81 15PUZZLE-KORF1 INTRODUCTION 1

(See htips://cs.stanford.edu/ knuth/programs.htm] for date.)

1. Introduction. This program finds a minimum-move solution to the famous “15 puzzle,” using a
method introduced by Richard E. Korf [Artificial Intelligence 27 (1985), 97-109]. It’s the first of a series of
ever-more-efficient ways to do the job. (You might want to read the zeroth program in the series, 15PUZZLE-
KORFO, as background, although much of the documentation is repeated here.) My main reason for writing
this group of routines was to experiment with a new (for me) style of programming, explained below.

The initial position is specified on the command line as a permutation of the hexadecimal digits {0,1,2,3,
4,5,6,7,8,9,a,b,c,d,e, f}; this permutation is used to fill the rows of a 4 x 4 matrix, from top to bottom
and left to right. For example, ‘159d26ae37bf48c0’ specifies the starting position

B> wWw N -
0 N o ;o
0O T p ©
O H 0 Q

The number 0 stands for a blank cell. Each step in solving the puzzle consists of swapping 0 with one of its

neighbors. The goal position is always
1234

56738
9abc
de f O

(Korf had a different goal position, namely 0123456789abcdef. I agree that his convention is mathematically
superior to mine; but it conflicts with a 125-year-old tradition. So I have retained the historic practice. One
can of course interchange our conventions, if desired, by rotating the board by 180° and by replacing each
nonzero digit x by 16 — z.)

#include <stdio.h>
#include <time.h>

char board[16];

char start[16];

int stack[100];

int timer;

main (int argc, char xargv|])

{

register int j, k, s, t, del, piece, moves;
(Input the initial position 2);

(Apply Korf’s procedure 5);

(Output the results 24);

}

https://cs.stanford.edu/~knuth/programs.html

2 INTRODUCTION 15PUZZLE-KORF1 82

2. Let’s regard the 16 cell positions as two-digit numbers in quaternary (radix-4) notation:

00 01 02 03
10 11 12 13
20 21 22 23
30 31 32 33

Thus each cell is identified by its row number r and its column number ¢, making a two-nyp code (r, ¢), with
0<rc<4.

Furthermore, it’s convenient to renumber the input digits 1, 2, ..., £, so that they match their final
destination positions, 00, 01, ..., 32. This conversion simply subtracts 1; so O gets mapped into —1. The
example initial position given earlier will therefore appear as follows in the start array:

00 10 20 30
01 11 21 31
02 12 22 32
03 13 23 —1

Half of the initial positions make the puzzle unsolvable, because the permutation must be odd if and only
if the 0 must move an odd number of times. This solvability condition is checked when we read the input.
#define row(z) ((z) > 2)

#define col(z) ((z) & #3)
(Input the initial position 2) =
if (arge #2) {
forintf (stderr, "Usage:hsustartposition\n", argu[0]); exit(—1);
¥
for (j =0; k= argu[1][j]; j++) {
if (k>0 Ak<?9) k—=207;

else if (k> ’a’ Ak <’f’) k—="’a’ —10;

else {
forintf (stderr, "The_start position should use_ only _hex digits,(0123456789abcdef) !\n");
exit (—2);

}
if (start[k]) {
fprintf (stderr, "Your start_position uses_ %x twice!\n" k); exit(—3);

start[k] = 1;
}
for (k=0; k < 16; k++)
if (start|k] =0) {
fprintf (stderr, "Your start_position doesn’t_use %x!\n", k); exit(—4);

for (del =j=0; k= argv[1][§]; j++) {
if (k>°00ANk<’9’) k—="0"; else k —="a’ — 10;
start[j] = k — 1;
for (s =0; s <j; s++)
if (start[s] > start[j]) del++; /* count inversions */
if (k=0) t=yj;

if (((row(t) + col(t) + del) & #1) =0) {
printf ("Sorryy. . . the goal is unreachable from that start position!\n");
exit (0);

}

This code is used in section 1.

83 15PUZZLE-KORF1 KORF’S METHOD 3

3. Korf’s method. If piece (r,c¢) is currently in board position (r/,¢’), it must make at least |r — /| +
|c — ¢| moves before it reaches home. The sum of these numbers, over all fifteen pieces, is called h; this
quantity is also known as the “Manhattan metric lower bound.”

We will say that a move is happy if it moves a piece closer to the goal; otherwise we’ll call the move sad.
Korf’s key idea is to try first to find a solution that makes only happy moves. (For example, one can actually
win from the starting position bc9e80df3412a756 by making h = 56 moves that are entirely happy.) If that
fails, we start over, but this time we try to make h + 1 happy moves and 1 sad move. And if that also fails,
we try for h + k happy moves and k sad ones, for k =2, 3, ..., until finally we succeed.

That strategy may sound silly, because each new value of k repeats calculations already made. But it’s
actually brilliant, for two reasons: (1) The search can be carried out with almost no memory, for any fixed
value of k — in fact, this program uses fewer than 500 bytes for all its data. (2) The total running time for
k=0,1, ..., kg isn’t much more than the time needed for a single run with k& = kg, because the running
time increases exponentially with k.

Memory requirements are minimal because we can get away with memoryless depth-first search to explore
all solutions. The fifteen puzzle is much nicer in this respect than many other problems; indeed, a blind
depth-first search as used here is often a poor choice in other applications, because it might explore many
subproblems repeatedly, having no inkling that it has already “been there and done that.” But the search
tree of the fifteen puzzle has comparatively few overlapping branches. For example, the shortest cycle of
moves that restores a previously examined position occurs only when we go thrice around a 2 x 2 subsquare,
leading to a cycle of length 12; therefore the first five levels below any node of the tree consist entirely of
distinct states of the board, and only a few duplicates occur at level six.

Note: The Manhattan metric is somewhat weak, and substantially better lower bounds are known. Some
day I plan to incorporate them into later programs in this series. The simple approach adopted here is
sufficient to handle most random initial positions in a reasonable amount of time. But when it is applied
to the example of transposition, in the introduction, it is too slow: That example has a Manhattan lower
bound of 40, yet the shortest solutions have 72 moves. Thus the k value for that problem is 16; and each
new value of k takes empirically about 5.7 times as long as the previous case. (So the running time was 40.4
hours on my Opteron computer, vintage 2004.)

Moreover, I could improve the present scheme in various other ways. Even with the Manhattan metric,
I find that there are 88,728,779 positions from which the goal is achievable without any sad moves. (A
surprisingly large number — at least, I was expecting less than a million. Incidentally, exactly 114 of
those positions have the maximum distance to the goal, namely 56, as in the example stated above.) If
we had a table of those positions in memory, we would know that our last-permitted sad move must be to
something in the table; that might make a significant speedup. Korf and Taylor have described a series of
other improvements that actually allowed them to solve random instances of the 24-puzzle in 1996 [AAAI
National Conference Proceedings (1996), 1202-1207].

Another note: Maybe my terminology “happy” versus “sad” is too poignant. Should I have called them
“downhill” and “uphill” moves instead? Readers comments are invited.

4 KORF’S METHOD 15PUZZLE-KORF1 84

4. Saving memory means that the computation lives entirely within the computer’s high-speed cache. Of
course we do need to examine billions of positions, in tough cases; so we want the inner loop of depth-first
search to be short.

Let’s take a look at the operations that are involved when, say, we’ve just moved the empty cell into
position (7, ¢), coming from the south. (In other words, we will imagine that the empty cell was previously
at (r+1,c¢). We'll think of the empty cell as moving north, although the board has actually changed by
moving a piece to the south.) From (r,c¢) we’ll try to move the empty cell either west to (r,c — 1), or north
to (r—1,¢), or east to (r,c+ 1); up to three moves are possible, depending on whether (r, ¢) is a middle cell,
an edge cell, or a corner cell. After having tried all those possibilities, we’ll backtrack and make the next
move from the cell to the south that got us started.

