Set p to its smallest feasible value, and ¢ = a[s] —p 10) =
if (a[s] & 1) { /* necessarily p # q */
unequal: if (outdeg[s — 1] =0) ¢ = a[s]/3; else q = a[s] > 1;
if (¢ > bls —2]) ¢="0[s—2];
p=als] — ¢
if (I[p] = s) {
(Given that [[p] > s, increase p to the next element with I[p] < s 6);
q=als] —p;

}
} else {
p=q=als]> 1
if (I[p] > s) goto unequal; /* a rare case like [[191] = [[382] */

if (p > limit[s]) goto backup;

for (; r>2Aalr—1]=br—-1]; r—) ;

if (p>0b[r—1)) { /* now r < s, since p < b[s — 1] */
while (p > a[r]) r++; /* this step keeps r < s, since a[s — 1] = b[s — 1] */
p=alr],q =als] — p;

} else if (g <pAgqg>bdr—2]) {
if (a[r] < als] = b[r —2]) p=alr],q = b[s] — p;

} else ¢ =b[r —2],p=als] — g;

This code is used in section 9.

5

6 THE INTERESTING PART ACHAIN-ALL 811

11. (Advance p to the next smallest feasible value, and set ¢ = a[s] —p 11) =
if (p=q) {
if (outdeg[s — 1] =0) q = (a[s]/3) + 1; /+ will be decreased momentarily */
if (¢ >0b[s—2]) ¢=>[s—2]; else ¢—;
p=als] — g
if (I[p] > s) {
(Given that [[p] > s, increase p to the next element with I[p] < s 6);
q=a[s] —p;

} else {
(Given that I[p] < s, increase p to the next such element 5);
q = als| = p;

it (g>2) {
if (a[s—1]=0b[s—1]) { /* maybe p has to be present already x*/
doublecheck: while (p < a[r] Aalr — 1] =b[r —1]) r—;
if (p>0[r—1]) {
while (p > a[r]) r++;
p=alr],q = als] — p; /x possibly r = s now */
} else if (¢ > b[r—2]) {
if (alr] < als] — blr — 2]) p = alr], g = bs] — p
else ¢ =0b[r —2],p=als] — ¢

}
if (ubg > s) ubg = s —1;
while (¢ > alubg + 1]) ubq++;
while (¢ < alubq]) ubg—;
if (¢ > blubg]) {
q = blubg],p = a[s] — ¢;
if (a[s — 1] = b[s — 1]) goto doublecheck;
}
}

This code is used in section 9.

12. (Put local variables on the stack and update outdegrees 12) =
tail[s] = q, stack[s].r = r;
outdeg[ubp]++, outsum [ubp] += s;
outdeg[ubq|++, outsum[ubq] += s;
stack[s].lbp = lbp, stack[s].ubp = ubp;
stack[s].lbqg = lbq, stack[s].ubq = ubg;
stack[s].ptrp = ptrp, stack|[s].ptrq = ptrg;

This code is used in section 9.

13. (Restore local variables from the stack and downdate outdegrees 13) =
ptrq = stack|[s].ptrq, ptrp = stack[s].ptrp;
Ibq = stack][s].lbq, ubq = stack|[s].ubg;
Ibp = stack[s].lbp, ubp = stack|[s].ubp;
outdeg[ubq]—, outsum[ubq] —= s;
outdeg[ubp]——, outsum [ubp] —= s;
q = tail[s],p = a[s] — q,r = stack][s].r;

This code is used in section 9.

814 ACHAIN-ALL THE INTERESTING PART 7

14. After the test in this step is passed, we’ll have ubp > ubq and lbp > lbq.

(Find bounds (lbp, ubp) and (lbq, ubg) on where p and ¢ can be inserted; but go to failpq if they can’t both
be accommodated 14) =
if (I[p] = s) goto failpg;
lbp = I[pl;
while (b[lbp] < p) bp++;
if (p&1)Ap>0b[lbp —2]+bllbp —1]) {
if (++Ibp > s) goto failpg;

if (a[lbp] > p) goto failpg;
for (ubp = lbp; alubp + 1] < p; ubp++) ;
if (ubp =s—1) lbp = ubp;
if (p=gq) lbg = lbp, ubg = ubp;
else {
Ibg = [g];
if (Ibg > ubp) goto failpg;
while (b[lbg] < q) lbg++;
if (allbg] < blibg]) {
if ((q& 1) Agq > b[ibg — 2] + b[lbg — 1]) Ibg++;
if (Ibg > ubp) goto failpqg;
if (a[lbq] > q) goto failpg;
if (Ibp < lbq) lbp = lbg + 1;
while ((¢ < (lbp — Ibq)) < p)
if (++Ilbp > ubp) goto failpg;
}

for (ubg = lbg; afubq + 1] < g A (g < (ubp — ubg — 1)) > p; ubg++) ;

}

This code is used in section 9.