A straightforward implementation appears in the program 15PUZZLE-KORFO0, where the inner loop con-
tains many tests: (1) Choosing a direction. (2) Testing if this direction is feasible from the current (r,c).
(3) If feasible, is the move happy or sad? (4) If it’s sad, have we exceeded our quota of sad moves? (5) Have
we reached the goal? (6) Have we exhausted all possibilities?

Such conditional branches play havoc with the pipeline organization of a modern computer. Therefore
the present program avoids most of them by straight-line coding, using essentially a finite-state automaton
to control the actions. The program consists conceptually of 4 x 4 x 4 x 4 = 256 small parts, one for
each combination of (r,¢,d,p), where we're at empty cell position (r,c) trying to move the empty cell in
direction d, having entered this cell from direction p.

(In fact, 256 is a generous upper estimate, because many combinations are impossible at the edges and
corners. We won’t, for example, try to move east when the empty cell is in column 3. The true number of
cases is 152, of which 48 simply undo a move that was made.)

I could have generated the individual pieces of code with the macro capability of C’s preprocessor. But my
debugging tools don’t know how to deal with macros satisfactorily. So I did the repetitive steps with macros
at another level, namely with emacs as I typed this program into the computer. The C preprocessor did,
however, come in handy to make the code more readable than it would have been if I had fully expanded
everything by text editing.

Instead of writing this program as a collection of 152 little modules, I could have made it a collection
of 152 little procedures. But that wouldn’t have bought me anything; as a full professor with tenure, I
don’t have to worry about being fired when I use goto statements. The overhead of subroutine calling,
and the fact that “tail recursion” is extremely useful in the situations met here, both convince me that no
state-of-the-art compiler would come up with anything near as efficient if I wrote procedures instead of this
code that purposely looks like spaghetti. Nor would a procedure-oriented version be easier for me to write.

The only drawback to the style adopted here, as far as I can see, is that I had many chances to make
mistakes; a program of this kind will seem to work even though it contains typographic errors. Therefore I
had to do a lot of careful desk checking.

Does all this replication help? The program now has shifted the computer’s work from the instruction cache
to the data cache. One natural benchmark is the case ca6098dfb73254e1, which proved to be the toughest
of the 100 random examples in Korf’s original paper. (He reported that his implementation searched more
than 6 billion nodes in that case.) In my first tests, on an Athlon computer purchased in the year 2000, the
running time for this toughie was 8 minutes and 58 seconds. By comparison, 15PUZZLE-KORF0 requires 24
minutes and 26 seconds on the same machine. Korf’s original experiment, using a Pascal compiler on a DEC
2060 in 1984, took about 4000 minutes; so the present program represents a more than 400-fold speedup, of
which we can attribute a factor of roughly 160 to improvements in hardware, and another factor of about
2.7 to the implementation technique adopted here.

85 15PUZZLE-KORF1 KORF’S METHOD 5

5. Enough of this introduction. Let’s get on with the program.
(Apply Korf’s procedure 5) =
(Set moves to the minimum number of happy moves 6);
if (moves =0) goto win; /* otherwise our solution will take 6 4+ 6 moves! */
while (1) {
timer = time(0);
t = moves; /* desired number of ((sad moves) < 8) + (happy moves) */
(Try for a solution with ¢ more moves 23);
printf (",. . .unousolution with %d+%d moves, (%dusec)\n", moves & #*££, moves > 8,
time(0) — timer);
moves += #101; /x add a sad move and a happy move to the current quota */
)
win:

This code is used in section 1.

6. (Set moves to the minimum number of happy moves 6) =
for (j = moves = 0; j < 16; j++)

if (start[j] > 0) {
del = row(start[j]) — row (j);
moves += (del <07 —del : del);
del = col(start[j]) — col (j);
moves += (del <07 —del : del);

}

This code is used in section 5.

7. The main control routine is a stack, which records two things: In the left 16 bits is the number of
(sad, happy) moves remaining, called ¢; this number will be restored when backtracking. And in the right
16 bits is a code number of the routine to execute next, after finishing every task that’s higher on the stack.

8. (Switch into action 8) =
switcher: t = stack|[——s] > 16;
switch (stack[s] & #£££f) {
(Cases that move east from column 0 10)
(Cases that move east from column 1 11)
(Cases that move east from column 2 12)
(Cases that move west from column 1 13)
(Cases that move west from column 2 14)
(Cases that move west from column 3 15)
(Cases that move north from row 1 16)
(Cases that move north from row 2 17)
(Cases that move north from row 3 18)
(Cases that move south from row 0 19)
(Cases that move south from row 1 20)
(Cases that move south from row 2 21)
(Cases that move back 22)
case bottom: break;
default: fprintf (stderr,"Oops,,I’m confused about case %x!\n", stack[s]);

This code is used in section 23.

6 KORF’S METHOD 15PUZZLE-KORF1 89

9. Directions are encoded as follows: east = 0, north = 1, west = 2, south = 3. (Think of powers of 4 in
the complex plane.)

Each feasible combination of (r,¢,d,p) is encoded as an 8-bit quantity called code(r,c,d,p), so that we
can easily switch to it. There’s also tailcode (r, ¢, d); this stands for a case that will try only a single direction
d at cell (r,c) before returning.

To avoid complicated testing for happiness and sadness, the arithmetical calculation of del shown here
will produce #100 if a move in direction d is currently sad, #001 if that move is currently happy.

#define code(r,c,d,p) (((r<2)+c)<2)+d)<2)+p

#define tailcode(r,c,d) #100 + (code(0,r,c,d))

#define bottom code(0,0,1,1) /* an otherwise unused code x/

#define bord(r,c) board[((r) < 2) + (¢)]

#define east(r,c) piece = bord(r,c+1); del = (((c — col(piece)) > 2) & #££) + 1
#define west(r,c) piece = bord(r,c —1); del = (((col(piece) —c) > 2) & #£f) + 1
#define north(r,c) piece = bord(r —1,¢); del = (((row (piece) —r) > 2) & #££f) + 1
#define south(r,c) piece = bord(r+ 1,¢); del = (((r — row(piece)) > 2) & #££) + 1

10. (Cases that move east from column 0 10) =

case tailcode(0,0,0): case code(0,0,0,3): r0c0d0p3: east(0,0);
if (t < del) { if (t = del) goto win; else goto r0c0d3p3; }
bord (0, 0) = piece, stack[s++] = (t < 16) + code(0,0,3,3),t —= del;
goto r0c1d0p2;

case code(1,0,0,1): r1c0d0pl: east(1,0);
if (t < del) { if (t = del) goto win; else goto r1c0d3pl; }
bord (1,0) = piece, stack[s++] = (t < 16) + code(1,0,3,1),¢t —= del;
goto ricldip2;

case tailcode(1,0,0): case code(1,0,0,3): r1c0d0p3: east(1,0);
if (t < del) { if (t = del) goto win; else goto r1c0d3p3; }
bord(1,0) = piece, stack[s++] = (t < 16) + code(1,0,3,3),t —= del;
goto ricidip2;

case code(2,0,0,1): 72c0d0p1: east(2,0);
if (t < del) { if (t = del) goto win; else goto r2c0d3pl; }
bord (2,0) = piece, stack[s++] = (t < 16) + code(2,0,3,1),t —= del;
goto r2ci1dip2;

case tailcode(2,0,0): case code(2,0,0,3): r2c0d0p3: east(2,0);
if (t < del) { if (¢t = del) goto win; else goto r2c¢0d3p3; }
bord (2,0) = piece, stack[s++] = (t < 16) + code(2,0,3,3),t —= del;
goto r2cldip2;

case tailcode(3,0,0): case code(3,0,0,1): r8c0d0pl: east(3,0);
if (t < del) { if (t = del) goto win; else goto r3c0dipl; }
bord (3,0) = piece, stack[s++] = (t € 16) + code(3,0,1,1),¢t —= del;
goto r3cidip2;

This code is used in section 8.

811 15PUZZLE-KORF1

11. (Cases that move east from column 1 11) =

case code(0,1,0,2): r0c1d0p2: east(0,1);
if (t < del) { if (t = del) goto win; else goto r0c1d3p2; }
bord (0,1) = piece, stack[s++] = (t < 16) + code(0,1,3,2),t —= del;
goto r0c2d0p2;

case tailcode(0,1,0): case code(0,1,0,3): r0c1dOp3: east(0,1);
if (t < del) { if (t = del) goto win; else goto r0cld3p3; }
bord (0,1) = piece, stack[s++] = (t < 16) + code(0,1,3,3),t —= del;
goto r0c2d0p2;

case code(1,1,0,1): ric1dOpl: east(1,1);
if (t < del) { if (¢t = del) goto win; else goto ricld3pl; }
bord (1,1) = piece, stack[s++] = (t < 16) + code(1,1,3,1),t —= del;
goto ric2dip2;

case code(1,1,0,2): ric1d0p2: east(1,1);
if (t < del) { if (t = del) goto win; else goto ricld3p2; }
bord (1,1) = piece, stack[s++] = (t < 16) + code(1,1,3,2),t —= del;
goto ric2dip2;

case tailcode(1,1,0): case code(1,1,0,3): ricldOp3: east(1,1);
if (t < del) { if (t = del) goto win; else goto ricld3p3; }
bord(1,1) = piece, stack[s++] = (t € 16) + code(1,1,3,3),t —= del;
goto ric2dip2;

case code(2,1,0,1): r2c¢1d0pl: east(2,1);
if (¢t <del) { if (t = del) goto win; else goto r2cld3pl; }
bord (2,1) = piece, stack[s++] = (t < 16) + code(2,1,3,1),t —= del;
goto r2c2d1p2;

case code(2,1,0,2): r2c1d0p2: east(2,1);
if (t < del) { if (¢t = del) goto win; else goto r2c1d3p2; }
bord (2, 1) = piece, stack[s++] = (t <€ 16) + code(2,1,3,2),t —= del;
goto r2c2d1p2;

case tailcode(2,1,0): case code(2,1,0,3): r2c1d0p3: east(2,1);
if (t < del) { if (t = del) goto win; else goto r2c1d3p3; }
bord (2,1) = piece, stack[s++] = (t < 16) + code(2,1,3,3),t —= del;
goto r2c2d1p2;

case code(3,1,0,1): r3c1dOpl: east(3,1);
if (t < del) { if (t = del) goto win; else goto r3cld2pl; }
bord(3,1) = piece, stack[s++] = (t € 16) + code(3,1,2,1),t —= del;
goto r3c2dip2;

case tailcode(3,1,0): case code(3,1,0,2): r3c1d0p2: east(3,1);
if (t < del) { if (t = del) goto win; else goto r3cld2p2; }
bord (3,1) = piece, stack[s++] = (t < 16) + code(3,1,2,2),t —= del;
goto r3c2dip2;

This code is used in section 8.

KORF’S METHOD

7

8 KORF’S METHOD 15PUZZLE-KORF1

12. (Cases that move east from column 2 12) =

case code(0,2,0,2): r0c2d0p2: east(0,2);
if (t < del) { if (t = del) goto win; else goto r0c2d3p2; }
bord (0,2) = piece, stack[s++] = (t < 16) + code(0,2,3,2),t —= del;
goto r0c3d3p2;

case tailcode(0,2,0): case code(0,2,0,3): r0c2d0p3: east(0,2);
if (t < del) { if (¢t = del) goto win; else goto r0c2d3p3; }
bord (0,2) = piece, stack[s++] = (t < 16) + code(0,2,3,3),t —= del;
goto r0c3d3p2;

case code(1,2,0,1): r1c2d0pl: east(1,2);
if (t < del) { if (¢t = del) goto win; else goto r1c2d3pl; }
bord (1,2) = piece, stack[s++] = (t < 16) + code(1,2,3,1),t —= del;
goto ric3dip2;

case code(1,2,0,2): r1c2d0p2: east(1,2);
if (t < del) { if (t = del) goto win; else goto r1c2d3p2; }
bord (1,2) = piece, stack[s++] = (t < 16) + code(1,2,3,2),t —= del;
goto ric3dip2;

case tailcode(1,2,0): case code(1,2,0,3): r1c2d0p3: east(1,2);
if (t < del) { if (t = del) goto win; else goto r1c2d3p3; }
bord(1,2) = piece, stack[s++] = (t <€ 16) + code(1,2,3,3),t —= del;
goto ric3dip2;

case code(2,2,0,1): r2c¢2d0p1: east(2,2);
if (t < del) { if (t = del) goto win; else goto r2c2d3pl; }
bord (2,2) = piece, stack[s++] = (t < 16) + code(2,2,3,1),t —= del;
goto r2c3d1p2;

case code(2,2,0,2): 12c2d0p2: east(2,2);
if (t < del) { if (¢t = del) goto win; else goto r2c2d3p2; }
bord (2, 2) = piece, stack[s++] = (t < 16) + code(2,2,3,2),t —= del;
goto r2c3d1p2;

case tailcode(2,2,0): case code(2,2,0,3): r2c2d0p3: east(2,2);
if (t < del) { if (t = del) goto win; else goto r2c2d3p3; }
bord (2,2) = piece, stack[s++] = (t < 16) + code(2,2,3,3),t —= del;
goto r2c3dip2;

case code(3,2,0,1): r3c¢2d0pl: east(3,2);
if (t < del) { if (t = del) goto win; else goto r3c2d2p1; }
bord (3,2) = piece, stack[s++] = (t € 16) + code(3,2,2,1),t —= del;
goto r3c3dip2;

case tailcode(3,2,0): case code(3,2,0,2): r3c2d0p2: east(3,2);
if (t < del) { if (t = del) goto win; else goto r3c2d2p2; }
bord (3,2) = piece, stack[s++] = (t < 16) + code(3,2,2,2),t —= del;
goto r3c3dip2;

This code is used in section 8.

§12

813 15PUZZLE-KORF1 KORF’S METHOD

13. (Cases that move west from column 1 13) =

case tailcode(0,1,2): case code(0,1,2,0): rOc1d2p0: west(0,1);
if (t < del) { if (t = del) goto win; else goto r0c1dOp0; }
bord (0,1) = piece, stack[s++] = (t < 16) + code(0,1,0,0),t —= del;
goto r0c0d3p0;

case code(0,1,2,3): r0c1d2p3: west(0,1);
if (t < del) { if (t = del) goto win; else goto r0cldOp3; }
bord (0,1) = piece, stack[s++] = (t < 16) + code(0,1,0,3),t —= del;
goto r0c0d3p0;

case tailcode(1,1,2): case code(1,1,2,1): ricld2pl: west(1,1);
if (t < del) { if (¢t = del) goto win; else goto ricldipl; }
bord (1,1) = piece, stack[s++] = (t < 16) + code(1,1,1,1),t —= del;
goto r1c0d3p0;

case code(1,1,2,0): rlc1d2p0: west(1,1);
if (t < del) { if (t = del) goto win; else goto ricldip0; }
bord (1,1) = piece, stack[s++] = (t < 16) + code(1,1,1,0),t —= del;
goto r1c0d3p0;