15. The undoing mechanism is very simple: When changing a[j], we put (j < 24) + x on the undo stack,
where x was the former value. Similarly, when changing b[j], we stack the value (1 < 31) + (j < 24) + z.
#define newa(j,y) undolptr++] = (j < 24) +alj], alj] = y

#define newb(j,y) wundo[ptr++] = (1 < 31) + (j < 24) +b[j],0[j] =y

(Undo a change 15) =

i = undo[—ptr];
if (i >0) afi > 24] =i & #£EEL1f1,;
else b[(i & #3EEEEEEE) > 24] = ¢ & #LEFEES,

}

This code is used in section 9.

8 THE INTERESTING PART

16. At this point we know that a[ubp] < p < blubp).

(Put p into the chain at location ubp; goto failp if there’s a problem 16) =
if (alubp] #p) {

newa (ubp, p);

for (j =ubp —1; (a[j] < 1) <alj +1]; j—) {
i=(aj+1]+1) > 1;
if (i > b[j]) goto failp;
newa(J,1);

}

for (j = ubp +1; alj] < alj —1]; j++) {
i=alj -1+ 1;
if (i > b[j]) goto failp;
newa(j, i);

}

}
if (b[ubp] # p) {
newb (ubp, p);

for (j = ubp —1; b[j] > b[j +1]; j—) {

i=blj+1] - 1;
if (i <alj]) goto failp;
newd (j,1);

}
for (j=wubp +1; b[j] >b[j — 1] < 1; j++) {
i=bj—-1<1;
if (i <alj]) goto failp;
newd(j,1);
}
}

(Make forced moves if p has a special form 17);

This code is used in section 9.

ACHAIN-ALL

§16

817 ACHAIN-ALL THE INTERESTING PART 9

17. If, say, we've just set a[8] = b[8] = 132, special considerations apply, because the only addition chains
of length 8 for 132 are

1,2,4,8,16,32, 64,128, 132;

1,2,4,8,16,32, 64, 68, 132;

1,2,4,8, 16,32, 64, 66, 132;

1,2,4,8, 16,32, 34, 66, 132;

1,2,4,8,16,32, 33, 66, 132;

1,2,4,8,16,17, 33,66, 132.

The values of a[4] and b[4] must therefore be 16; and then, of course, we also must have a[3] = b[3] = 8, etc.
Similar reasoning applies whenever we set a[j] = b[j] = 27 + 2% for k < j — 4.

Such cases may seem extremely special. But my hunch is that they are important, because efficient chains
need such values. When we try to prove that no efficient chain exists, we want to show that such values
can’t be present. Numbers with small {[p] are harder to rule out, so it should be helpful to penalize them.

(Make forced moves if p has a special form 17) =
i=p— (1< (ubp—1));
if (A (&(—1)=0)A0t<4)<p) {
for (j=wubp—2; (1&1)=0; i>=1,j—) ;
if (b[j] < (1 < j)) goto failp;
for (; alj] < (1< j); j—) newa(j,1 < j);

This code is used in section 16.

10 THE INTERESTING PART ACHAIN-ALL 818

18. At this point we had better not assume that a[ubg] < ¢ < blubg], because p has just been inserted.
That insertion can mess up the bounds that we looked at when Ibg and ubg were computed.

(Put ¢ into the chain at location ubg; goto failg if there’s a problem 18) =
if (a[ubg] # q) {

if (a[ubg] > q) goto failg;

newa (ubq, q);

for (j = ubg — 1; (alj] < 1) <alj +1); j—) {
i=(aj+1]4+1)>1;
if (i > b[j]) goto failg;
newa(j,1);

for (j = ubq +1; alj] < alj —1]; j++) {

i=alj—1]+1;
if (i > b[j]) goto failg;
newa(j,1);

}
if (b[ubg] # q) {
if (blubg] < q) goto failg;
newb (ubq, q);
for (j = ubg —1; b[j] > b[j +1]; j—) {

i=bj+1—1;
if (i < alj]) goto failg;
newb(j, i)

}
for (j = ubg +1; bj] > b[j — 1] < 1; j++) {
i=blj—1] < 1;
if (i < alj]) goto failg;
newb (j,4);
}
}
(Make forced moves if ¢ has a special form 19);

This code is used in section 9.

19. (Make forced moves if ¢ has a special form 19) =
i =g (1< (ubg 1)
if (A(&(—1)=0)A(E<4)<q) {
for (j=ubg—2; (i&1)=0; i>»>=1,j—) ;
if (bj] < (1 < j)) goto failg;
for (; a[j] < (1< j); j—) newa(j,1 < j);

This code is used in section 18.

20. (Print a solution 20) =
for (j = 0; j < Ib; j++) printf(",%d", a[j]);
printf ("\n");

This code is used in section 9.

621 ACHAIN-ALL

21. Index.
a: 1.

arge: 1, 2.
argv: 1, 2.

b: 1.

backup: 9, 10.

doublecheck: 11.

down: 1,5, 6, 7, 8.

exit: 2, 3.
failp: 9, 16, 17.
failpq: 9, 14.
failg: 9, 18, 19.
fgete: 3.

fopen: 2.
forintf: 2, 3
happiness: 9.

i 1.
impossible: 9.
nfile: 1, 2, 3.
7o 1.
I 1.

b: 1,3, 4,9, 10, 20.
bp: 1,9, 12, 13, 14.
lbg: 1,9, 12, 13, 14, 18.

limit: 1, 9, 10.
main: 1.
n: 1.

newa: 15, 16, 17, 18, 19.

newb: 15, 16, 18.
nmaz: 1, 2, 5, 6.
nn: 1, 2, 4, 7.
onward: 9.

outdeg: 1, 4, 9, 10, 11, 12, 13.
outsum: 1, 4, 9, 12, 13.

p: 1.
printf: 20.
ptr: 1, 9, 15.

ptrp: 1, 9, 12, 13.
ptrq: 1, 9, 12, 13.
q:

7
st 1
sscanf: 2.

stack: 1, 12, 13.
stderr: 2, 3.

tail: 1, 9, 12, 13.

[l L L

ubp: 1,9, 12, 13, 14, 16, 17
ubg: 1,9, 11, 12, 13, 14, 18, 19.

undo: 1, 9, 15.
unequal: 10.

INDEX

11

12 NAMES OF THE SECTIONS ACHAIN-ALL

(Advance p to the next smallest feasible value, and set ¢ = a[s] —p 11) Used in section 9.

(Backtrack through all solutions 4) Used in section 1.

(Find bounds (Ibp, ubp) and (lbq, ubg) on where p and ¢ can be inserted; but go to failpg if they can’t both
be accommodated 14) Used in section 9.

Given that {[p] < s, increase p to the next such element 5) Used in section 11.

Given that I[p] > s, increase p to the next element with I[p] < s 6) Used in sections 10 and 11.

Initialize the down table 7) Used in section 1.

Input the next value, I[n] 3) Used in section 1.

Make forced moves if p has a special form 17) Used in section 16.

Make forced moves if ¢ has a special form 19) Used in section 18.

Print a solution 20) Used in section 9.

Process the command line 2) Used in section 1.

Put local variables on the stack and update outdegrees 12) Used in section 9.

Put p into the chain at location ubp; goto failp if there’s a problem 16) Used in section 9.

Put ¢ into the chain at location ubq; goto failg if there’s a problem 18) Used in section 9.

Restore local variables from the stack and downdate outdegrees 13) Used in section 9.

Set p to its smallest feasible value, and ¢ = a[s] —p 10) Used in section 9.

Try to fix the rest of the chain, and output all the solutions 9) Used in section 4.

Undo a change 15> Used in section 9.

Update the down links 8) Used in section 1.

o~~~ o~~~ o~~~ o~~~

ACHAIN-ALL

Section Page

T .o e 1 1
The interesting Part 4 3
21 11

I .o

	Intro
	The interesting part
	Index
	Names of the sections
	Advance p to the next smallest feasible value, and set q=a[s]-p
	Backtrack through all solutions
	Find bounds (lbp,ubp) and (lbq,ubq) on where p and q can be inserted; but go to failpq if they can't both be accommodated
	Given that l[p]<s, increase p to the next such element
	Given that l[p]>=s, increase p to the next element with l[p]<s
	Initialize the down table
	Input the next value, l[n]
	Make forced moves if p has a special form
	Make forced moves if q has a special form
	Print a solution
	Process the command line
	Put local variables on the stack and update outdegrees
	Put p into the chain at location ubp; goto failp if there's a problem
	Put q into the chain at location ubq; goto failq if there's a problem
	Restore local variables from the stack and downdate outdegrees
	Set p to its smallest feasible value, and q=a[s]-p
	Try to fix the rest of the chain, and output all the solutions
	Undo a change
	Update the down links