case code(1,1,2,3): ricld2p3: west(1,1);
if (t < del) { if (t = del) goto win; else goto ricldip3; }
bord(1,1) = piece, stack[s++] = (t € 16) + code(1,1,1,3),t —= del;
goto r1c0d3p0;

case tailcode(2,1,2): case code(2,1,2,1): r2c1d2pl: west(2,1);
if (¢t <del) { if (t = del) goto win; else goto r2cldipl; }
bord (2,1) = piece, stack[s++] = (t < 16) + code(2,1,1,1),t —= del;
goto r2c0d3p0;

case code(2,1,2,0): r2¢1d2p0: west(2,1);
if (t < del) { if (¢t = del) goto win; else goto r2c1dip0; }
bord (2, 1) = piece, stack[s++] = (t <€ 16) + code(2,1,1,0),t —= del;
goto r2c0d3p0;

case code(2,1,2,3): r2¢1d2p3: west(2,1);
if (t < del) { if (t = del) goto win; else goto r2c1dip3; }
bord (2,1) = piece, stack[s++] = (t < 16) + code(2,1,1,3),t —= del;
goto r2c0d3p0;

case tailcode(3,1,2): case code(3,1,2,1): r8c1d2pl: west(3,1);
if (t < del) { if (t = del) goto win; else goto r3cldipl; }
bord(3,1) = piece, stack[s++] = (t € 16) + code(3,1,1,1),t —= del;
goto r3c0d1p0;

case code(3,1,2,0): r3¢1d2p0: west(3,1);
if (t < del) { if (t = del) goto win; else goto r3cldip0; }
bord (3,1) = piece, stack[s++] = (t < 16) + code(3,1,1,0),t —= del;
goto r3c0dip0;

This code is used in section 8.

9

10 KORF’S METHOD 15PUZZLE-KORF1

14. (Cases that move west from column 2 14) =

case tailcode(0,2,2): case code(0,2,2,0): r0c2d2p0: west(0,2);
if (t < del) { if (t = del) goto win; else goto r0c2d0p0; }
bord (0,2) = piece, stack[s++] = (t < 16) + code(0,2,0,0),t —= del;
goto r0c1d3p0;

case code(0,2,2,3): 70c2d2p3: west(0,2);
if (t < del) { if (t = del) goto win; else goto r0c2d0p3; }
bord (0,2) = piece, stack[s++] = (t < 16) + code(0,2,0,3),t —= del;
goto r0c1d3p0;

case tailcode(1,2,2): case code(1,2,2,1): ric2d2pl: west(1,2);
if (t < del) { if (¢t = del) goto win; else goto ric2dipl; }
bord (1,2) = piece, stack[s++] = (t < 16) + code(1,2,1,1),t —= del;
goto ricld3p0;

case code(1,2,2,0): r1c2d2p0: west(1,2);
if (t < del) { if (t = del) goto win; else goto r1c2dip0; }
bord (1,2) = piece, stack[s++] = (t < 16) + code(1,2,1,0),t —= del;
goto ricid3p0;

case code(1,2,2,3): r1c2d2p3: west(1,2);
if (t < del) { if (t = del) goto win; else goto ric2dip3; }
bord(1,2) = piece, stack[s++] = (t € 16) + code(1,2,1,3),t —= del;
goto rici1d3p0;

case tailcode(2,2,2): case code(2,2,2,1): r2c2d2p1: west(2,2);
if (¢t <del) { if (t = del) goto win; else goto r2c2dipl; }
bord (2,2) = piece, stack[s++] = (t < 16) + code(2,2,1,1),t —= del;
goto r2c1d3p0;

case code(2,2,2,0): r2c2d2p0: west(2,2);
if (t < del) { if (¢t = del) goto win; else goto r2c2d1p0; }
bord (2, 2) = piece, stack[s++] = (t < 16) + code(2,2,1,0),t —= del;
goto r2c1d3p0;

case code(2,2,2,3): r2c2d2p3: west(2,2);
if (t < del) { if (t = del) goto win; else goto r2c2d1p3; }
bord (2,2) = piece, stack[s++] = (t < 16) + code(2,2,1,3),t —= del;
goto r2c1d3p0;

case tailcode(3,2,2): case code(3,2,2,1): r8c2d2p1: west(3,2);
if (t < del) { if (t = del) goto win; else goto r3c2dipl; }
bord (3,2) = piece, stack[s++] = (t € 16) + code(3,2,1,1),t —= del;
goto r3c1d2p0;

case code(3,2,2,0): 13¢2d2p0: west(3,2);
if (t < del) { if (t = del) goto win; else goto r3c2dip0; }
bord (3,2) = piece, stack[s++] = (t < 16) + code(3,2,1,0),t —= del;
goto r3c1d2p0;

This code is used in section 8.

§14

815 15PUZZLE-KORF1 KORF’S METHOD

15. (Cases that move west from column 3 15) =

case tailcode(0,3,2): case code(0,3,2,3): r0c3d2p3: west(0,3);
if (t < del) { if (t = del) goto win; else goto r0c3d3p3; }
bord (0,3) = piece, stack[s++] = (t < 16) + code(0,3,3,3),t —= del;
goto r0c2d3p0;

case tailcode(1,3,2): case code(1,3,2,1): ric3d2p1: west(1,3);
if (¢t <del) { if (t = del) goto win; else goto ric3dipl; }
bord (1,3) = piece, stack[s++] = (t < 16) + code(1,3,1,1),t —= del;
goto r1c2d3p0;

case code(1,3,2,3): r1c3d2p3: west(1,3);
if (t < del) { if (t = del) goto win; else goto ric3dip3; }
bord (1,3) = piece, stack[s++] = (t < 16) + code(1,3,1,3),t —= del;
goto r1c2d3p0;

case tailcode(2,3,2): case code(2,3,2,1): r2c3d2p1: west(2,3);
if (t < del) { if (t = del) goto win; else goto r2c¢3dipl; }
bord (2, 3) = piece, stack[s++] = (t < 16) + code(2,3,1,1),t —= del;
goto r2c2d3p0;

case code(2,3,2,3): r2c3d2p3: west(2,3);
if (t < del) { if (t = del) goto win; else goto r2c3d1p3; }
bord(2,3) = piece, stack[s++] = (t € 16) + code(2,3,1,3),t —= del;
goto r2c2d3p0;

case tailcode(3,3,2): case code(3,3,2,1): r8c3d2p1: west(3,3);
if (¢t <del) { if (t = del) goto win; else goto r3c3dipl; }
bord (3,3) = piece, stack[s++] = (t < 16) + code(3,3,1,1),t —= del;
goto r3c2d2p0;

This code is used in section 8.

11

12 KORF’S METHOD 15PUZZLE-KORF1

16. (Cases that move north from row 1 16) =

case tailcode(1,0,1): case code(1,0,1,0): r1c0dip0: north(1,0);
if (t < del) { if (t = del) goto win; else goto r1c0dOp0; }
bord(1,0) = piece, stack[s++] = (t < 16) + code(1,0,0,0),t —= del;
goto r0c0d0p3;

case code(1,0,1,3): r1c0d1p3: north(1,0);
if (t < del) { if (t = del) goto win; else goto r1c0dOp3; }
bord (1,0) = piece, stack[s++] = (t < 16) + code(1,0,0,3),t —= del;
goto r0c0d0p3;

case tailcode(1,1,1): case code(1,1,1,0): ric1dip0: north(1,1);
if (t < del) { if (¢t = del) goto win; else goto ricldOp0; }
bord (1,1) = piece, stack[s++] = (t < 16) + code(1,1,0,0),t —= del;
goto r0cl1d2p3;

case code(1,1,1,2): ricldip2: north(1,1);
if (t < del) { if (t = del) goto win; else goto ricldOp2; }
bord (1,1) = piece, stack[s++] = (t < 16) + code(1,1,0,2),t —= del;
goto r0cld2p3;

case code(1,1,1,3): ricldip3: north(1,1);
if (t < del) { if (t = del) goto win; else goto ricldOp3; }
bord(1,1) = piece, stack[s++] = (t € 16) + code(1,1,0,3),t —= del;
goto r0ci1d2p3;

case tailcode(1,2,1): case code(1,2,1,0): r1c2dip0: north(1,2);
if (t < del) { if (t = del) goto win; else goto r1c2d0p0; }
bord (1,2) = piece, stack[s++] = (t < 16) + code(1,2,0,0),t —= del;
goto r0c2d2p3;

case code(1,2,1,2): r1c2d1p2: north(1,2);
if (t < del) { if (¢t = del) goto win; else goto r1c2d0p2; }
bord (1,2) = piece, stack[s++] = (t < 16) + code(1,2,0,2),t —= del;
goto r0c2d2p3;

case code(1,2,1,3): r1c2dip3: north(1,2);
if (t < del) { if (t = del) goto win; else goto r1c2d0p3; }
bord (1,2) = piece, stack[s++] = (t < 16) + code(1,2,0,3),t —= del;
goto r0c2d2p3;

case code(1,3,1,2): ric3d1p2: north(1,3);
if (t < del) { if (t = del) goto win; else goto ric3d3p2; }
bord(1,3) = piece, stack[s++] = (t <€ 16) + code(1,3,3,2),t —= del;
goto r0c3d2p3;

case tailcode(1,3,1): case code(1,3,1,3): ric3dip3: north(1,3);
if (t < del) { if (t = del) goto win; else goto r1c3d3p3; }
bord (1,3) = piece, stack[s++] = (t < 16) + code(1,3,3,3),t —= del;
goto r0c3d2p3;

This code is used in section 8.

§16

817 15PUZZLE-KORF1 KORF’S METHOD

17. (Cases that move north from row 2 17) =

case tailcode(2,0,1): case code(2,0,1,0): r2c0d1p0: north(2,0);
if (t < del) { if (t = del) goto win; else goto r2c0d0p0; }
bord(2,0) = piece, stack[s++] = (t < 16) + code(2,0,0,0),t —= del;
goto r1c0dip3;

case code(2,0,1,3): r2c0d1p3: north(2,0);
if (t < del) { if (t = del) goto win; else goto r2c0d0p3; }
bord (2,0) = piece, stack[s++] = (t < 16) + code(2,0,0,3),t —= del;
goto r1c0dip3;

case tailcode(2,1,1): case code(2,1,1,0): r2c1dip0: north(2,1);
if (t < del) { if (¢t = del) goto win; else goto r2c1d0p0; }
bord (2,1) = piece, stack[s++] = (t < 16) + code(2,1,0,0),t —= del;
goto ricld2p3;

case code(2,1,1,2): r2¢1dip2: north(2,1);
if (t < del) { if (t = del) goto win; else goto r2c1d0p2; }
bord (2,1) = piece, stack[s++] = (t < 16) + code(2,1,0,2),t —= del;
goto ricld2p3;

case code(2,1,1,3): r2c1d1p3: north(2,1);
if (t < del) { if (t = del) goto win; else goto r2c1d0p3; }
bord(2,1) = piece, stack[s++] = (t € 16) + code(2,1,0,3),t —= del;
goto ricid2p3;

case tailcode(2,2,1): case code(2,2,1,0): r2c2d1p0: north(2,2);
if (t < del) { if (t = del) goto win; else goto r2c2d0p0; }
bord (2,2) = piece, stack[s++] = (t < 16) + code(2,2,0,0),t —= del;
goto r1c2d2p3;

case code(2,2,1,2): r2c2d1p2: north(2,2);
if (t < del) { if (¢t = del) goto win; else goto r2c2d0p2; }
bord (2, 2) = piece, stack[s++] = (t < 16) + code(2,2,0,2),t —= del;
goto r1c2d2p3;

case code(2,2,1,3): r2c2d1p3: north(2,2);
if (t < del) { if (t = del) goto win; else goto r2c2d0p3; }
bord (2,2) = piece, stack[s++] = (t < 16) + code(2,2,0,3),t —= del;
goto ric2d2p3;

case code(2,3,1,2): r2¢3d1p2: north(2,3);
if (t < del) { if (t = del) goto win; else goto r2c3d3p2; }
bord(2,3) = piece, stack[s++] = (t € 16) + code(2,3,3,2),t —= del;
goto r1c3d2p3;

case tailcode(2,3,1): case code(2,3,1,3): r2c3d1p3: north(2,3);
if (t < del) { if (t = del) goto win; else goto r2c3d3p3; }
bord (2, 3) = piece, stack[s++] = (t < 16) + code(2,3,3,3),t —= del;
goto ric3d2p3;

This code is used in section 8.

13

14 KORF’S METHOD 15PUZZLE-KORF1

18. (Cases that move north from row 3 18) =

case tailcode(3,0,1): case code(3,0,1,0): r8c0d1p0: north(3,0);
if (t < del) { if (t = del) goto win; else goto r3c¢0d0p0; }
bord(3,0) = piece, stack[s++] = (t < 16) + code(3,0,0,0),t —= del;
goto r2c0d1p3;

case tailcode(3,1,1): case code(3,1,1,0): r8c1dip0: north(3,1);
if (t < del) { if (t = del) goto win; else goto r3c1dOp0; }
bord (3,1) = piece, stack[s++] = (t < 16) + code(3,1,0,0),t —= del;
goto r2c1d2p3;

case code(3,1,1,2): r3c1dip2: north(3,1);
if (t < del) { if (¢t = del) goto win; else goto r3c1dOp2; }
bord (3,1) = piece, stack[s++] = (t < 16) + code(3,1,0,2),t —= del;
goto r2c1d2p3;

case tailcode(3,2,1): case code(3,2,1,0): r8c2dip0: north(3,2);
if (t < del) { if (t = del) goto win; else goto r3c2d0p0; }
bord (3,2) = piece, stack[s++] = (t < 16) + code(3,2,0,0),t —= del;
goto r2c2d2p3;

case code(3,2,1,2): r3c¢2d1p2: north(3,2);
if (t < del) { if (t = del) goto win; else goto r3c2d0p2; }
bord (3,2) = piece, stack[s++] = (t <€ 16) + code(3,2,0,2),t —= del;
goto r2c2d2p3;

case tailcode(3,3,1): case code(3,3,1,2): r8c3dip2: north(3,3);
if (t < del) { if (t = del) goto win; else goto r3c3d2p2; }
bord (3,3) = piece, stack[s++] = (t < 16) + code(3,3,2,2),t —= del;
goto r2c3d2p3;

This code is used in section 8.

§18

§19 15PUZZLE-KORF1 KORF’S METHOD

19. (Cases that move south from row 0 19) =

case tailcode (0,0, 3): case code(0,0,3,0): r0c0d3p0: south(0,0);
if (t < del) { if (t = del) goto win; else goto r0c0dOp0; }
bord (0,0) = piece, stack[s++] = (t < 16) + code(0,0,0,0),t —= del;
goto r1c0d0pl;

case code(0,1,3,0): r0c1d3p0: south(0,1);
if (t < del) { if (t = del) goto win; else goto r0cld2p0; }
bord (0,1) = piece, stack[s++] = (t < 16) + code(0,1,2,0),t —= del;
goto ricidOpl;

case tailcode(0,1,3): case code(0,1,3,2): r0c1d3p2: south(0,1);
if (t < del) { if (¢t = del) goto win; else goto r0cld2p2; }
bord (0,1) = piece, stack[s++] = (t < 16) + code(0,1,2,2),t —= del;
goto ricldOpl;

case code(0,2,3,0): r0c2d3p0: south(0,2);
if (t < del) { if (t = del) goto win; else goto r0c2d2p0; }
bord (0,2) = piece, stack[s++] = (t < 16) + code(0,2,2,0),t —= del;
goto ric2d0pli;

case tailcode(0,2,3): case code(0,2,3,2): r0c2d3p2: south(0,2);
if (t < del) { if (t = del) goto win; else goto r0c2d2p2; }
bord (0,2) = piece, stack[s++] = (t € 16) + code(0,2,2,2),t —= del;
goto r1c2d0pl;

case tailcode(0,3,3): case code(0,3,3,2): r0c3d3p2: south(0,3);
if (t < del) { if (t = del) goto win; else goto r0c3d2p2; }
bord (0,3) = piece, stack[s++] = (t < 16) + code(0, 3,2,2),t —= del;
goto ric3d3pl;

This code is used in section 8.

15

16 KORF’S METHOD 15PUZZLE-KORF1

20. (Cases that move south from row 1 20) =

case code(1,0,3,0): r1c0d3p0: south(1,0);
if (t < del) { if (t = del) goto win; else goto ricO0dip0; }
bord(1,0) = piece, stack[s++] = (t <€ 16) + code(1,0,1,0),t —= del;
goto r2c0d0p1;

case tailcode(1,0,3): case code(1,0,3,1): r1c0d3p1: south(1,0);
if (¢t <del) { if (t = del) goto win; else goto ricOdipl; }
bord (1,0) = piece, stack[s++] = (t < 16) + code(1,0,1,1),t —= del;
goto r2c0d0p1;

case code(1,1,3,0): r1c1d3p0: south(l,1);
if (t < del) { if (t = del) goto win; else goto ricld2p0; }
bord (1,1) = piece, stack[s++] = (t < 16) + code(1,1,2,0),t —= del;
goto r2c1d0pl;

case code(1,1,3,1): rlcld3pl: south(1l,1);
if (t < del) { if (t = del) goto win; else goto rlcld2pl; }
bord (1,1) = piece, stack[s++] = (t < 16) + code(1,1,2,1),t —= del;
goto r2ci1d0Opl;

case tailcode(1,1,3): case code(1,1,3,2): ricld3p2: south(1,1);
if (t < del) { if (t = del) goto win; else goto ricld2p2; }
bord(1,1) = piece, stack[s++] = (t € 16) + code(1,1,2,2),t —= del;
goto r2ci1d0pl;

case code(1,2,3,0): 71c2d3p0: south(1,2);
if (t < del) { if (t = del) goto win; else goto r1c2d2p0; }
bord (1,2) = piece, stack[s++] = (t < 16) + code(1,2,2,0),t —= del;
goto r2c2d0p1;

case code(1,2,3,1): r1c2d3p1: south(1,2);
if (t < del) { if (¢t = del) goto win; else goto r1c2d2pl; }
bord (1,2) = piece, stack[s++] = (t < 16) + code(1,2,2,1),t —= del;
goto r2c2d0pl;

case tailcode(1,2,3): case code(1,2,3,2): r1c2d3p2: south(1,2);
if (t < del) { if (t = del) goto win; else goto r1c2d2p2; }
bord (1,2) = piece, stack[s++] = (t < 16) + code(1,2,2,2),t —= del;
goto r2c2d0p1;

case code(1,3,3,1): ric3d3p1: south(1,3);
if (t < del) { if (t = del) goto win; else goto ric3d2pl; }
bord(1,3) = piece, stack[s++] = (t € 16) + code(1,3,2,1),t —= del;
goto r2c3d3pl;

case tailcode(1,3,3): case code(1,3,3,2): r1c3d3p2: south(l,3);
if (t < del) { if (t = del) goto win; else goto r1c3d2p2; }
bord (1,3) = piece, stack[s++] = (t < 16) + code(1,3,2,2),t —= del;
goto r2c3d3pl;

This code is used in section 8.

§20

§21 15PUZZLE-KORF1

21. Yes, this has been boring. But now we're in the last such section.

(Cases that move south from row 2 21) =

case code(2,0,3,0): 72c0d3p0: south(2,0);
if (t < del) { if (t = del) goto win; else goto r2c0dip0; }
bord (2,0) = piece, stack[s++] = (t < 16) + code(2,0,1,0),t —= del;
goto r3c0d0pl;

case tailcode(2,0,3): case code(2,0,3,1): r2c0d3p1: south(2,0);
if (t < del) { if (t = del) goto win; else goto r2c0dipl; }
bord (2,0) = piece, stack[s++] = (t <€ 16) + code(2,0,1,1),t —= del;
goto r3c0d0pl;

case code(2,1,3,0): r2¢1d3p0: south(2,1);
if (t < del) { if (t = del) goto win; else goto r2c1d2p0; }
bord (2,1) = piece, stack[s++] = (t < 16) + code(2,1,2,0),t —= del;
goto r3cidOpl;

case code(2,1,3,1): r2c1d3p1: south(2,1);
if (t < del) { if (t = del) goto win; else goto r2c1d2pl; }
bord(2,1) = piece, stack[s++] = (t € 16) + code(2,1,2,1),t —= del;
goto r3ci1dOpl;

case tailcode(2,1,3): case code(2,1,3,2): r2c1d3p2: south(2,1);
if (t < del) { if (¢t = del) goto win; else goto r2c1d2p2; }
bord (2,1) = piece, stack[s++] = (t < 16) + code(2,1,2,2),t —= del;
goto r3ci1d0pl;

case code(2,2,3,0): r2c2d3p0: south(2,2);
if (t < del) { if (¢t = del) goto win; else goto r2c2d2p0; }
bord (2, 2) = piece, stack[s++] = (t < 16) + code(2,2,2,0),t —= del;
goto r3c2d0pl;

case code(2,2,3,1): r2c2d3p1: south(2,2);
if (t < del) { if (t = del) goto win; else goto r2c2d2pl; }
bord (2,2) = piece, stack[s++] = (t < 16) + code(2,2,2,1),t —= del;
goto r3c2d0pl;

case tailcode(2,2,3): case code(2,2,3,2): r2c2d3p2: south(2,2);
if (t < del) { if (t = del) goto win; else goto r2c2d2p2; }
bord(2,2) = piece, stack[s++] = (t € 16) + code(2,2,2,2),t —= del;
goto r3c2d0pl;

case code(2,3,3,1): r2c3d3p1: south(2,3);
if (t < del) { if (¢t = del) goto win; else goto r2c3d2pl; }
bord (2,3) = piece, stack[s++] = (t < 16) + code(2,3,2,1),t —= del;
goto r3c3d2pl1;

case tailcode(2,3,3): case code(2,3,3,2): r2c3d3p2: south(2,3);
if (t < del) { if (t = del) goto win; else goto r2c3d2p2; }
bord (2, 3) = piece, stack[s++] = (t <€ 16) + code(2,3,2,2),t —= del;
goto r3c3d2pl;

This code is used in section 8.

KORF’S METHOD

17

18 KORF’S METHOD 15PUZZLE-KORF1 §22

22. The cases (r,c,d,p) with d = p represent the times when we are backtracking and must restore the
previous board position.

(Cases that move back 22) =

case code(0,0,0,0): r0c0d0p0: bord(0,0) = bord(0,1); goto switcher;
case code(0,0,3,3): r0c0d3p3: bord(0,0) = bord(1,0); goto switcher;
case code(0,1,0,0): r0c1d0p0: bord(0,1) = bord(0,2); goto switcher;
case code(0,1,2,2): r0c1d2p2: bord(0,1) = bord(0,0); goto switcher;
case code(0,1,3,3): r0c1d3p3: bord(0,1) = bord(1,1); goto switcher;
case code(0,2,0,0): r0c2d0p0: bord(0,2) = bord(0,3); goto switcher;
case code(0,2,2,2): r0c2d2p2: bord(0,2) = bord(0,1); goto switcher;
case code(0,2,3,3): r0c2d3p3: bord(0,2) = bord(1,2); goto switcher;
case code(0,3,2,2): r0c3d2p2: bord(0,3) = bord(0,2); goto switcher;
case code(0,3,3,3): r0c3d3p3: bord(0,3) = bord(1,3); goto switcher;
case code(1,0,0,0): r1c0d0p0: bord(1,0) = bord(1,1); goto switcher;
case code(1,0,1,1): r1c0dipl: bord(1,0) = bord(0,0); goto switcher;
case code(1,0,3,3): r1c0d3p3: bord(1,0) = bord(2,0); goto switcher;
case code(1,1,0,0): r1c1d0p0: bord(1,1) = bord(1,2); goto switcher;
case code(1,1,1,1): ricidipl: bord(1,1) = bord(0,1); goto switcher;
case code(1,1,2,2): ric1d2p2: bord(1,1) = bord(1,0); goto switcher;
case code(1,1,3,3): ricld3p3: bord(1,1) = bord(2,1); goto switcher;
case code(1,2,0,0): r1c¢2d0p0: bord(1,2) = bord(1,3); goto switcher;
case code(1,2,1,1): r1c2dipl: bord(1,2) = bord(0,2); goto switcher;
case code(1,2,2,2): r1c2d2p2: bord(1,2) = bord(1,1); goto switcher;
case code(1,2,3,3): r1c¢2d3p3: bord(1,2) = bord(2,2); goto switcher;
case code(1,3,1,1): ric3dipl: bord(1,3) = bord(0,3); goto switcher;
case code(1,3,2,2): r1c3d2p2: bord(1,3) = bord(1,2); goto switcher;
case code(1,3,3,3): r1c3d3p3: bord(1,3) = bord(2,3); goto switcher;
case code(2,0,0,0): 72¢0d0p0: bord(2,0) = bord(2,1); goto switcher;
case code(2,0,1,1): r2¢0d1p1: bord(2,0) = bord(1,0); goto switcher;
case code(2,0,3,3): 72c0d3p3: bord(2,0) = bord(3,0); goto switcher;
case code(2,1,0,0): r2¢1d0p0: bord(2,1) = bord(2,2); goto switcher;
case code(2,1,1,1): r2cldipl: bord(2,1) = bord(1,1); goto switcher;
case code(2,1,2,2): r2c¢1d2p2: bord(2,1) = bord(2,0); goto switcher;
case code(2,1,3,3): r2c1d3p3: bord(2,1) = bord(3,1); goto switcher;
case code(2,2,0,0): 72c¢2d0p0: bord(2,2) = bord(2,3); goto switcher;
case code(2,2,1,1): r2c¢2d1pl: bord(2,2) = bord(1,2); goto switcher;
case code(2,2,2,2): r2c¢2d2p2: bord(2,2) = bord(2,1); goto switcher;
case code(2,2,3,3): 12¢2d3p3: bord(2,2) = bord(3,2); goto switcher;
case code(2,3,1,1): r2c3d1p1: bord(2,3) = bord(1,3); goto switcher;
case code(2,3,2,2): r2¢3d2p2: bord(2,3) = bord(2,2); goto switcher;
case code(2,3,3,3): r2¢3d3p3: bord(2,3) = bord(3,3); goto switcher;
case code(3,0,0,0): r3¢0d0p0: bord(3,0) = bord(3,1); goto switcher;
case code(3,0,1,1): r3c0dipl: bord(3,0) = bord(2,0); goto switcher;
case code(3,1,0,0): r3¢1d0p0: bord(3,1) = bord(3,2); goto switcher;
case code(3,1,1,1): r3cldipl: bord(3,1) = bord(2,1); goto switcher;
case code(3,1,2,2): r3c1d2p2: bord(3,1) = bord(3,0); goto switcher;
case code(3,2,0,0): r3¢2d0p0: bord(3,2) = bord(3,3); goto switcher;
case code(3,2,1,1): r3c2dipl: bord(3,2) = bord(2,2); goto switcher;
case code(3,2,2,2): r3¢2d2p2: bord(3,2) = bord(3,1); goto switcher;
case code(3,3,1,1): r3c¢3d1pl: bord(3,3) = bord(2,3); goto switcher;
case code(3,3,2,2): r3c¢3d2p2: bord(3,3) = bord(3,2); goto switcher;
This code is used in section 8.

623 15PUZZLE-KORF1 KORF’S METHOD 19

23. Great — all the code has now been written for the inner loop. Only two things remain: (1) Getting
the whole process rolling, and (2) eventually stopping the darn thing.

To get started, we need 2, 3, or 4 top-level (or should I say bottom-of-stack level) decisions about what
direction to choose for the first move. The tailcodes were invented for precisely that purpose.

The process stops in one of two ways: Either there’s no solution (and we have try again with a higher
quota), or a winning path was found. It’s easy to handle the first case without slowing anything down, by
simply putting the special code ‘bottom’ at the bottom of the stack.

And T’ll save the other case (the best case) for last.

(Try for a solution with ¢ more moves 23) =
for (j = 0; j < 16; j++) {
board[j] = start[j];
if (board[j] < 0) k = j;

stack[0] = (¢ < 16) + bottom, s = 1;

if (col(k) # 3) stack[s++] = (t < 16) + tailcode (row (k), col (k
if (row(k) #0) stack[s++] = (t < 16) + tailcode (row (k), col (
if (col(k) #0)

if (row(k) # 3) stack[s++] = (t < 16) + tailcode (row (k), col (
(Switch into action 8);

),0); /* first move east x/

k), 1); /* first move north */
stack[s++] = (t < 16) + tailcode(row (k), col(k), 2); /* first move west */

k), 3); /* first move south */

This code is used in section 5.

24. Hey, we have a winner! The stack entries tell us how we got here, so that we can easily give the user
instructions about which piece should be pushed at each step — except that the last two steps haven’t been
placed on the stack, because of my tricky optimizations.

At first I was going to leave those two steps as an exercise for the user. Ha, ha, ha, a hilarious joke. But,
well, it looked a little too silly. So I broke down and figured out how to deduce them from scratch.

(Output the results 24) =
printf ("Solution in %d+%d moves: ", moves & #££, moves >> 8);
if (moves > 1) {
for (k =1; (stack[k] & #££££f) > tailcode(0,0,0); k++) ;
for (j =0; j <16; j++) board[j] = start[j];
Jj = (stack[k] & #£££f) > 4;
for (k++; k< s; k++) {
del = (stack[k] & #£££f) > 4;
printf ("%x", board[del] + 1);
board[j] = board|del], j = del;
}
if (j =#d) printf("ef\n");
else if (j =#7) printf("8c\n");
else printf ("bhx\n", bord (3,3) + 1);
} else {
if (moves = 1) printf ("%x", start[*£] + 1);
printf ("L Chdusec) \n", time (0) — timer);

}

This code is used in section 1.

20 INDEX

25. Index.

arge: 1, 2

argv: 1, 2

board: 1,9, 23, 24.

bord: 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 24.

8, 9, 23.

code: 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22.

bottom:

col: 2, 6,9, 23.

del: 1,2, 6,9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 24.
east: 9, 10, 11, 12.

exit: 2.

forintf: 2, 8.

7o 1.
k: 1.

main: 1.

1, 5, 6, 24.

north: 9, 16, 17, 18.

piece: 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21.

Moves:

printf: 2, 5, 24.
row: 2, 6, 9, 23.

r0c0d0p0:
r0c0d0p3:
r0c0d3p0:
r0c0d3p3:
r0c1d0p0:
rOc1d0p2:
r0c1d0p3:
r0c1d2p0:
rOcld2p2:
rOc1d2p3:
r0c1d3p0:
rOc1d3p2:
rOcld3p3:
r0c2d0p0:
r0c2d0p2:
r0c2d0p3:
r0c2d2p0:
r0c2d2p2:
r0c2d2p3:
r0c2d3p0:
r0c2d3p2:
r0c2d3p3:
r0c3d2p2:
r0c3d2p3:
r0c3d3p2:
r0c3d3p3:
r1c0d0p0:
r1c0d0p1:

19,
M7
13,
10,
13,
10,
ﬂ,
Q,
19,
13,
14,
11,
11,
14,
11,
Qv
L47
19,
L47
15,
12,
12,
19,
E,
12,
15,
16,
m7

22.
16.
19.
22.
22.
11.
13.
19.
22.
16.
19.
19.
22.
22.
12.
14.
19.
22.
16.
19.
19.
22.
22.
16.
19.
22.
22.
19.

r1c0d0p3:
ric0d1p0:
ricOdIpl:
ric0dip3:
r1c0d3p0:
ric0d3pl:
ric0d3p3:
ricld0p0:
ricldOpl:
ricldOp2:
ricldOp3:
ricldip0:
ricldIpl:
ricldip2:
ricldip3:
ricld2p0:
ricld2pl:
ricld2p2:
ricld2p3:
ricld3p0:
ricld3pl:
ricld3p2:
ricld3p3:
r1c2d0p0:
ric2d0pl:
ric2d0p2:
ric2d0p3:
ric2dip0:
ric2dipl:
ric2dip2:
ric2dip3:
ri1c2d2p0:
ric2d2pl:
ric2d2p2:
r1c2d2p3:
r1c2d3p0:
ric2d3pl:
ric2d3p2:
ric2d3p3:
ric3dipl:
ric3dIp2:
ric3dIp3:
ric3d2pl:
ric3d2p2:
ric3d2p3:
ric3d3pl:
ric3d3p2:
ric3d3p3:
r2c0d0p0:
r2c0d0p1:
r2c0d0p3:

10, 16.
16, 20.
22.
16, 17.
20.
20.
22.
22.
19.
16.
16.
16.
22.
16.
16.
13, 20.
13, 20.
22.
13, 17.
20.
20.
20.
22.
22.
12, 19.
12, 16.
12, 16.
16.
22.
16.
16.
14, 20.
20.
22.
17.
20.
20.
20.
22.
22.
16.
16.
15, 20.
22.

15, 17.
20.
20.
22.
22.
10, 20.
10, 17.

15PUZZLE-KORF1

§25

§25 15PUZZLE-KORF1 INDEX 21

r2c0dip0: 17, 21. r3cldOpl: 11, 21.
r2c0dipl: 21, 22. r3cldOp2: 11, 18.
r2c0d1p3: 17, 18. r3cldip0: 13, 18.
r2c0d3p0: 13, 21. r3cldipl: 13, 22.
r2c¢0d3p1: 10, 21. r3cidip2: 10, 18.
r2c0d3p3: 10, 22. r3cld2p0: 13, 14.
r2c1d0p0: 17, 22. r8cild2pl: 11, 13.
r2cldOpl: 11, 20. r3cld2p2: 11, 22.
r2c1dOp2: 11, 17. r3c2d0p0: 18, 22.
r2c1dOp3: 11, 17. r3c2d0Opl: 12, 21.
r2cldIp0: 13, 17. r3c2d0p2: 12, 18.
r2cldipl: 13, 22. r3c2dip0: 14, 18.
r2cldip2: 10, 17. r3c2dipl: 14, 22.
r2cldip3: 13, 17. r3c2dip2: 11, 18.
r2cl1d2p0: 13, 21. r3c2d2p0: 14, 15.
r2cld2pl: 13, 21. r3c2d2pl: 12, 14.
r2cld2p2: 21, 22. r3c2d2p2: 12, 22.
r2c1d2p3: 13, 18. rdc3dipl: 15, 22.
r2c1d3p0: 14, 21. r3c3dip2: 12, 18.
r2cld3p1: 11, 21. r3c3d2pl: 15, 21.
r2c1d3p2: 11, 21. r3c3d2p2: 18, 22.
r2c1d3p3: 11, 22. s: L

r2c2d0p0: 17, 22. south: 9, 19, 20, 21.
r2c2d0pl: 12, 20. stack: 1, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18,
r2c2d0p2: 12, 17. 19, 20, 21, 23, 24.
r2c2d0p3: 12, 17. start: 1, 2, 6, 23, 24.
r2c2d1p0: 14, 17. stderr: 2, 8.
r2c2d1pl: 14, 22. switcher: 8, 22.
r2c2dip2: 11, 17. t: L

r2c2dip3: 14, 17. tailcode: 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
r2c2d2p0: 14, 21. 19, 20, 21, 23, 24.
r2c2d2p1: 14, 21. time: 5, 24.
r2c2d2p2: 21, 22. timer: 1, 5, 24.
r2c2d2p3: 14, 18. west: 9, 13, 14, 15.
r2c2d3p0: 15, 21. win: 5,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21.

r2c2d3pl: 12, 21.
r2c¢2d3p2: 12, 21.
r2c¢2d3p3: 12, 22.
r2c3dipl: 15, 22.
r2c3dip2: 12, 17.
r2c3dip3: 15, 17.
r2c3d2p1: 15, 21.
r2c¢3d2p2: 21, 22.
r2c¢3d2p3: 15, 18.
r2c¢3d3pl: 20, 21.
r2c¢3d3p2: 17, 21.
r2c¢3d3p3: 17, 22.
r3c¢0d0p0: 18, 22.
r3c0d0Op1: 10, 21.
r3c0dip0: 13, 18.
r3c0dipl: 10, 22.
r8cldOp0: 18, 22.

22 NAMES OF THE SECTIONS 15PUZZLE-KORF1

(Apply Korf’s procedure 5) Used in section 1.

(Cases that move back 22) Used in section 8.

(Cases that move east from column 0 10) Used in section 8.
(Cases that move east from column 1 11) Used in section 8.
(Cases that move east from column 2 12) Used in section 8.
(Cases that move north from row 1 16) Used in section 8.

(Cases that move north from row 2 17) Used in section 8.

(Cases that move north from row 3 18) Used in section 8.

(Cases that move south from row 0 19) Used in section 8.

(Cases that move south from row 1 20) Used in section 8.

(Cases that move south from row 2 21) Used in section 8.

(Cases that move west from column 1 13) Used in section 8.

(Cases that move west from column 2 14) Used in section 8.

(Cases that move west from column 3 15) Used in section 8.

(Input the initial position 2) Used in section 1.

(Output the results 24) Used in section 1.

(Set moves to the minimum number of happy moves 6) Used in section 5.
(Switch into action 8) Used in section 23.

(

Try for a solution with ¢ more moves 23) Used in section 5.

15PUZZLE-KORF1

Section Page

INtroduction 1 1
Korf’s method 3 3
25 20

I .o

	Introduction
	Korf's method
	Index
	Names of the sections
	Apply Korf's procedure
	Cases that move back
	Cases that move east from column 0
	Cases that move east from column 1
	Cases that move east from column 2
	Cases that move north from row 1
	Cases that move north from row 2
	Cases that move north from row 3
	Cases that move south from row 0
	Cases that move south from row 1
	Cases that move south from row 2
	Cases that move west from column 1
	Cases that move west from column 2
	Cases that move west from column 3
	Input the initial position
	Output the results
	Set moves to the minimum number of happy moves
	Switch into action
	Try for a solution with t more moves

